JPS6362069B2 - - Google Patents

Info

Publication number
JPS6362069B2
JPS6362069B2 JP54061144A JP6114479A JPS6362069B2 JP S6362069 B2 JPS6362069 B2 JP S6362069B2 JP 54061144 A JP54061144 A JP 54061144A JP 6114479 A JP6114479 A JP 6114479A JP S6362069 B2 JPS6362069 B2 JP S6362069B2
Authority
JP
Japan
Prior art keywords
discharge
weight
battery
active material
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54061144A
Other languages
Japanese (ja)
Other versions
JPS55154071A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6114479A priority Critical patent/JPS55154071A/en
Publication of JPS55154071A publication Critical patent/JPS55154071A/en
Publication of JPS6362069B2 publication Critical patent/JPS6362069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は陰極活物質として金属リチウムを用
い、陽極活物質として硫化鉄の含有量が5重量%
以上25重量%未満である酸化第二銅と硫化鉄との
混合物を用いた非水電解液電池に関する。 酸化第二銅を陽極活物質として用いた非水電解
液電池は、二酸化マンガンやフツ化炭素を陽極活
物質として用いた非水電解液電池に比べて、単位
体積あたりの電気容量が大きく、また放電電圧が
1.3〜1.5Vで一般市販のルクランシエ電池や酸化
銀電池と互換性を有するという特徴があり、電気
容量の大きい高エネルギー密度電池として将来が
期待されている。 しかしながら、この酸化第二銅電池は放電反応
が第()式、第()式に示すような2段階に
なり、放電電圧が第1図に示すように2段となつ
て平担でない欠点がある。すなわち、第()式
に示すように酸化第二銅(CuO)がリチウム
(Li)と反応して酸化第一銅(Cu2O)になり、こ
の酸化第一銅(Cu2O)がさらに第()式に示
すようにリチウム(Li)と反応して銅(Cu)に
なる。そして、その際、第()式に示す放電反
応と第()式に示す放電反応とでは放電電圧が
異なるために放電電圧が第1図に示すように2段
となるのである。 2Li+2CuO→Li2O+Cu2O () 2Li+Cu2O→Li2O+2Cu () この発明は、金属リチウムを陰極活物質とする
非水電解液電池の陽極活物質として、酸化第二銅
に硫化鉄を5重量%以上25重量%未満という特定
割合で添加した混合物を用いることにより、2段
放電を抑制し、かつ内部抵抗の小さい電池が得ら
れるようにしたものである。 すなわち、酸化第二銅は前記のように2段放電
になるが、硫化鉄、たとえば硫化第一鉄は第
()式に示すように1段階の反応で放電が行な
われる。 2Li+FeS→Li2S+Fe () そこで酸化第二銅に硫化鉄を添加すると両者の
混成電位が現われ、硫化鉄の添加量を増加してい
くとほぼ1段放電するようになる。しかし、硫化
鉄の添加量が多くなりすぎると電池の内部抵抗が
大きくなり、重負荷特性が悪くなり閉路電圧が低
下するので、硫化鉄の添加量としては、酸化第二
銅と硫化鉄との混合物中で硫化鉄が5重量%以上
25重量%未満にすることが必要である。 この発明において硫化鉄としては、硫化第一鉄
(FeS)、硫化第二鉄(Fe2S3)、二硫化鉄(FeS2
などが使用される。 つぎに実施例によりこの発明を説明する。 第1表に示す組成の混合物を3t/cm2で加圧成形
し、直径11mm、厚さ0.85mmの陽極を作製した。
This invention uses metallic lithium as the cathode active material, and the content of iron sulfide is 5% by weight as the anode active material.
The present invention relates to a nonaqueous electrolyte battery using a mixture of cupric oxide and iron sulfide that is less than 25% by weight. Nonaqueous electrolyte batteries that use cupric oxide as the anode active material have a larger electrical capacity per unit volume than nonaqueous electrolyte batteries that use manganese dioxide or carbon fluoride as the anode active material. The discharge voltage
It has the characteristic of being compatible with commercially available LeCrancier batteries and silver oxide batteries at 1.3 to 1.5V, and is expected to have a promising future as a high energy density battery with a large electrical capacity. However, this cupric oxide battery has the disadvantage that the discharge reaction occurs in two stages as shown in equations () and (), and the discharge voltage becomes two stages as shown in Figure 1. be. In other words, as shown in equation (), cuprous oxide (CuO) reacts with lithium (Li) to become cuprous oxide (Cu 2 O), and this cuprous oxide (Cu 2 O) is further As shown in equation (2), it reacts with lithium (Li) to form copper (Cu). In this case, since the discharge voltage is different between the discharge reaction shown in equation () and the discharge reaction shown in equation (), the discharge voltage becomes two stages as shown in FIG. 2Li+2CuO→Li 2 O+Cu 2 O () 2Li+Cu 2 O→Li 2 O+2Cu () This invention uses iron sulfide as an anode active material in a nonaqueous electrolyte battery that uses metallic lithium as a cathode active material. By using a mixture added at a specific ratio of % by weight or more and less than 25% by weight, two-stage discharge can be suppressed and a battery with low internal resistance can be obtained. That is, cupric oxide causes a two-stage discharge as described above, but iron sulfide, for example ferrous sulfide, causes a one-stage discharge as shown in equation (2). 2Li+FeS→Li 2 S+Fe () Therefore, when iron sulfide is added to cupric oxide, a hybrid potential of both appears, and as the amount of iron sulfide added increases, almost one-stage discharge occurs. However, if the amount of iron sulfide added is too large, the internal resistance of the battery will increase, the heavy load characteristics will deteriorate, and the closed circuit voltage will decrease. Iron sulfide in the mixture is 5% or more by weight
It is necessary to keep it below 25% by weight. In this invention, iron sulfides include ferrous sulfide (FeS), ferric sulfide (Fe 2 S 3 ), and iron disulfide (FeS 2 ).
etc. are used. Next, the present invention will be explained with reference to Examples. A mixture having the composition shown in Table 1 was pressure-molded at 3 t/cm 2 to produce an anode having a diameter of 11 mm and a thickness of 0.85 mm.

【表】 (注) 第1表中の部数は重量部表示による。 このように作製した陽極を第2図に示す構成の
ボタン型電池に組込み、20℃で6.5kΩ定抵抗放電
した際に2段放電となつたときの放電電位差と内
部抵抗とを測定し、その結果を硫化第一鉄の含有
量と関連づけて第3図に示した。 試験に使用された電池は、第2図で示されるよ
うに、陽極1を厚さ0.25mmのニツケル−ステンレ
ス鋼クラツド板よりなる外径11.6mm、高さ3.0mm
の陽極缶2に挿入し、その上にポリプロピレン製
の電解液吸収体3を載置し、陽極缶2の開口部に
断面ほぼL字状のポリプロピレン製環状ガスケツ
ト4を挿入し、電解液吸収体3に炭酸プロピレン
と1,2―ジメトキシエタンとの容量比が1:2
の混合液に過塩素酸リチウムを0.5モル/溶解
させてなる電解液を含浸させ、これとは別に厚さ
0.25mmのニツケル−ステンレス鋼クラツド板を周
辺折り返し部5を有する形状に加工した外径10
mm、高さ1.5mmの陰極端子板6の内面に厚さ0.1
mm、直径6.0mmのステンレス鋼製網7を溶接し、
このステンレス鋼製網7に直径8.0mm、厚さ1.2mm
のリチウムシートを圧着させて陰極8を構成し、
かかる陰極8を内填させた陰極端子板6を前記環
状ガスケツト4に嵌挿して、陽極缶2の開口縁を
内方に折り曲げて電池内部を密封構造にすること
によりつくられたものである。 第3図に示す結果から明らかなように、硫化第
一鉄の含有量の増加に伴つて2段放電になつたと
きの放電電位差が小さくなり、内部抵抗が大きく
なつていくが、硫化第一鉄の含有量が5重量%以
上25重量%未満の範囲にある電池は、2段放電に
なつたときの放電電位差が小さく、かつ内部抵抗
が小さい。なお、硫化第一鉄の含有量が5重量%
以上25重量%未満の範囲内にある電池は、放電電
圧が1.35V以上あり、ルクランシエ電池や酸化銀
電池と互換性を有していた。 以上詳述したように、この発明は金属リチウム
を陰極活物質とする非水電解液電池の陽極活物質
として、硫化鉄の含有量が5重量%以上25重量%
未満である酸化第二銅と硫化鉄との混合物を用い
たものであり、この発明によれば、2段放電が抑
制され、かつ内部抵抗の小さい非水電解液電池が
提供される。
[Table] (Note) The number of parts in Table 1 is based on parts by weight. The anode prepared in this way was assembled into a button-type battery with the configuration shown in Figure 2, and the discharge potential difference and internal resistance when a two-stage discharge occurred during a constant 6.5 kΩ discharge at 20°C were measured. The results are shown in Figure 3 in relation to the ferrous sulfide content. As shown in Figure 2, the battery used in the test had an anode 1 made of a 0.25 mm thick nickel-stainless steel clad plate with an outer diameter of 11.6 mm and a height of 3.0 mm.
A polypropylene electrolyte absorber 3 is placed on top of the anode can 2. A polypropylene annular gasket 4 with a substantially L-shaped cross section is inserted into the opening of the anode can 2, and the electrolyte absorber is inserted into the anode can 2. In 3, the volume ratio of propylene carbonate and 1,2-dimethoxyethane is 1:2.
An electrolytic solution made by dissolving 0.5 mol of lithium perchlorate in a mixed solution of
Outer diameter 10 made by processing a 0.25 mm nickel-stainless steel clad plate into a shape with a peripheral folded part 5
mm, the inner surface of the cathode terminal plate 6 with a height of 1.5 mm has a thickness of 0.1 mm.
mm, welded a stainless steel mesh 7 with a diameter of 6.0 mm,
This stainless steel net 7 has a diameter of 8.0 mm and a thickness of 1.2 mm.
A lithium sheet is crimped to form the cathode 8,
The battery is manufactured by fitting the cathode terminal plate 6 containing the cathode 8 into the annular gasket 4 and bending the opening edge of the anode can 2 inward to seal the inside of the battery. As is clear from the results shown in Figure 3, as the content of ferrous sulfide increases, the discharge potential difference becomes smaller when a two-stage discharge occurs, and the internal resistance increases; A battery in which the iron content is in the range of 5% by weight or more and less than 25% by weight has a small discharge potential difference and a small internal resistance when two-stage discharge occurs. In addition, the content of ferrous sulfide is 5% by weight.
Batteries within the above range of less than 25% by weight had a discharge voltage of 1.35V or more and were compatible with Lecrancier batteries and silver oxide batteries. As described in detail above, the present invention provides a non-aqueous electrolyte battery with an iron sulfide content of 5 wt% or more and 25 wt%
According to the present invention, a non-aqueous electrolyte battery is provided in which two-stage discharge is suppressed and the internal resistance is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化第二銅を陽極活物質とする非水電
解液電池の放電特性図、第2図はこの発明に係る
非水電解液電池の一例を示す断面図、第3図は硫
化第一鉄の含有量と2段放電になつたときの放電
電位差および内部抵抗との関係を示す図である。 1…陽極、8…陰極。
Fig. 1 is a discharge characteristic diagram of a non-aqueous electrolyte battery using cupric oxide as an anode active material, Fig. 2 is a sectional view showing an example of a non-aqueous electrolyte battery according to the present invention, and Fig. 3 is a diagram showing the discharge characteristics of a non-aqueous electrolyte battery using cupric oxide as an anode active material. FIG. 3 is a diagram showing the relationship between the iron content and the discharge potential difference and internal resistance when a two-stage discharge occurs. 1... Anode, 8... Cathode.

Claims (1)

【特許請求の範囲】[Claims] 1 陰極活物質として金属リチウムを用い、陽極
活物質として硫化鉄の含有量が5重量%以上25重
量%未満である酸化第二銅と硫化鉄との混合物を
用いたことを特徴とする非水電解液電池。
1. A non-aqueous product characterized in that metallic lithium is used as the cathode active material and a mixture of cupric oxide and iron sulfide with an iron sulfide content of 5% by weight or more and less than 25% by weight is used as the anode active material. electrolyte battery.
JP6114479A 1979-05-17 1979-05-17 Non-aqueous electrolyte cell Granted JPS55154071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6114479A JPS55154071A (en) 1979-05-17 1979-05-17 Non-aqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6114479A JPS55154071A (en) 1979-05-17 1979-05-17 Non-aqueous electrolyte cell

Publications (2)

Publication Number Publication Date
JPS55154071A JPS55154071A (en) 1980-12-01
JPS6362069B2 true JPS6362069B2 (en) 1988-12-01

Family

ID=13162603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6114479A Granted JPS55154071A (en) 1979-05-17 1979-05-17 Non-aqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS55154071A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798983A (en) * 1980-12-11 1982-06-19 Sanyo Electric Co Ltd Organic electrolytic battery
JPS6264063A (en) * 1985-09-17 1987-03-20 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137669A (en) * 1979-04-12 1980-10-27 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137669A (en) * 1979-04-12 1980-10-27 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPS55154071A (en) 1980-12-01

Similar Documents

Publication Publication Date Title
JPH0562432B2 (en)
JP2007516568A (en) Lithium battery with improved cathode
JP2007052935A (en) Nonaqueous electrolyte battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPS63126156A (en) Lithium cell
JPS6362069B2 (en)
JPH03291863A (en) Secondary cell
JP2003017058A (en) Non-aqueous electrolyte battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPS60131768A (en) Organic electrolyte battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JPH0151854B2 (en)
JP3968248B2 (en) Aluminum battery
JPS5912566A (en) Organic electrolyte battery
JP2708887B2 (en) Non-aqueous electrolyte battery
JPH02236972A (en) Polyaniline battery
JP2714078B2 (en) Non-aqueous electrolyte battery
JPH0654667B2 (en) Non-aqueous electrolyte battery
JPH0935716A (en) Lithium battery
JPS61284061A (en) Organic electrolyte battery
KR800001519B1 (en) Polar plate of alkaline storage cell
JPS6161229B2 (en)
JPH0316744B2 (en)
JPH0654663B2 (en) Non-aqueous electrolyte battery
JPH0586626B2 (en)