JPS59161838A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59161838A
JPS59161838A JP58036920A JP3692083A JPS59161838A JP S59161838 A JPS59161838 A JP S59161838A JP 58036920 A JP58036920 A JP 58036920A JP 3692083 A JP3692083 A JP 3692083A JP S59161838 A JPS59161838 A JP S59161838A
Authority
JP
Japan
Prior art keywords
region
type
element isolation
semiconductor substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58036920A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58036920A priority Critical patent/JPS59161838A/en
Publication of JPS59161838A publication Critical patent/JPS59161838A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the generation of N-P junction leakage current to occur at the side surfaces of an isolating region by a method wherein when the buried element isolating region is provided in a semiconductor device, a P type inversion preventing layer is provided on the undersurface of an N type diffusion layer to come in contact to the region. CONSTITUTION:A groove is bored in the surface layer on a P type Si substrate 1 and in the groove is buried a separating material 12 for using the groove as an element isolating region 13. Interposing the region 13 between, an N channel MOS transistor is formed on one side and a P channel MOS transistor is formed on the other side. Namely, on the N channel element side are formed by diffusion a source region 171 and a drain region 181, both of which are a shallow N<+> type one, and a gate electrode 161 is attached to these regions through a gate insulating film 151 formed between the regions 171 and 181. In this constitution, a P<-> type conversion preventing region 10 is provided under the undersurface of the region 181, which comes in contact to the region 13. Though the resion 171 side is not illustrated in the diagram, a conversion preventing region is formed on the region side as well. On the other hand, on the P channel element side is formed an N type well region 14, and a source region 172 and a drain region 182, both of which are a P<+> type one, are provided here as well. However, the inversion preventing region becomes unnecessary here by specifying the concentration of the well region 14.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置及びその製造方法に関し。[Detailed description of the invention] [Technical field of invention] The present invention relates to a semiconductor device and a method for manufacturing the same.

特に素子分離技術を改良した半導体装置及びその製造方
法に係る。
In particular, the present invention relates to a semiconductor device with improved element isolation technology and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体装置においては半導体基板表面に形成される多数
の素子を電気的に分離するために、素子分離領域が設け
られている。かかる素子分離領域の形成技術としては、
従来よpLOCO8法が広く用いられている。しかしな
がら、この方法はシリコン窒化膜・ぐターン等の耐酸化
性膜・々ターンを−スフとして半導体基板を選択酸化す
ることによシ酸化膜(素子分離領域)を形成するため、
バーズピークや窒化膜に起因するホワイトリ?ン等を生
じる。
In a semiconductor device, an element isolation region is provided to electrically isolate a large number of elements formed on the surface of a semiconductor substrate. As a technique for forming such an element isolation region,
Conventionally, the pLOCO8 method has been widely used. However, in this method, a silicon oxide film (element isolation region) is formed by selectively oxidizing the semiconductor substrate using an oxidation-resistant film such as a silicon nitride film or a silicon film.
White lily caused by bird's peak or nitride film? This causes problems such as

このようなことから、最近、半導体基板に溝部を設け、
この溝部に絶縁材料等からなる分離材を埋込むことによ
シ埋込み型素子分離領域を形成する方法が開発されてい
る。かかる方法によシ形成された素子分離領域は半導体
基板中に埋込まれているため、基板衣が平坦となり、微
細な配線の断線に強い等の利点を有する。しかしながら
、半導体基板表面にソースもしくはドレイン等として用
いられる不純物拡散層、特にn十型拡故層を前記埋込み
型素子分離領域の側面に接して形成すると、該素子分離
領域を構成する絶縁物からなる分離材と基板の界面がリ
ーキイであるため、n+−p接合リーク電流が生じ素子
特性を劣化させる欠点があった。
For this reason, recently, grooves have been created in semiconductor substrates,
A method has been developed for forming a buried element isolation region by embedding an isolation material made of an insulating material or the like in this groove. Since the element isolation region formed by this method is embedded in the semiconductor substrate, it has advantages such as a flat substrate surface and resistance to minute wiring breaks. However, if an impurity diffusion layer used as a source or drain, in particular an n-type diffusion layer, is formed on the surface of a semiconductor substrate in contact with the side surface of the buried element isolation region, the insulating material constituting the element isolation region becomes Since the interface between the separation material and the substrate is leaky, there is a drawback that n+-p junction leakage current occurs, degrading device characteristics.

〔発明の目的〕[Purpose of the invention]

本発明はn型拡散層が接する埋込み型素子分離領域の側
面でのn−p接合リーク電流の発生を防止した良好な素
子特性を有する半導体装置及びその製造方法を提供しよ
うとするものである。
SUMMARY OF THE INVENTION The present invention aims to provide a semiconductor device and a method for manufacturing the same, which have good device characteristics and prevent n-p junction leakage current from occurring on the side surfaces of a buried device isolation region in contact with an n-type diffusion layer.

〔発明の概要〕[Summary of the invention]

本発明はn型拡散層が接する埋込み型素子分離領域の側
面にp型反転防止層を設けることによって、該素子分離
領域の側面でのn−p接合リーク電流の発生を防止する
ことを骨子とする。
The main objective of the present invention is to prevent the occurrence of n-p junction leakage current on the side surface of the buried type device isolation region by providing a p-type anti-inversion layer on the side surface of the buried device isolation region in contact with the n-type diffusion layer. do.

即ち、本願第1の発明は半導体基体と、この半導体基体
に設けられ、該基体に形成された溝部及び該溝部に埋込
まれた分離材からなる埋込み型素子分離領域と、前記半
導体基体の表面の一部に前記素子分離領域の側面と接す
るように設けられたn型拡散層と、このn型拡散層が接
する前記素子分離領域側面の半導体基体部分に設けられ
たp型反転防止層とを具備したことを特徴とするもので
ある。
That is, the first invention of the present application includes a semiconductor substrate, a buried element isolation region provided in the semiconductor substrate and comprising a groove formed in the substrate and an isolation material embedded in the groove, and a surface of the semiconductor substrate. an n-type diffusion layer provided in a part of the semiconductor substrate in contact with the side surface of the element isolation region, and a p-type inversion prevention layer provided in the semiconductor substrate portion on the side surface of the element isolation region in contact with the n-type diffusion layer. It is characterized by the following:

上記半導体基体としては、例えばp型半導体基板、p−
ウェル領域を有するn型半導体基板、或いは絶縁基板上
に設けられたp型半導体層等を挙げることができる。
As the semiconductor substrate, for example, a p-type semiconductor substrate, a p-
Examples include an n-type semiconductor substrate having a well region or a p-type semiconductor layer provided on an insulating substrate.

上記n型拡散層とは、ソース或いはドレイン又は拡散配
線として用いられる。
The n-type diffusion layer is used as a source, a drain, or a diffusion wiring.

また、本願第2の発明は半導体基体上に、形成すべき溝
部の幅よシ広幅の開口部を有する第1被膜を形成する工
程と、前記開口部の一内側壁付近に位置する半導体基体
部分にp型の不純物をド−ピングしてp型拡散層を形成
する工程と、少なくとも前記第1被膜の開口部を含む周
辺に第2被膜を形成する工程と、この第2被膜を異方性
エツチングすることにより前記第1被膜の開口部内II
壁に第2被膜を残存させる工程と、前記第1被膜及び残
存第2被膜をマスクとして前記p型拡散層の大部分が形
成された半導体基体部分をエツチングして溝部を形成す
ると共に、該溝部の一側面にp型拡散層を残存させる工
程と、前記溝部内に分離材を埋込んで埋込み型素子分離
領域を形成した後、前記半導体基体の表面にn型拡散層
を前記残存p型拡散層が設けられた埋込み型素子分離領
域の側面と接するように選択的に形成する工程とを具備
したことを特徴とするものである。
Further, a second invention of the present application includes a step of forming a first film having an opening wider than a width of a groove to be formed on a semiconductor substrate, and a portion of the semiconductor substrate located near one inner wall of the opening. doping with p-type impurities to form a p-type diffusion layer; forming a second film around at least the opening of the first film; Inside the opening of the first coating II by etching
a step of leaving a second coating on the wall; etching a portion of the semiconductor substrate where most of the p-type diffusion layer is formed using the first coating and the remaining second coating as a mask to form a groove; A step of leaving a p-type diffusion layer on one side surface, and forming a buried element isolation region by burying an isolation material in the trench, and then forming an n-type diffusion layer on the surface of the semiconductor substrate with the remaining p-type diffusion. The method is characterized by comprising a step of selectively forming the layer so as to be in contact with the side surface of the buried element isolation region provided with the layer.

上記第1被膜の材料としては、例えば5i02+S j
 3N4或いはAL 、 At合金2MO等の各種の金
属を用いることができる。
As the material of the first coating, for example, 5i02+S j
Various metals such as 3N4, AL, At alloy 2MO, etc. can be used.

上記第2被膜は第1被膜に対して選択エツチング・性を
有する材料から形成することが必要で合、第2被膜の材
料として5i3N4を用いる。第1被膜がS io 2
からなる場合、第2被膜の材料としてUやkt金合金の
金属を用いる。
The second coating needs to be formed from a material that has selective etching properties with respect to the first coating, and 5i3N4 is used as the material for the second coating. The first coating is S io 2
In this case, a metal such as U or Kt gold alloy is used as the material of the second coating.

上記溝部内への分離材の埋込み手段としては、例えば溝
部の幅の仔以上の膜厚の絶縁膜を堆積した後、該絶縁膜
をエッチバックして絶縁材からなる分離材を埋込む方法
、溝部内周面に予め薄い酸化膜や窒化膜を形成した後、
溝部の幅の捧以上の膜厚の絶縁膜を堆積し、これをエッ
チバックして絶縁材からなる分離材を埋込む方法等を採
用し得る。但し、後者の方法では絶縁膜に代って多結晶
シリコン膜又は非晶質シリコン膜を用いることができる
The means for embedding the isolation material into the trench includes, for example, a method of depositing an insulating film with a thickness equal to or larger than the width of the trench, etching back the insulating film, and embedding an isolation material made of an insulating material; After forming a thin oxide film or nitride film on the inner peripheral surface of the groove,
A method of depositing an insulating film with a thickness equal to or greater than the width of the trench, etching back the insulating film, and embedding an isolation material made of an insulating material may be adopted. However, in the latter method, a polycrystalline silicon film or an amorphous silicon film can be used instead of the insulating film.

なお、溝部の形成後において第1被膜及び残存第2被膜
をマスクとして酸素、炭素、金等の不純物を溝部底面の
半導体基体にイオン注入してキャリアキラ一層を形成し
てもよい。
Note that after the groove is formed, a carrier killer layer may be formed by ion-implanting impurities such as oxygen, carbon, gold, etc. into the semiconductor substrate at the bottom of the groove using the first film and the remaining second film as masks.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明を相補型MO8)う/ソスタ(CMO8)
に適用した例について製造方法を併記して説明する。
Next, we will introduce the present invention into a complementary type MO8) U/Sosta (CMO8)
An example in which this method is applied will be described along with a manufacturing method.

(1)まず、p型のシリコン基板1の主面に熱酸化法に
よシ例えば厚さ500Xの熱酸化膜2を成長させた後、
全面に第1被膜としての厚さ4000Xの5i3N4膜
3を堆積した。っづ−て、フォトエツチング技術によf
i 5t3N4膜3を選択的に除去して形成すべき溝部
の幅よシ広幅の開口部41r:形成した(第1図図示)
(1) First, after growing a thermal oxide film 2 with a thickness of, for example, 500× on the main surface of a p-type silicon substrate 1 by a thermal oxidation method,
A 5i3N4 film 3 having a thickness of 4000× was deposited as a first film on the entire surface. By using photoetching technology,
i Opening 41r wider than the width of the groove to be formed by selectively removing the 5t3N4 film 3: formed (as shown in Figure 1)
.

(11)次いで、写真蝕刻法によシ前記開ロ部4の一内
側壁付近が露出するようにレソスト/臂ターン5を形成
した後、Si3N4膜3及びレノスト・ぐターンをマス
クとしてp型不純物、例えばボロンを露出した熱酸化膜
2を通して基板1にイオン注入して?ロンイオン注入層
6を形成した(第2図図示)。つづいて、全面に例えば
厚さ3000 XO8102膜7fCVD法によシ堆積
した後、熱処理を施した。この時、第3図に示す如くボ
ロンイオン注入層が活性化、拡散されて一端が前記81
.N4膜3下まで延びたp−型拡散層8が形成された。
(11) Next, a resist/arm turn 5 is formed by photolithography so that the vicinity of one inner side wall of the opening 4 is exposed, and then a p-type impurity is added using the Si3N4 film 3 and the resist/arm turn as a mask. , for example, by implanting ions into the substrate 1 through the thermal oxide film 2 exposing boron? A ion-implanted layer 6 was formed (as shown in FIG. 2). Subsequently, a 7f XO8102 film having a thickness of 3000, for example, was deposited on the entire surface by CVD, and then heat treated. At this time, as shown in FIG. 3, the boron ion implanted layer is activated and diffused so that one end is
.. A p-type diffusion layer 8 extending below the N4 film 3 was formed.

(iii)  次いで、リアクティブイオンエツチング
(RIE )によ、9SiO□膜7をその膜厚程度除去
してSiN 膜3の開口部4の内側壁にS IO2膜7
′を4 残存させた(第4図図示)。なお、この工程において、
熱酸化膜2はRIEに対するバッファの役目をする。つ
づいて、513N4膜3及び残存5XO2膜7′をマス
クとして露出した熱酸化膜2部分をエツチング除去し、
更にRIgによシリコン基板1を所定深さ選択的に除去
した。この時、p−型拡散層8の大部分が形成されたシ
リコン基板1部分は除去されて溝部9が形成されると共
に、この溝部9の一側面の基板1部分に1型拡散層が残
存され、これによ1)p−型反転防止層10が形成され
た(第5図図示)。
(iii) Next, the 9SiO□ film 7 is removed to the extent of its thickness by reactive ion etching (RIE), and an SIO2 film 7 is formed on the inner wall of the opening 4 of the SiN film 3.
4' remained (as shown in Figure 4). In addition, in this process,
Thermal oxide film 2 serves as a buffer for RIE. Next, using the 513N4 film 3 and the remaining 5XO2 film 7' as a mask, the exposed thermal oxide film 2 was removed by etching.
Furthermore, silicon substrate 1 was selectively removed to a predetermined depth using RIg. At this time, a portion of the silicon substrate 1 on which most of the p-type diffusion layer 8 is formed is removed to form a groove 9, and a type 1 diffusion layer remains in a portion of the substrate 1 on one side of the groove 9. As a result, 1) a p-type anti-inversion layer 10 was formed (as shown in FIG. 5).

lIψ 次いで、Si3N4膜3、残存5io2v’E
t、び熱酸化膜2を除去した後、全面に溝部9の幅の歿
以上の厚さの5IO2膜11を堆積して該溝部9内をS
iO□で十分に埋め込んだ(第6図図示)。つづいて、
 8102膜11をエッチバックした。これにより溝部
9′内に5in2からなる分離材12が埋込まれ、埋込
み型素子分離領域13が形成された。
lIψ Then, Si3N4 film 3, remaining 5io2v'E
After removing the thermal oxide film 2, a 5IO2 film 11 with a thickness equal to or more than the width of the trench 9 is deposited on the entire surface, and the inside of the trench 9 is filled with S.
It was fully embedded with iO□ (as shown in Figure 6). Continuing,
The 8102 film 11 was etched back. As a result, the isolation material 12 having a size of 5 inches was embedded in the trench 9', and a buried element isolation region 13 was formed.

ひきつづき、n型不純物例えば砒素をp型シリコン基板
lに選択的にイオン注入し、拡散させてn−ウェル領域
14を形成した(第7図図示)。
Subsequently, an n-type impurity such as arsenic was selectively ion-implanted into the p-type silicon substrate 1 and diffused to form an n-well region 14 (as shown in FIG. 7).

(V)  次いで、常法に従って埋込み型素子分離領域
13で分s1されたp型シリコン基板1及びn−ウェル
領域14上にダート酸化膜151 。
(V) Next, a dirt oxide film 151 is formed on the p-type silicon substrate 1 and the n-well region 14 separated by the buried element isolation region 13 according to a conventional method.

15□を介して例えば多結晶シリコンからなるダート電
極161 p16□を形成した。つづいて、n−ウェル
領域側を覆うレノストパターン(図示せず)を形成し、
このレノストパターン、埋込み型素子分離領域13及び
ダート電極161を−スフとしてn型不純物、例えば砒
素をp型シリコン基板1にイオン注入した。ひきつづき
、レノスト・パターンを除去し、再度、シリコン基板1
の島状領域を覆うレノスト・9ターン(図示せず)を形
成した後、このレノストパターン、埋込み型素子分離領
域13及びゲート電極162を一スクとしてp型不純物
、例えばゾロンをn−ウェル領域14にイオン注入し7
た。この後、レノストパターンを除去して熱処理を施す
ことによシシリコン基板1表面にp−型反転防止層10
が設けられた埋込み型素子分離領域13の側面に一端を
接した計型のソースドレイン領域171゜181が夫々
形成された。同時にn−ウェル領域14にf型のソース
ドレイン領域172.18□が形成され、0MO8が製
造された(第8図図示)。
A dirt electrode 161p16□ made of, for example, polycrystalline silicon was formed through the 15□. Subsequently, a Renost pattern (not shown) covering the n-well region side is formed,
This Lennost pattern, the buried element isolation region 13, and the dirt electrode 161 were used as a -substrate, and n-type impurities, such as arsenic, were ion-implanted into the p-type silicon substrate 1. Continuing, the Lenost pattern is removed and the silicon substrate 1 is placed again.
After forming a Lennost 9 turn (not shown) covering an island-like region, a p-type impurity such as zolon is added to the n-well region using the Lenost pattern, the buried element isolation region 13 and the gate electrode 162 as one mask. Ion implantation into 14 and 7
Ta. Thereafter, the Rennost pattern is removed and heat treatment is performed to form a p-type anti-inversion layer 10 on the surface of the silicon substrate 1.
Square-shaped source/drain regions 171 and 181 were formed, respectively, with one end in contact with the side surface of the buried element isolation region 13 provided with. At the same time, f-type source/drain regions 172.18□ were formed in the n-well region 14, and 0MO8 was manufactured (as shown in FIG. 8).

しかして、本発明の0MO8は第8図に示す如くp型シ
リコン基板1に溝部9及びこの溝部9内に埋込んだ分離
材12からなる埋込み型素子分離領域13を設け、かつ
p型シリコン基板1の島状領域にnチャンネルMOSト
ランジスタの層型のソースドレイン領域17.,18.
 を前記素子分離領域13の側面に接して設けると共に
、計型のソース、ドレイン領域171.181 が接す
る素子分離領域13の側面にp−型反転防止層10(ソ
ース領域側は図示せず)を設けた構造になりでいる。し
たがって、埋込み型素子分離領域13の溝部9形成時に
おけるその周辺のp型ンリコン基板lがリーキイーにな
ることに伴々、うば型のソース、ドレイ/領域171 
As shown in FIG. 8, the OMO8 of the present invention has a trench 9 in a p-type silicon substrate 1 and a buried element isolation region 13 made of an isolation material 12 buried in the trench 9. A layer type source/drain region 17. of an n-channel MOS transistor is formed in the island region 17.1. ,18.
is provided in contact with the side surface of the element isolation region 13, and a p-type inversion prevention layer 10 (the source region side is not shown) is provided on the side surface of the element isolation region 13 in contact with the meter-shaped source and drain regions 171 and 181. The structure has been established. Therefore, when the groove 9 of the buried element isolation region 13 is formed, the p-type silicon substrate l around it becomes leaky, and as a result, the side-shaped source, drain/region 171
.

181 と基;仮1間の接合電流リークを防止でき、素
子特性の優れたCIviO8fr:得ることができる。
It is possible to prevent junction current leak between 181 and group 1, and to obtain CIviO8fr: with excellent device characteristics.

なお、「ウェル領域14の濃度を2X1016Δm3前
後以上にすればp+型のソース、ドレイン領域1721
8□とn−ウェル領域14の間の接合リーク電流の発生
を防止できるため、p型のソース、ドレイン領域172
.1g、が接する埋込み型素子分離領域13側面のn−
ウェル領域14にn−型反転防止層を形成しなくともよ
い。
Furthermore, if the concentration of the well region 14 is set to about 2×1016Δm3 or more, the p+ type source and drain regions 1721
8□ and the n-well region 14, the p-type source and drain regions 172
.. 1g, on the side surface of the buried element isolation region 13 in contact with
It is not necessary to form an n-type anti-inversion layer in the well region 14.

また、本発明方法によれば開口部4を有するSi3N4
膜3をマスクの一部とし1c?ロン等をp型シリコン基
板1にイオン注入し、これを拡散させて5IN4膜3下
の基板1部分にまで延出するp−型拡散層8を形成し、
更にSi6N4膜30間ロ部4周側面に5iO7膜71
を残存させ、Si3N4膜3及び残存SiO□膜7/1
マスクとして基板1をエツチングすることによって、埋
込み型素子分離領域の一構成制である溝部9を形成でき
ると共に、同溝部9側面に残存したp−型拡散層により
F型反転防止層10を形成できる。したがって、極めて
簡単な工程によ9層型のソース、ドレイン領域174,
181でのn−p接合電流リークの発生を防止した高信
頼性の0MO8を製造できる。
Further, according to the method of the present invention, Si3N4 having the opening 4
1c with membrane 3 as part of the mask? A p-type diffusion layer 8 is formed by implanting ions such as ions into a p-type silicon substrate 1 and diffusing them to form a p-type diffusion layer 8 extending to a portion of the substrate 1 under the 5IN4 film 3.
Furthermore, a 5iO7 film 71 is placed on the peripheral side of the lower part 4 between the Si6N4 films 30.
remain, Si3N4 film 3 and remaining SiO□ film 7/1
By etching the substrate 1 as a mask, it is possible to form a trench 9 which is a part of the buried element isolation region, and also to form an F-type inversion prevention layer 10 using the p-type diffusion layer remaining on the side surface of the trench 9. . Therefore, the nine-layer type source and drain regions 174 can be formed by an extremely simple process.
A highly reliable 0MO8 in which n-p junction current leakage at 181 is prevented can be manufactured.

なお、本発明は上記実施例の如き0MO8に限定されず
、nチャンネルMO8)ランノスタ、nチャンネルのM
NOS 、 nチャンネルのMAO8等にも同様に適用
できる。また、上記実施例ではn型拡散層をnチャンネ
ルMO8トランジスタのn型のソース、ドレイン領域に
適用した場合について説明したが、n型拡散配線に用い
てもよい。
Note that the present invention is not limited to 0MO8 as in the above embodiments, but is applicable to n-channel MO8) Lannostar, n-channel M08)
It can be similarly applied to NOS, n-channel MAO8, etc. Further, in the above embodiment, the case where the n-type diffusion layer is applied to the n-type source and drain regions of the n-channel MO8 transistor has been described, but it may be used for the n-type diffusion wiring.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればn型拡散層が接する
埋込み型素子分離領域の側面でのn−p接合リーク電流
の発生を防止した良好な素子特性を有する半導体装置、
並びにかかる半導体装置を簡単に製造し得る方法を提供
でさる。
As detailed above, according to the present invention, a semiconductor device having good device characteristics that prevents the occurrence of n-p junction leakage current on the side surface of the buried device isolation region in contact with the n-type diffusion layer;
The present invention also provides a method for easily manufacturing such a semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図は本発明の実施例における0MO8の製
造工程を示す断面図でおる。 1・・・p型シリコン基板、3・・・S i 3N4膜
、4・・・開口部、7′・・・残存SiO□膜、9・・
・溝部、10・・・p−型反転防止層、12・・・5I
O2からなる分離材、13・・・埋込み型素子分離領域
、14・・・n−ウェル領域、161,162・・・ダ
ート電極、171・・・n+W’J−ス領域、181 
・・・計型ドレイン領域、172・・・を型ソース領域
、182・・・p+型ドレイン領域。 出願人代理人  弁理士 鈴 江 武 彦区     
     区 n                    (0斌 
       練 (−、00 城          城
FIGS. 1 to 8 are cross-sectional views showing the manufacturing process of 0MO8 in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...p-type silicon substrate, 3...S i 3N4 film, 4...opening, 7'...residual SiO□ film, 9...
・Groove portion, 10...p-type inversion prevention layer, 12...5I
Isolation material made of O2, 13... Buried element isolation region, 14... N-well region, 161, 162... Dirt electrode, 171... n+W'J-space region, 181
. . . meter type drain region, 172 . . . type source region, 182 . . . p + type drain region. Applicant's agent Patent attorney Takehiko Suzue
Ward n (0 bin
Ren (-, 00 Castle Castle

Claims (9)

【特許請求の範囲】[Claims] (1)  半導体基体と、この半導体基体に設けられ、
該基体に形成された溝部及び該溝部に埋込まれた分離材
からなる埋込み型素子分離領域と、前記半導体基体の表
面の一部に前記素子分離領域の側面と接するように設け
られたn型拡散層と、このn型拡散層が接する前記素子
分離領域側面の半導体基体部分に設けられたp型反転防
止層とを具備したことを特徴とする半導体装置。
(1) A semiconductor substrate, provided on this semiconductor substrate,
a buried type element isolation region made of a groove formed in the base and an isolation material embedded in the groove; and an n-type element isolation region provided on a part of the surface of the semiconductor base so as to be in contact with a side surface of the element isolation region. A semiconductor device comprising: a diffusion layer; and a p-type inversion prevention layer provided on a semiconductor substrate portion on a side surface of the element isolation region in contact with the n-type diffusion layer.
(2)  半導体基体がp−ウェル領域を有するn型半
導体基板からなシ、このウェル領域と基板との深さ方向
の界面付近に埋込み型素子分離領域を設け、かつ前記ウ
ェル領域内にソースもしくはドレインとなるn型拡散層
を前記素子分離領域の側面と接するように設けると共に
、該n型拡散層が接する素子分離領域側面のp−ウェル
領域にp型反転防止層を設けたことを特徴とする特許請
求の範囲第1項記載の半導体装置。
(2) If the semiconductor substrate is an n-type semiconductor substrate having a p-well region, a buried element isolation region is provided near the interface in the depth direction between the well region and the substrate, and a source or a source is provided in the well region. An n-type diffusion layer serving as a drain is provided in contact with a side surface of the element isolation region, and a p-type inversion prevention layer is provided in a p-well region on the side surface of the element isolation region in contact with the n-type diffusion layer. A semiconductor device according to claim 1.
(3)半導体基体上に形成すべき溝部の幅よシ広幅の開
口部を有する第1被膜を形成する工程と、前記開口部の
半導体基体部分にp型を与える不純物をドーピングして
p型拡散層を形成する工程と、少なくとも前記第1被膜
の開口部を含む周辺に第2被膜を形成する工程と、この
第2被膜を異方性エツチングすることにょシ前記第1被
膜の開口部段差内側壁に第2被膜を残存させる工程と、
前記第1被膜及び残存第2被膜をマスクとして前記p型
拡散層の大部分が形成された半導°体基体部分をエツチ
ングして溝部を形成すると共に該溝部の一側面にp型拡
散層を残存させる工程と、前記溝部内に分離材を埋込ん
で埋込み型素子分離領域を形成した後、前記半導体基体
の表面にn型拡散層を前記残存p型拡散層が設けられた
埋込み型素子分離領域の側面と接するように選択的に形
成する工程とを具備したことを特徴とする半導体装置の
装造方法。
(3) Forming a first film having an opening wider than the width of the groove to be formed on the semiconductor substrate, and doping the semiconductor substrate portion of the opening with an impurity that imparts p-type to diffuse p-type. forming a second layer at least around the first layer including the opening, and anisotropically etching the second layer. a step of leaving a second coating on the wall;
Using the first coating and the remaining second coating as a mask, the semiconductor substrate portion where most of the p-type diffusion layer is formed is etched to form a groove, and a p-type diffusion layer is formed on one side of the groove. After forming a buried type element isolation region by burying an isolation material in the trench, an n-type diffusion layer is formed on the surface of the semiconductor substrate, and a buried type element isolation process is performed in which an n-type diffusion layer is provided on the surface of the semiconductor substrate. 1. A method for manufacturing a semiconductor device, comprising a step of selectively forming the region so as to be in contact with a side surface of the region.
(4)第1被膜が二酸化硅素、金属もしくは窒化硅素か
らなることを特徴とする特許請求の範囲第3項記載の半
導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 3, wherein the first film is made of silicon dioxide, metal, or silicon nitride.
(5)第2被膜が第1被膜に対して選択エツチング性を
有・する材料からなること全特徴とする特許請求の範囲
第3項記載の半導体装置の製造方法。
(5) The method of manufacturing a semiconductor device according to claim 3, wherein the second film is made of a material that has selective etching properties with respect to the first film.
(6)p型の不純物としてぎロンを用いることを特徴と
する特許請求の範囲第3項記載の半導体装置の製造方法
(6) The method for manufacturing a semiconductor device according to claim 3, characterized in that Gyron is used as the p-type impurity.
(7)溝部の形成後、第1被膜及び残存第2被膜をマス
クとして溝部底面の半導体基体に不純物をドーピングし
てキャリアキラ一層を形成することを特徴とする特許請
求の範囲第3項記載の半導体装置の製造方法。
(7) After the groove is formed, the semiconductor substrate at the bottom of the groove is doped with impurities using the first film and the remaining second film as masks to form a carrier killer layer. A method for manufacturing a semiconductor device.
(8)不純物として酸素、炭素もしくは金を用いること
を特徴とする特許請求の範囲第7項記載の半導体装置の
製造方法。
(8) The method for manufacturing a semiconductor device according to claim 7, characterized in that oxygen, carbon, or gold is used as an impurity.
(9)p型拡散層は素子分離層に接し、反転防止層とし
て用いることを特徴とする特許請求の範囲第3項記載の
半導体装置の製造方法。
(9) The method for manufacturing a semiconductor device according to claim 3, wherein the p-type diffusion layer is in contact with the element isolation layer and is used as an inversion prevention layer.
JP58036920A 1983-03-07 1983-03-07 Semiconductor device and manufacture thereof Pending JPS59161838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58036920A JPS59161838A (en) 1983-03-07 1983-03-07 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036920A JPS59161838A (en) 1983-03-07 1983-03-07 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59161838A true JPS59161838A (en) 1984-09-12

Family

ID=12483193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036920A Pending JPS59161838A (en) 1983-03-07 1983-03-07 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59161838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252957A (en) * 1985-09-02 1987-03-07 Toshiba Corp Cmos semiconductor device
JPS6318641A (en) * 1986-06-25 1988-01-26 ゼネラル・エレクトリック・カンパニイ Manufacture of semiconductor device
US5436189A (en) * 1989-10-03 1995-07-25 Harris Corporation Self-aligned channel stop for trench-isolated island

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578541A (en) * 1978-12-08 1980-06-13 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578541A (en) * 1978-12-08 1980-06-13 Nec Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252957A (en) * 1985-09-02 1987-03-07 Toshiba Corp Cmos semiconductor device
JPS6318641A (en) * 1986-06-25 1988-01-26 ゼネラル・エレクトリック・カンパニイ Manufacture of semiconductor device
US5436189A (en) * 1989-10-03 1995-07-25 Harris Corporation Self-aligned channel stop for trench-isolated island

Similar Documents

Publication Publication Date Title
US4570325A (en) Manufacturing a field oxide region for a semiconductor device
JPH0513566A (en) Manufacture of semiconductor device
JP2000315736A (en) Semiconductor device and manufacture thereof
JPS59161838A (en) Semiconductor device and manufacture thereof
KR930005508B1 (en) Semiconductor device and manufacturing method of the same
JPH09172062A (en) Semiconductor device and its manufacture
KR20000044936A (en) Method for fabricating cmos transistor
JP2892415B2 (en) Method for manufacturing semiconductor device
JPH0325969A (en) Manufacture of semiconductor device
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH04132240A (en) Semiconductor device production method
JP2890550B2 (en) Method for manufacturing semiconductor device
JP3093615B2 (en) Method for manufacturing semiconductor device
JPS60244037A (en) Semiconductor device and manufacture thereof
JPS59161859A (en) Complementary type metal oxide semiconductor device and manufacture thereof
JPH0312776B2 (en)
JPS617664A (en) Semiconductor device and manufacture thereof
JPH04260331A (en) Manufacture of semiconductor device
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH053210A (en) Manufacture of semiconductor device
JPH065791A (en) Fabrication of semiconductor device
JPH08279553A (en) Semiconductor device and manufacture of semiconductor device
JPH03278568A (en) Manufacture of semiconductor device
JPS6031276A (en) Semiconductor device and manufacture thereof
JPS60244044A (en) Semiconductor device and manufacture thereof