JPS58152375A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS58152375A
JPS58152375A JP57035447A JP3544782A JPS58152375A JP S58152375 A JPS58152375 A JP S58152375A JP 57035447 A JP57035447 A JP 57035447A JP 3544782 A JP3544782 A JP 3544782A JP S58152375 A JPS58152375 A JP S58152375A
Authority
JP
Japan
Prior art keywords
battery
iron sulfide
active material
electrolyte battery
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57035447A
Other languages
Japanese (ja)
Other versions
JPH0413823B2 (en
Inventor
Osamu Okamoto
修 岡本
Kenichi Yokoyama
賢一 横山
Yoshio Uetani
植谷 慶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57035447A priority Critical patent/JPS58152375A/en
Publication of JPS58152375A publication Critical patent/JPS58152375A/en
Publication of JPH0413823B2 publication Critical patent/JPH0413823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent any increase in the internal resistance of an organic electrolyte battery which might be caused during preservation of the battery by suppressing the polymerization of a cyclic-ether-system organic solvent by performing alkali treatment on iron sulfide used as a positive active material so as to neutralize the acid group existing in the surface of said iron sulfide. CONSTITUTION:In an organic electrolyte battery, a negative electrode 7 is prepared by using a light metal such as lithium as a negative active material, a positive electrode 1 is prepared by using iron sulfide the acid group existing in the surface of which is neutralized by alkali treatment as a positive active material, and electrolyte is prepared by using a cyclic-ether-system organic solvent as a solvent. In addition, such an organic electrolyte battery is constituted by the combination of a separator 4, a positive can 3, a negative can 5 and a gasket 8. Therefore, since the alkali treatment is performed on the iron sulfide, any reduction of the electric conductivity of the battery which might be caused due to the polymerization of the cyclic-ether-system organic solvent caused by the acid group existing in the surface of the iron sulfide can be prevented. Consequently, the preservation performance of the battery can be improved by decreasing the increase in the internal resistance of the battery.

Description

【発明の詳細な説明】 本発明はリチウムなどの軽金属を負極活物質とし、鉄の
硫化物を正極活物質の1種とし、環状エーテル系有機溶
媒−または少なくとも環状エーテル系有機溶媒を含む混
合溶媒を電解液の溶媒として用いる有機電解質電池の改
良に係り、特に貯蔵性能の向上をはかることを目的とす
る。
Detailed Description of the Invention The present invention uses a light metal such as lithium as a negative electrode active material, iron sulfide as a type of positive electrode active material, and a cyclic ether-based organic solvent or a mixed solvent containing at least a cyclic ether-based organic solvent. The purpose of the present invention is to improve organic electrolyte batteries that use organic electrolyte as a solvent for electrolyte, and particularly to improve storage performance.

鉄の硫化物を正極活物質として用いる有機電解質電池は
、二酸化マンガンやフッ化炭素を正極活物質として用い
る有機電解質電池に比べて、単位体積あたりの電気容量
が大きく、また放電電圧が約1.5■で一般市販のルク
ランシエ電池や酸化銀電池と互換性を有するという特徴
があり、電気容量の大きい高エネルギー密度電池として
その発展が期待されて−る。
Organic electrolyte batteries that use iron sulfide as a positive electrode active material have a larger electrical capacity per unit volume and a discharge voltage of approximately 1. 5. It has the characteristic of being compatible with commercially available Lecrancier batteries and silver oxide batteries, and its development as a high energy density battery with a large electrical capacity is expected.

そして−この種爾:池においては、電解液用の溶媒とし
てジオキソラン、テトラヒドロフラン、プロピレンオキ
サイドなどの環状エーテル系有機溶媒が、溶質の溶解度
が大きく、導電率が高いことなどから好まれ、単独でま
たは他の有機溶媒と混合して電解液の溶媒として使用さ
れているが、これら環状エーテル系有機溶媒は酸と反応
しゃすぐ、複素環中のC−0−Cエーテル結合の一部が
酸VCよって切断され、ポリマー化する傾向がある。
And - in this type of pond, cyclic ether organic solvents such as dioxolane, tetrahydrofuran, and propylene oxide are preferred as solvents for electrolytes because of their high solubility of solutes and high conductivity, and can be used alone or These cyclic ether organic solvents are mixed with other organic solvents and used as electrolyte solvents, but these cyclic ether-based organic solvents do not react with acids, and some of the C-0-C ether bonds in the heterocycle are reacted by the acid VC. Tends to cleave and polymerize.

ところで、前記のような特徴を有する鉄の硫化物は表面
に酸性基を有しており、これを環状エーテル系有機溶媒
f電解液溶媒として用いる電池の正極活物質として使用
すると、環状エーテル系有機溶媒がポリマー化して導電
率が低下し貯蔵中ζに内部抵抗が増加する。
By the way, the iron sulfide having the above-mentioned characteristics has an acidic group on its surface, and when it is used as a positive electrode active material of a battery using a cyclic ether-based organic solvent f as an electrolyte solvent, it becomes a cyclic ether-based organic solvent. The solvent becomes a polymer, the conductivity decreases, and the internal resistance increases during storage.

本発明はそのような問題を解消するためになされたもの
であり、鉄の硫化物をアルカリ処理して表面酸性基を中
和してから正極活物質として用いることにより、環状エ
ーテル系有機溶媒のポリマー化を抑制して電池貯蔵時の
内部抵抗の増加防止をはかったものである。
The present invention has been made to solve such problems, and by treating iron sulfide with an alkali to neutralize the surface acidic groups and then using it as a positive electrode active material, it is possible to use a cyclic ether-based organic solvent. The purpose is to suppress polymerization and prevent an increase in internal resistance during battery storage.

すなわち、本発明はリチウムなどの軽金属を負極活物質
とする負極と、鉄の硫化物を正極活物質の1柚とする正
極と、環状エーテル系有機溶媒または少なくとも環状エ
ーテル系有機溶媒を含む混合溶媒を溶媒とする電解液を
有する有機電解質電池であって、前記鉄の硫化物がアル
カリ処理されたものであることを特徴とする有機電解質
電池に関する。
That is, the present invention provides a negative electrode in which a light metal such as lithium is used as a negative electrode active material, a positive electrode in which iron sulfide is used as a positive electrode active material, and a cyclic ether-based organic solvent or a mixed solvent containing at least a cyclic ether-based organic solvent. The present invention relates to an organic electrolyte battery having an electrolytic solution using a solvent as a solvent, wherein the iron sulfide is treated with an alkali.

本発明において負極活物質とj〜て用いる軽金属として
は、リチウム、ナトリウム、マグネシウム、アルミニウ
ムなどがあげられ、鉄の硫化物としては、たとえば硫化
第一鉄(Fed)、硫化第二鉄(Fe2S3”二硫化鉄
(pest)などが用イラh、tfr−一般に硫化第一
鉄として市販されているような一般式FexSで表わす
ときXが1より若干小さいものもFeS同様に使用する
ことができる。
Examples of light metals used as negative electrode active materials in the present invention include lithium, sodium, magnesium, and aluminum, and examples of iron sulfides include ferrous sulfide (Fed) and ferric sulfide (Fe2S3"). Ferrous disulfide (pest) and the like can also be used in the same way as FeS, which is represented by the general formula FexS and is generally commercially available as ferrous sulfide.

鉄の硫化物をアルカリ処理するためのアルカリとしては
、たとえば水酸化リチウム、水酸化ナトリウム、水酸化
カリウムなどが用いられ、とくに水酸化リチウムが好捷
しい。アルカリ処理はたとえば上記アルカリを水に溶解
し、この浴液中に粉末状の鉄の硫化物全浸漬することに
よって行なわれる。アルカリの濃度としては2〜10重
量係程度が好ましく、筐だ処理に際しては加熱、攪拌し
てもよい。
As the alkali for alkali treatment of iron sulfide, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc. are used, and lithium hydroxide is particularly preferred. The alkali treatment is carried out, for example, by dissolving the alkali in water and immersing the powdered iron sulfide in the bath solution. The concentration of alkali is preferably about 2 to 10% by weight, and heating and stirring may be used during the casing treatment.

本発明において鉄の硫化物を正極活物質の1種とすると
は、鉄の硫化物のみを正極活物質として用いる場合およ
び鉄の硫化物をたとえば酸化銅などの他の正極活物質と
併用して正極活物質として用いる場合をいう。酸化銅と
しては酸化第一銅や酸化第二銅などが用いられ、鉄の硫
化物と併用する場合において鉄の硫化物と酸化銅との使
用割合としては重蓋比で75 : 25〜25 : 7
5の範囲が好ましい0 環状エーテル系有機溶媒としては、たとえばジオキソラ
ン、テトラヒドロフラン、プロピレンオキサイドなどが
用いられ、これらは単独でまたはそれら同士で混合する
か、あるいはプロピレンカーボネート、γ−ブチロラク
トン、l、2−ジメトキシエタンなどの他の有機溶媒と
混合して用いられる。そして、電解液はこれら環状エー
テル系有機溶媒またはこれら環状エーテル系有機溶媒と
他の有機溶媒との混合溶媒にたとえば過塩素酸リチウム
、ホウ7ツ化リチウムなどの電解質を溶解させることに
よって調製される。
In the present invention, iron sulfide is used as a type of positive electrode active material, and iron sulfide alone is used as a positive electrode active material, and iron sulfide is used in combination with other positive electrode active materials such as copper oxide. This refers to the case where it is used as a positive electrode active material. As the copper oxide, cuprous oxide, cupric oxide, etc. are used, and when used together with iron sulfide, the ratio of iron sulfide and copper oxide is 75:25-25: 7
The range of 5 is preferably 0. As the cyclic ether organic solvent, for example, dioxolane, tetrahydrofuran, propylene oxide, etc. are used, and these may be used alone or in combination with each other, or propylene carbonate, γ-butyrolactone, l, 2- It is used in combination with other organic solvents such as dimethoxyethane. The electrolytic solution is prepared by dissolving an electrolyte such as lithium perchlorate or lithium boro7tride in these cyclic ether organic solvents or a mixed solvent of these cyclic ether organic solvents and other organic solvents. .

つぎに実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

二硫化鉄(FeS2)粉末を大過剰の水酸化リチウムの
5重を保水溶液に入れ、かきまぜながら1時間処理した
のち、沖過し、水洗した。水洗後、100℃で4時間真
空乾燥した。なお、二硫化鉄の表面酸性基の消失は、処
理し九二硫化鉄を水に分散し、その分散液がメチルレッ
ド指示薬で酸性色の赤に変色せず、塩基性色の黄色を呈
することによって確認された。
Iron disulfide (FeS2) powder was treated with a large excess of lithium hydroxide in a water retention solution for 1 hour while stirring, and then filtered and washed with water. After washing with water, it was vacuum dried at 100°C for 4 hours. The disappearance of the acidic groups on the surface of iron disulfide can be achieved by dispersing iron disulfide in water, and using a methyl red indicator, the dispersion does not turn acidic red, but instead takes on a basic yellow color. confirmed by.

つぎに、上記のようにアルカリ処理した二硫化鉄を酸化
第二%l (Cu O)、アセチレンブラック、ポリテ
トラフルオルエチレンなどと混合して合剤を調製した。
Next, iron disulfide treated with alkali as described above was mixed with ferric oxide (Cu 2 O), acetylene black, polytetrafluoroethylene, etc. to prepare a mixture.

なお、合剤組成は二硫化鉄40部(重量部、以下同様)
、酸化第二銅40部、アセチレンブラック15部および
ポリテトラフルオルエチレン2部である。この合剤をス
テンレス鋼製の環状台座が配置された金型に充填し、Q
、5 t/as2で加圧成形し、これを正極とした。
The mixture composition is 40 parts iron disulfide (parts by weight, the same applies below)
, 40 parts of cupric oxide, 15 parts of acetylene black, and 2 parts of polytetrafluoroethylene. This mixture is filled into a mold equipped with a stainless steel annular pedestal, and Q
, 5 t/as2, and this was used as a positive electrode.

上記正極と、直径6.8al、厚さLa1tyのリチウ
ム板よりなる負極と、プロピレンカーボネートと1.8
−ジオキソランとの容量比がl:lの混合溶媒に過塩素
酸リチウムを1モル/l溶解させた電解液を用い、第1
図に示すような構成で直径9.5ff、高さ8.6fl
の有機電解質電池を常法により組み立てた。なお第1図
において、(1)は前記の正極、(2)は前記の環状台
座であり、(3)は外面にニッケルメッキを施した鉄製
の正極缶である。(4)はポリプロピレン不織布からな
るセパレータで、(5)はニッケル−ステンレス鋼クラ
ッド板製の負極缶であり、この負極缶(5)の内面にス
テンレス鋼製の網(6)がスポット溶接され、該網(6
)部分に前記の負極(7)が圧着されている。そして(
8)はポリプロピレン製の環状ガスケットである。
The above positive electrode, a negative electrode made of a lithium plate with a diameter of 6.8 al and a thickness of La1ty, propylene carbonate and 1.8 al.
- Using an electrolytic solution in which 1 mol/l of lithium perchlorate was dissolved in a mixed solvent with a volume ratio of 1:1 with dioxolane, the first
The configuration shown in the figure has a diameter of 9.5ff and a height of 8.6fl.
An organic electrolyte battery was assembled using a conventional method. In FIG. 1, (1) is the above-mentioned positive electrode, (2) is the above-mentioned annular pedestal, and (3) is an iron positive electrode can whose outer surface is nickel-plated. (4) is a separator made of polypropylene nonwoven fabric, (5) is a negative electrode can made of a nickel-stainless steel clad plate, and a stainless steel mesh (6) is spot-welded to the inner surface of this negative electrode can (5). The net (6
) The negative electrode (7) is crimped onto the portion. and(
8) is an annular gasket made of polypropylene.

上記構成の電池Aと二硫化鉄をアルカリ処理することな
くその捷ま用いた゛電池Bの60°Cで所定期間貯蔵し
たときの内部抵抗変化を第2図に示す。
FIG. 2 shows the change in internal resistance of Battery A having the above structure and Battery B, which was made using iron disulfide without alkali treatment, and was stored at 60° C. for a predetermined period of time.

なお電池Bは二硫化鉄をアルカリ処理していないほかは
電池Aと同様の構成からなる有機電解質電池であり、内
部抵抗の測定はいずれも20°Cで行なわれた。
Battery B is an organic electrolyte battery having the same structure as Battery A, except that the iron disulfide is not treated with alkali, and the internal resistance measurements were all conducted at 20°C.

第2図に示すように本発明の電池Aは従来電池Bに比べ
て貯蔵による内部抵抗増加が少ない。
As shown in FIG. 2, the battery A of the present invention shows less increase in internal resistance due to storage than the conventional battery B.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機電解質電池の一実施例を示す断面
図であり、第2図は本発明の有機電解質電池と従来の有
機電解質電池の貯蔵に伴なう内部抵抗変化を示す図であ
る。 (1)・・・正極、 (7)・・・負極第1図 第2図 0  20 40  60  80 貯蔵期間CB)
FIG. 1 is a cross-sectional view showing an embodiment of the organic electrolyte battery of the present invention, and FIG. 2 is a diagram showing internal resistance changes during storage of the organic electrolyte battery of the present invention and a conventional organic electrolyte battery. be. (1)...Positive electrode, (7)...Negative electrode Figure 1 Figure 2 0 20 40 60 80 Storage period CB)

Claims (1)

【特許請求の範囲】[Claims] 1、リチウムなどの軽金属を負極活物質とする負極と、
鉄の硫化物を正極活物質の1種とする正極と、環状エー
テル系有機溶媒または少なくとも環状エーテル系有機溶
媒を含む混合溶媒を溶媒とする電解液を有する有機電解
質電池であって、前記鉄の硫化物がアルカリ処理された
ものであることを特徴とする有機電解質電池。
1. A negative electrode using a light metal such as lithium as a negative electrode active material,
An organic electrolyte battery having a positive electrode having iron sulfide as one type of positive electrode active material, and an electrolyte having a cyclic ether-based organic solvent or a mixed solvent containing at least a cyclic ether-based organic solvent as a solvent, An organic electrolyte battery characterized in that sulfide is treated with an alkali.
JP57035447A 1982-03-06 1982-03-06 Organic electrolyte battery Granted JPS58152375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035447A JPS58152375A (en) 1982-03-06 1982-03-06 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035447A JPS58152375A (en) 1982-03-06 1982-03-06 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS58152375A true JPS58152375A (en) 1983-09-09
JPH0413823B2 JPH0413823B2 (en) 1992-03-10

Family

ID=12442071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035447A Granted JPS58152375A (en) 1982-03-06 1982-03-06 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58152375A (en)

Also Published As

Publication number Publication date
JPH0413823B2 (en) 1992-03-10

Similar Documents

Publication Publication Date Title
US3532543A (en) Battery employing lithium - sulphur electrodes with non-aqueous electrolyte
JPH03291863A (en) Secondary cell
JPS58152375A (en) Organic electrolyte battery
JP2940015B2 (en) Organic electrolyte secondary battery
JPS5931182B2 (en) Manufacturing method of non-aqueous electrolyte battery
DE2437183B2 (en) Alkaline galvanic element and process for its manufacture
CA1043865A (en) Galvanic cell with anode of light metal, non-aqueous electrolyte, and cathode with pb3o4 as active material
JPS58152374A (en) Organic electrolyte battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
JPS62216171A (en) Nonaqueous electrolytic battery
JPS6155741B2 (en)
JPH0711967B2 (en) Non-aqueous electrolyte battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JP3418715B2 (en) Organic electrolyte secondary battery
JPH07107862B2 (en) Polyaniline battery
JPH0317181B2 (en)
JPS5991670A (en) Manufacture of organic electrolyte battery
JPH03285271A (en) Battery
JPH04169077A (en) Nonaqueous electrolyte secondary battery
JPH0610983B2 (en) Non-aqueous electrolyte battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JPS59128765A (en) Nonaqueous electrolyte battery
JPS5973849A (en) Nonaqueous electrolyte battery
JPH0374061A (en) Nonaqueous electrolyte secondary battery
JPS58152376A (en) Organic electrolyte battery