JPS58152376A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS58152376A
JPS58152376A JP57035448A JP3544882A JPS58152376A JP S58152376 A JPS58152376 A JP S58152376A JP 57035448 A JP57035448 A JP 57035448A JP 3544882 A JP3544882 A JP 3544882A JP S58152376 A JPS58152376 A JP S58152376A
Authority
JP
Japan
Prior art keywords
iron
battery
iron disulfide
active material
disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57035448A
Other languages
Japanese (ja)
Inventor
Osamu Okamoto
修 岡本
Hiroshi Yoshida
浩 吉田
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57035448A priority Critical patent/JPS58152376A/en
Publication of JPS58152376A publication Critical patent/JPS58152376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the quantity of the electric-discharge electricity of an organic solvent battery by using iron disulfide as an active material for the positive electrode, and washing said iron disulfide with hydrochloric acid so as to dissolve and remove impurities such as iron sulfide, iron metal and iron oxide contained in said iron disulfide. CONSTITUTION:In an organic electrolyte battery, a negative electrode 7 is prepared by using a light metal such a lithium as a negative active material, a positive electrode 1 is prepared by using as a positive active material, iron disulfide which is washed with hydrochloric acid so as to dissolve and remove impurities such as iron sulfide, iron metal and iron oxide contained in it, and electrolyte is prepared by dissolving lithium perchlorate in a mixture solvent consisting of propylene carbonate and 1,3-dioxysolane. In addition, such an organic electrolyte battery is constituted by the combination of a separator 4, a positive can 3, a negative can 5 and a gasket 8. Therefore, any reduction of the quantity of the electric-discharge electricity of the battery which might be caused due to impurities which might exist in the above iron disulfide can be prevented. Consequently, the quantity of the electric-discharge electricity of the battery can be increased, and the closed-circuit voltage of the battery in the midst of electric discharge can be increased.

Description

【発明の詳細な説明】 本発明はリチウムなどの軽金属を負極活物質とし、二硫
化鉄を正極活物質の1種として用いる有機電解質電池の
改良に係り、特に放電電気量の向上と放電途中の閉路電
圧の向上をはかることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in organic electrolyte batteries that use light metals such as lithium as a negative electrode active material and iron disulfide as a type of positive electrode active material. The purpose is to improve the closed circuit voltage.

正極活物質として鉄の硫化物を用いる有機電解質電池は
、二酸化マンガンやフッ化炭素を正極活物質と1.で用
いる有機電解質電池に比べて単位体積あたりの電気容量
が大きく、また放電電圧が約1.5Vで一般市販のルク
ランシエ電池や酸化銀電池と互換性を有するという特徴
があり、電気容量の大きい應エネルギー密度″、を池と
1〜でその発展が期待されている。
Organic electrolyte batteries that use iron sulfide as the positive electrode active material use manganese dioxide or carbon fluoride as the positive electrode active material. Compared to organic electrolyte batteries used in ``Energy density'' is expected to develop in the future.

そL7で鉄の硫什物中でも二硫化鉄(FeS2)(d:
、単位重量あたりの電気容量が大きく、高容量化という
面から特に好適な正極活物質と考オられる。
Among iron sulfates, iron disulfide (FeS2) (d:
It has a large electric capacity per unit weight, and is considered to be a particularly suitable positive electrode active material from the viewpoint of high capacity.

1.7か1〜なから市販の二硫化鉄に汀FeS2以外に
Fe S −、Fe U、95 S −、F e O,
88Sなどの硫化鉄、金属鉄、酸化鉄iどの不純物が混
在1−でいる。特に鉄の酸化物が混在し、ていると内部
抵抗が高くなり、放電電気量が著しく低下し、また放電
途中における閉路電圧も低下する 本発明けそのような事情に照ら]〜でなされたものであ
り、市販の二硫化鉄を塩酸で洗滌して金属鉄、酸化鉄、
さらにはFeS2以外のFe S 、 Fe o、、s
 S、Fe o、ss S゛などの硫化鉄などを溶解除
去し、二硫化鉄を精製してから正極活物質として用いる
ことにより、混在する不純物に基づく放を電気量の低下
や閉路電圧の低下を防止し、放電電気量が大きくかつ放
電途中の閉路電圧が高い電池全提供したものである。
1.7 or 1 ~ In addition to FeS2, commercially available iron disulfide contains Fe S -, Fe U, 95 S -, Fe O,
Impurities such as iron sulfide such as 88S, metallic iron, and iron oxide are present in the mixture. In particular, if iron oxides are present, the internal resistance will be high, the amount of discharged electricity will be significantly reduced, and the closed circuit voltage during discharge will also be reduced. By washing commercially available iron disulfide with hydrochloric acid, metallic iron, iron oxide,
Furthermore, Fe S , Fe o, s other than FeS2
By dissolving and removing iron sulfides such as S, Fe o, and ss S, and refining iron disulfide before using it as a positive electrode active material, emissions caused by mixed impurities can be reduced by reducing the amount of electricity and decreasing the closed circuit voltage. The present invention provides a battery that prevents this, has a large amount of discharged electricity, and has a high closed circuit voltage during discharge.

すなわち、本発明はリチウムなどの軽金属を負極活物質
とする負極と、二硫化鉄を正極活物質とする正極とを有
する有機電解質電池であって、上記二硫化鉄が塩酸で洗
滌処理されたものであることを特徴とする有機電解質電
池に関する。
That is, the present invention provides an organic electrolyte battery having a negative electrode using a light metal such as lithium as a negative electrode active material, and a positive electrode using iron disulfide as a positive electrode active material, wherein the iron disulfide is washed with hydrochloric acid. The present invention relates to an organic electrolyte battery characterized by:

二硫化鉄の塩酸洗滌処理は、たとλば1〜6N程度の塩
酸に粉末状の二硫化鉄を浸漬することによって行なわれ
る。その際、加熱、攪拌してもよい。二硫化鉄は塩酸に
溶けないので、上記のような塩酸洗滌処理により、二硫
化鉄中に混在する鉄の酸化物、金属鉄やFe S 、 
FeO,95S 、 Fe g、BB Sなどの二硫化
鉄以外の硫化鉄は溶解除去され、二硫化鉄が梢製さ71
6る。
The hydrochloric acid washing treatment of iron disulfide is carried out by immersing powdered iron disulfide in hydrochloric acid having a concentration of about 1 to 6 N, for example. At that time, heating and stirring may be performed. Since iron disulfide does not dissolve in hydrochloric acid, the above-mentioned hydrochloric acid washing treatment removes iron oxides, metallic iron, FeS, etc. mixed in iron disulfide.
Iron sulfides other than iron disulfide such as FeO, 95S, Feg, BBS, etc. are dissolved and removed, and the iron disulfide is
6ru.

本発明において負極活物質として用いる軽金属としては
、リチウム、ナトリウ′ム、マグネシウム、アルミニウ
ムなどがあげられる。そして、電解液としては、たとオ
ばプロピレンカーボネート、γ−ブチロラクトン、テト
ラヒドロフラン、1.2−ジメトキシエタン、ジオキソ
ランなどの単独または2棹以上の混合溶媒に過塩素酸リ
チウム、ホラすッ化リチウムなどの電解質を溶解させた
ものが好ましく使用される。
Examples of light metals used as negative electrode active materials in the present invention include lithium, sodium, magnesium, and aluminum. The electrolyte may be a solvent such as propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,2-dimethoxyethane, dioxolane, etc., or a mixed solvent of two or more, and lithium perchlorate, lithium hora sulfide, etc. It is preferable to use one in which an electrolyte is dissolved.

本発明において二硫化鉄を正極活物質の1種とするとは
、二硫化鉄のみを正極活物質として用いる場合および二
硫化鉄をたとえば酸化銅などの他の正極活物質と併用し
て正極活物質として用いる場合をいう。酸化銅としては
酸化第一銅や酸化第二銅などが用いられ、二硫化鉄と併
用する場合において二硫化鉄と酸化鋼との使用割合とし
ては重量比で75:25〜25ニア5の範囲が好ましい
In the present invention, using iron disulfide as one type of positive electrode active material refers to cases in which iron disulfide alone is used as a positive electrode active material, and cases in which iron disulfide is used in combination with other positive electrode active materials such as copper oxide to form a positive electrode active material. This refers to the case where it is used as As the copper oxide, cuprous oxide, cupric oxide, etc. are used, and when used together with iron disulfide, the ratio of iron disulfide and oxidized steel is in the range of 75:25 to 25Nia5 by weight. is preferred.

つぎに実施例をあげて本発明f説明する。Next, the present invention will be explained with reference to Examples.

市販の粉末状二硫化鉄を大過剰の3N塩酸に入れ、かき
まぜながら約60°CVc1時間加熱した。冷却後、濾
過し、水洗した。水洗後、100°Cで4時間真空乾燥
した。なお、不純物の除去は処理した二硫化鉄がX線回
折分析で二硫化鉄のみのピークしか検出されないことお
よび処理した二硫化鉄を6N塩酸に浸漬した時に硫化水
素の発生がないこと、さらに該塩酸液中に鉄が検出され
ないことによって確認された。
Commercially available powdered iron disulfide was placed in a large excess of 3N hydrochloric acid, and heated at about 60° CVc for 1 hour while stirring. After cooling, it was filtered and washed with water. After washing with water, it was vacuum dried at 100°C for 4 hours. The removal of impurities is based on the fact that only a peak of iron disulfide is detected in X-ray diffraction analysis of the treated iron disulfide, and that no hydrogen sulfide is generated when the treated iron disulfide is immersed in 6N hydrochloric acid. This was confirmed by the fact that no iron was detected in the hydrochloric acid solution.

つぎに、上記のように塩酸で洗滌処理した二硫什鉄f酸
化第二銅(Cub’)、アセチレンブラック、ポリテト
ラフルオルエチレンなどと混合して合剤を調製1〜だ。
Next, a mixture is prepared by mixing with ferric disulfate f cupric oxide (Cub'), acetylene black, polytetrafluoroethylene, etc. which have been washed with hydrochloric acid as described above.

なお、合剤組成は二硫化鉄40部(重量部、以下同様)
、酸化第二銅40部、アセチレンブラック15部および
ポリテトラフルオルエチレン2部である。この合剤をス
テンレス鋼製の環状台座が配置された金型に充填し、Q
、5t/cM2で加圧成形し、これを正極とした。
The mixture composition is 40 parts iron disulfide (parts by weight, the same applies below)
, 40 parts of cupric oxide, 15 parts of acetylene black, and 2 parts of polytetrafluoroethylene. This mixture is filled into a mold equipped with a stainless steel annular pedestal, and Q
, 5t/cm2, and this was used as a positive electrode.

上記正極と、直径6.8mg、厚さ1,3Mのリチウム
板よりなる負極と、プロピレンカーボネートと1.3−
ジオキソランとの容量比が1=1の混合溶媒に過塩素酸
リチウムを1モル/l溶解させた電解液を用い、第1図
に示すような構成で直径9.5ww、高さ8.611の
有機電解質電池を常法により組み立てた。なお、第1図
において、(1)は前記の正極、(2)は前記の環状台
座であり、(3)は外面にニッケルメッキを施した鉄製
の正極缶である。(4)はポリプロピレン不織布からな
るセパレータで、(5)はニッケルーステンレス鋼クラ
ッド板製の負極缶であり、この負極缶(5)の内面にス
テンレス鋼製の網(6)がスポット溶接され、接線(6
)部分に前記の負極(7)が圧着されている。そして(
8)はポリプロピレン製の環状ガスケットである。
The above positive electrode, a negative electrode made of a lithium plate with a diameter of 6.8 mg and a thickness of 1.3 M, propylene carbonate and 1.3-
Using an electrolytic solution in which 1 mol/l of lithium perchlorate was dissolved in a mixed solvent with a volume ratio of 1=1 with dioxolane, an electrolyte with a diameter of 9.5 ww and a height of 8.611 mm was constructed as shown in Figure 1. An organic electrolyte battery was assembled using a conventional method. In FIG. 1, (1) is the above-mentioned positive electrode, (2) is the above-mentioned annular pedestal, and (3) is an iron positive electrode can whose outer surface is nickel-plated. (4) is a separator made of polypropylene nonwoven fabric, (5) is a negative electrode can made of a nickel-stainless steel clad plate, and a stainless steel mesh (6) is spot-welded to the inner surface of this negative electrode can (5). Tangent line (6
) The negative electrode (7) is crimped onto the portion. and(
8) is an annular gasket made of polypropylene.

上記構成の電池Aと市販の二硫化鉄を塩酸で洗滌処理す
ることなくそのまま用いた電池Bf20℃、負荷15に
Ωで連続放電させたときの放電特性を第2図に示す。捷
た、これら電池AおよびBの40%放電時および8()
係放電時の−10℃、負荷2にΩで0,1秒間放電後の
閉路電圧全下記の第1表に示す。なお、電池Bは二硫化
鉄を塩酸洗滌処理しなかったほかは電池Aと同様の構成
からなる有機電解質電池である。
FIG. 2 shows the discharge characteristics when battery A having the above structure and a battery Bf using commercially available iron disulfide without being washed with hydrochloric acid were continuously discharged at 20° C. and a load of 15 Ω. At 40% discharge of these batteries A and B and 8 ()
The closed circuit voltage after discharging for 0.1 second at -10°C and load 2 at Ω at the time of inter-discharge is shown in Table 1 below. Note that Battery B is an organic electrolyte battery having the same structure as Battery A except that the iron disulfide was not washed with hydrochloric acid.

第  1  表 第2図および第1表に示すように、本発明の電池へは従
来電池Bに比べて放N電気量が大きく、また放電途中の
閉路電圧も筒い。従来電池Bの場合は約250時間放電
した時点から放電電圧が下がりけじめ、その結果、放電
電気量が低下するとともに、放電途中の閉路電圧が低下
する。これは二硫化鉄中に混在する不純物によるものと
考えられる。
Table 1 As shown in FIG. 2 and Table 1, the battery of the present invention discharged a larger amount of N electricity than the conventional battery B, and also had a higher closed-circuit voltage during discharge. In the case of conventional battery B, the discharge voltage begins to drop after approximately 250 hours of discharge, resulting in a decrease in the amount of discharged electricity and a decrease in the closed circuit voltage during discharge. This is thought to be due to impurities mixed in iron disulfide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の有機電解質電池の一実施例を示す断面
図、第2図は本発明の有機電解質電池と従来の有機電解
質電池の放電特性図である。 (1)・・・正極、 (7)・・・負極特許出願人  
日立マクセル株式会社 第1図 第2図 0  200 400 600 800放電時間(h) −39二
FIG. 1 is a sectional view showing an embodiment of the organic electrolyte battery of the present invention, and FIG. 2 is a discharge characteristic diagram of the organic electrolyte battery of the present invention and a conventional organic electrolyte battery. (1)...Positive electrode, (7)...Negative electrode Patent applicant
Hitachi Maxell, Ltd. Figure 1 Figure 2 0 200 400 600 800 Discharge time (h) -392

Claims (1)

【特許請求の範囲】[Claims] 1、リチウムなどの軽金属を負極活物質とする負極と、
二硫化鉄を正極活物質の1種とする正極とを有する有機
電解質電池であって、上記二硫化鉄が塩酸で洗滌処理さ
れたものであることを特徴とする有機電解質電池。
1. A negative electrode using a light metal such as lithium as a negative electrode active material,
1. An organic electrolyte battery comprising a positive electrode containing iron disulfide as one type of positive electrode active material, wherein the iron disulfide is washed with hydrochloric acid.
JP57035448A 1982-03-06 1982-03-06 Organic electrolyte battery Pending JPS58152376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035448A JPS58152376A (en) 1982-03-06 1982-03-06 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035448A JPS58152376A (en) 1982-03-06 1982-03-06 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS58152376A true JPS58152376A (en) 1983-09-09

Family

ID=12442098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035448A Pending JPS58152376A (en) 1982-03-06 1982-03-06 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58152376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127872A (en) * 2004-10-28 2006-05-18 Dowa Mining Co Ltd Iron disulfide for battery and its manufacturing method
GB2431287A (en) * 2006-07-13 2007-04-18 Imran Hussain Supacell Lithium Battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446338A (en) * 1977-09-20 1979-04-12 Hitachi Maxell Method of producing nonnaqueous electrolyte battery
JPS56123671A (en) * 1979-11-28 1981-09-28 Cordis Corp Method of manufacturing cupric sulfide electrode and lithiummcupric sulfide battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446338A (en) * 1977-09-20 1979-04-12 Hitachi Maxell Method of producing nonnaqueous electrolyte battery
JPS56123671A (en) * 1979-11-28 1981-09-28 Cordis Corp Method of manufacturing cupric sulfide electrode and lithiummcupric sulfide battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127872A (en) * 2004-10-28 2006-05-18 Dowa Mining Co Ltd Iron disulfide for battery and its manufacturing method
GB2431287A (en) * 2006-07-13 2007-04-18 Imran Hussain Supacell Lithium Battery

Similar Documents

Publication Publication Date Title
JP3133318B2 (en) Rechargeable battery
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JPS58152376A (en) Organic electrolyte battery
JP3152307B2 (en) Lithium secondary battery
JPS5991670A (en) Manufacture of organic electrolyte battery
JP2844829B2 (en) Organic electrolyte primary battery
JPH028420B2 (en)
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2529479B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JPH0711967B2 (en) Non-aqueous electrolyte battery
JPH0765826A (en) Hydrogen storage alloy electrode
JP2680628B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode
JPS58152374A (en) Organic electrolyte battery
JPH01104302A (en) Purifying method for solid electrolyte
JPS5991668A (en) Organic electrolyte battery
JPS61248361A (en) Manganese dry battery
JPS6027146B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte batteries
JPH03285270A (en) Alkaline storage battery
JP3021526B2 (en) Electrolyte for lithium secondary battery
JPS58152375A (en) Organic electrolyte battery
JP2679441B2 (en) Nickel-metal hydride battery
JPS6362069B2 (en)
JPS5912567A (en) Organic electrolyte battery