JPS6155741B2 - - Google Patents

Info

Publication number
JPS6155741B2
JPS6155741B2 JP54065358A JP6535879A JPS6155741B2 JP S6155741 B2 JPS6155741 B2 JP S6155741B2 JP 54065358 A JP54065358 A JP 54065358A JP 6535879 A JP6535879 A JP 6535879A JP S6155741 B2 JPS6155741 B2 JP S6155741B2
Authority
JP
Japan
Prior art keywords
metal
battery
manganese dioxide
oxide
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54065358A
Other languages
Japanese (ja)
Other versions
JPS55157861A (en
Inventor
Nobuo Eda
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6535879A priority Critical patent/JPS55157861A/en
Publication of JPS55157861A publication Critical patent/JPS55157861A/en
Publication of JPS6155741B2 publication Critical patent/JPS6155741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、リチウムで代表される軽金属を活物
質とする負極と、有機電解質、および金属酸化物
を活物質とする正極からなる電池の改良に関する
もので、特に保存による電池性能の低下を防止す
ることを目的とする。 この種電池の正極活物質としては、フツ化炭
素、二酸化マンガンなどが実用化され、さらに酸
化第二銅、酸化ビスマス、五酸化バナジウム、四
三酸化鉛などの金属酸化物や硫化銅、硫化鉄など
の金属硫化物など広範に検討されている。 一方、電解質には、電気化学的に安定性のある
炭酸プロピレン、γ―ブチロラクトンなどの非プ
ロトン性有機溶媒に支持塩を溶解したものが用い
られている。 このような有機電解質電池は、高エネルギー密
度を有し、電子卓上計算機や腕時計などの小形電
子機器の電源として好適であるが、保存性能にお
おいてまだ不満足な点がある。本発明者らの検討
結果によれば、電解質の有機溶媒が、電池保存中
に分解してガスを発生したり、その分解生成物が
電池性能に悪影響を及ぼしたりすることが保存性
能を劣化させる最も大きな原因である。 有機溶媒には、電気化学的に安定性のある炭酸
プロピレンやγ―ブチロラクトンがよく用いられ
るが、これらはエステルやラクトンであるためま
だ活性を残している。このため酸やアルカリを触
媒として加水分解を起こしたり、ある種の溶質の
存在下などで分解を起こしてガスを発生する。こ
のようなガスの発生が著しくなると電池の膨張を
生じさせる不都合があるばかりでなく、分解生成
物が電池性能を低下させ、さらには液量の減少に
より活物質の利用率を低下させることになる。 上記の現象は正極活物質に二酸化マンガンなど
の金属酸化物を用いた場のに著しい。この原因に
ついて検討した結果、次のことが判明した。すな
わち、金属酸化物の表面には微量の水酸基が存在
し、その割合は金属酸化物の種類により異なる
が、この表面の水酸基がある条件下では活性プロ
トンとなり、ブレンステツト酸としての役割を果
たし、炭酸プロピレンやγ―ブチロラクトンなど
の有機溶媒を分解させるのである。 本発明者らは、上記に鑑み、金属酸化物を正極
活物質とする電池の前記のような不都合を除去す
べく種々検討した結果、金属酸化物表面の水酸基
と亜鉛イオンなどの金属イオンとキレート結合を
形成することが有効であることを見出した。この
キレート結合によつて、金属酸化物表面の水酸基
は失活し、有機溶媒の分解が抑制されるのであ
る。 金属酸化物表面の水酸基を失活させるに充分な
安定なキレート結合を形成する金属イオンとして
は、亜鉛イオンの他、銅、ニツケル、鉛、コバル
ト、鉄、パラジウム、マンガン、マグネシウム、
アルミニウムのイオンがある。 金属酸化物表面の水酸基と金属イオンとのキレ
ート結合を形成するには、金属酸化物と、金属イ
オンを含む溶液に浸漬するか、金属イオンを含む
塩を電解質に添加し、金属イオンをして選択的に
正極の表面水酸基とキレートを形成させる。いず
れにせよ表面水酸基は中和された様な形で失活す
る。このため電池内において保存中にガスを発生
させたり、内部抵抗が増加したりする欠点を解消
でき、電池性能は良好なままで保たれる。 金属酸化物表面上には10Å×10Åの面積中に1
〜3個の水酸基があると言われている。仮りに、
比表面積50m2/gの電解二酸化マンガンを例にと
れば、1gには(1〜3)×50×1018個の水酸基
があることになる。一般に二酸化マンガンは空気
中において、例えば400℃で熱処理したものを用
いる。熱処理を施すと表面積はかなり減少する。
電解二酸化マンガンを320゜、450℃で熱処理する
と表面積は元の89%、69%程度に夫々減少する
が、表面の活性種である水酸基の絶対量ははじめ
と殆んど変わらない。 銅イオンを例にとつてそのキレート結合を模式
的に示すと第1図の如くで、銅イオンは正方平面
(dsp2)結合を形成すると考えられる。 銅イオン1個で表面水酸基を2個失活させう
る。この失活効率は金属イオンの配位構造と水酸
基間の間隔に依存するので常に2個とは限らず1
〜3個の間となろう。この場合、電解二酸化マン
ガン1g上には(1〜3)×50×1018個の水酸基
が存在することになるので、銅イオンの量は(4
〜6)×10-5モルあればよいことになる。他のイ
オンの場合もほぼオーダー的には同様である。こ
の量を仮りに電解質中に添加したとしても微量で
あるので電池に影響を与える程ではなく、このイ
オンを塩として添加する場合の対イオンは、電解
二酸化マンガンが硫酸マンガン浴から電析したも
のである場合にはSO4 2-イオン、塩化マンガン浴
からの場合はCl-イオンがより好ましい。また電
解二酸化マンガン中にはSO4 2-イオンもしくは
Cl-イオンは10-5モル程度は残つているので電池
として問題は起きない。また、対アニオンは
ClO4 -,BF4 -,AsF6 -,AlCl4 -の方がより好まし
く、ClO4 -かBF4 -の方が更に好ましい。 以下本発明を、金属酸化物のなかでも一般的
で、高電圧、低コストである二酸化マンガンに適
用した実施例により説明する。 二酸化マンガンとして、硫酸マンガン浴を電解
して得た二酸化マンガンを空気中において400℃
で4時間熱処理したものを用いた。この二酸化マ
ンガン50gを、6×10-13モル(1.3g)の過塩素
酸銅Cu(ClO42を含む炭酸プロピレン溶液200ml
に浸漬し、45℃で10時間撹拌した後、ろ過し、精
製1,2―ジメトキシエタンで充分洗浄して乾燥
した。同様にして過塩素酸ニツケル、過塩素酸
鉛、過塩素酸コバルト、過塩素酸亜鉛でも処理し
た。 これらの二酸化マンガンと六フツ化プロピレン
―四フツ化エチレン共重合樹脂粉末とを重量比で
10:3の割合で混合し、その1gをデイスク状に
成形して、1mmHgの減圧下で200℃で5時間乾
燥した。 これらの二酸化マンガン試料各5個を水分量27
μg/c.c.の精製炭酸プロピレン16c.c.に浸漬し、60
℃で80時間放置したとき、ガス捕集装置に捕集さ
れたガス量を比較すると次表の如くであつた。
The present invention relates to the improvement of a battery consisting of a negative electrode made of a light metal such as lithium as an active material, an organic electrolyte, and a positive electrode made of a metal oxide as an active material, and particularly to prevent deterioration of battery performance due to storage. The purpose is to Carbon fluoride, manganese dioxide, etc. have been put into practical use as positive electrode active materials for this type of battery, and metal oxides such as cupric oxide, bismuth oxide, vanadium pentoxide, trilead tetroxide, copper sulfide, iron sulfide, etc. Metal sulfides such as these are being extensively studied. On the other hand, the electrolyte used includes a supporting salt dissolved in an electrochemically stable aprotic organic solvent such as propylene carbonate or γ-butyrolactone. Such organic electrolyte batteries have high energy density and are suitable as power sources for small electronic devices such as electronic desktop calculators and wristwatches, but they still have unsatisfactory points in terms of storage performance. According to the study results of the present inventors, storage performance is deteriorated because the organic solvent of the electrolyte decomposes during battery storage and generates gas, and the decomposition products have an adverse effect on battery performance. This is the biggest cause. Propylene carbonate and γ-butyrolactone, which are electrochemically stable, are often used as organic solvents, but because they are esters or lactones, they still have some activity. For this reason, it undergoes hydrolysis using acids or alkalis as catalysts, or decomposes in the presence of certain solutes to generate gas. If the generation of such gas becomes significant, it not only causes the inconvenience of expansion of the battery, but also the decomposition products deteriorate the battery performance, and furthermore, the utilization rate of the active material decreases due to a decrease in the amount of liquid. . The above phenomenon is remarkable even when a metal oxide such as manganese dioxide is used as the positive electrode active material. As a result of examining the cause of this, the following was found. In other words, there are trace amounts of hydroxyl groups on the surface of metal oxides, and the proportions vary depending on the type of metal oxide, but under certain conditions, these hydroxyl groups on the surface become active protons, play the role of Brønstedt's acid, and produce carbonic acid. It decomposes organic solvents such as propylene and γ-butyrolactone. In view of the above, the present inventors conducted various studies to eliminate the above-mentioned disadvantages of batteries that use metal oxides as positive electrode active materials, and found that chelation between hydroxyl groups on the surface of metal oxides and metal ions such as zinc ions. It has been found that forming bonds is effective. This chelate bond deactivates the hydroxyl groups on the surface of the metal oxide and suppresses the decomposition of the organic solvent. In addition to zinc ions, metal ions that form stable chelate bonds sufficient to deactivate hydroxyl groups on the surface of metal oxides include copper, nickel, lead, cobalt, iron, palladium, manganese, magnesium,
There are aluminum ions. To form a chelate bond between the hydroxyl group on the surface of a metal oxide and a metal ion, the metal oxide can be immersed in a solution containing metal ions, or a salt containing metal ions can be added to an electrolyte to remove metal ions. Selectively forms a chelate with the surface hydroxyl group of the positive electrode. In any case, the surface hydroxyl groups are neutralized and deactivated. Therefore, the disadvantages of gas generation and internal resistance increase in the battery during storage can be eliminated, and the battery performance can be maintained at a good level. On the metal oxide surface, there is 1 in an area of 10 Å x 10 Å.
It is said that there are ~3 hydroxyl groups. If,
Taking electrolytic manganese dioxide with a specific surface area of 50 m 2 /g as an example, there are (1 to 3)×50×10 18 hydroxyl groups in 1 g. Generally, manganese dioxide is heat-treated in air at, for example, 400°C. Heat treatment reduces the surface area considerably.
When electrolytic manganese dioxide is heat-treated at 320°C and 450°C, the surface area decreases to about 89% and 69% of its original value, respectively, but the absolute amount of hydroxyl groups, which are active species on the surface, remains almost the same as before. Taking copper ions as an example, the chelate bond is schematically shown in FIG. 1, and it is thought that copper ions form square planar (dsp 2 ) bonds. One copper ion can deactivate two surface hydroxyl groups. This deactivation efficiency depends on the coordination structure of metal ions and the spacing between hydroxyl groups, so it is not always limited to two, but only one.
It will be between ~3. In this case, there are (1 to 3) x 50 x 10 18 hydroxyl groups on 1 g of electrolytic manganese dioxide, so the amount of copper ions is (4
〜6) ×10 -5 mole is sufficient. The order is almost the same for other ions. Even if this amount were added to the electrolyte, it would be so small that it would not affect the battery.When adding this ion as a salt, the counter ion is electrolytic manganese dioxide deposited from a manganese sulfate bath. SO 4 2- ions are more preferred when the ion is from a manganese chloride bath, and Cl - ions are more preferred when the ion is from a manganese chloride bath. Also, electrolytic manganese dioxide contains SO 4 2- ions or
Approximately 10 -5 moles of Cl - ions remain, so there will be no problem as a battery. Also, the anti-anion is
ClO 4 - , BF 4 - , AsF 6 - , AlCl 4 - are more preferred, and ClO 4 - or BF 4 - is even more preferred. The present invention will be explained below using an example in which the present invention is applied to manganese dioxide, which is common among metal oxides and has high voltage and low cost. As manganese dioxide, manganese dioxide obtained by electrolyzing a manganese sulfate bath is heated to 400℃ in the air.
The sample was heat-treated for 4 hours. 50 g of this manganese dioxide was mixed with 200 ml of a propylene carbonate solution containing 6 x 10 -13 moles (1.3 g) of copper perchlorate, Cu(ClO 4 ) 2 .
After stirring at 45°C for 10 hours, the mixture was filtered, thoroughly washed with purified 1,2-dimethoxyethane, and dried. Similarly, nickel perchlorate, lead perchlorate, cobalt perchlorate, and zinc perchlorate were also treated. The weight ratio of these manganese dioxide and propylene hexafluoride-ethylene tetrafluoride copolymer resin powder is
The mixture was mixed at a ratio of 10:3, 1 g of the mixture was molded into a disk shape, and the mixture was dried at 200° C. for 5 hours under a reduced pressure of 1 mmHg. Five of these manganese dioxide samples each had a moisture content of 27
Soaked in 16 c.c. of μg/cc purified propylene carbonate, 60
A comparison of the amount of gas collected by the gas collection device when it was left at ℃ for 80 hours was as shown in the following table.

【表】 なお発生するガスは炭酸ガスであり、これは炭
酸プロピレンにかなりの割合で溶解するが、試料
A〜Eにおいてはガスの発生は認められなかつ
た。 この結果から明らかなように、水酸基とキレー
ト結合を形成する金属イオンによる処理により、
二酸化マンガンによる炭酸プロピレン分解能を抑
制する効果がある。 次に上記の処理をした二酸化マンガンを電池に
適用した実施例を説明する。 第2図において、1はステンレス鋼製のケー
ス、2は同材質の封口板、3は封口板の内面に溶
着したグリツドであり、このグリツドの表面に負
極のリチウムシート4を圧着している。5は正極
で、二酸化マンガン100重量部、アセチレンブラ
ツク3重量部およびフツ素樹脂結着剤5重量部の
混合物0.75gをデイスク状に成形したものであ
る。6はケース1の内面に溶着したチタン集電
体、7はポリプロピレン製セパレータ、8はポリ
プロピレン製保液材である。電解質には炭酸プロ
ピレンと1,2―ジメトキエタンの等容積混合溶
媒にLiClO4を1.0モル/の割合で溶解したもの
を用い、その200μを注液し、封口した。9は
ポリプロピレン製ガスケツトである。この電池の
サイズは、直径23mm、総高2.45mmである。 以上の構成で、前記の表に示した各種二酸化マ
ンガンを用いて各々電池A〜Fを構成した。 第3図は電池の安定性を最もよく表す電池内部
抵抗の経時変化を示すもので、保存温度は60℃で
ある。なお内部抵抗は交流1KHzで測定した値で
ある。また第4図は60℃で30日間保存した後の20
℃、1KΩの放電特性を示す。なお、図中F′は電
池Fの製造直後の放電特性である。 第3図より本発明による電池の保存安定性が従
来の電池に比して優れていることが分かる。 第4図で従来の電池の60℃、30日保存による立
下り電圧、放電電圧、放電容量の劣化具合が分か
り、また、本発明による電池は、従来の電池に比
して、立下り電圧、放電電圧、放電容量のいずれ
も優れていることが分かり、放電特性は一本の太
い線となつているが、放電電圧、容量面ではA〜
E殆んど差がなく、唯、立下り電圧だけが、第3
図に示した内部抵抗の大きいもの程低い立下り電
圧となる(放電初期の約2.5hr位まで)ものであ
ることが分かる。 上記の実施例においては、リチウムを負極に用
いたが、ナトリウムなどの軽金属でもよい。また
金属酸化物として二酸化マンガンを用いたが、他
の酸化物である三酸化モリブデン、三二酸化コバ
ルト、四三酸化コバルト、酸化第二銅、三二酸化
ビスマス、五酸化バナジウム、四三酸化鉛など酸
化物であればすべてに適用できる。 また、電解質の有機溶媒も炭酸プロピレンの他
γ―ブチロラクトン、炭酸エチレンなどの非プロ
トン性有機溶媒に対しても効果がある。 本発明の主旨は、酸化物表面上の水酸基と金属
イオンとの間にキレート化合物を形成し、これに
よつて水酸基が丁度中和される形となつて失活す
るものであるから、そのキレート結合を安定に形
成する金属イオンは、実施例に示したものの他、
鉄、パラジウム、カドミウム、マンガン、マグネ
シウム、アルミニウムなどの金属イオンでも良
い。 以上のように本発明によれば、有機電解質の分
解に伴う保存性能の劣化を防止することができ
る。
[Table] Note that the gas generated is carbon dioxide gas, which dissolves in propylene carbonate in a considerable proportion, but no gas generation was observed in Samples A to E. As is clear from this result, treatment with metal ions that form chelate bonds with hydroxyl groups
It has the effect of suppressing the ability of manganese dioxide to decompose propylene carbonate. Next, an example will be described in which the above-treated manganese dioxide is applied to a battery. In FIG. 2, 1 is a case made of stainless steel, 2 is a sealing plate made of the same material, and 3 is a grid welded to the inner surface of the sealing plate, and a negative electrode lithium sheet 4 is pressure-bonded to the surface of this grid. 5 is a positive electrode, which is made by molding 0.75 g of a mixture of 100 parts by weight of manganese dioxide, 3 parts by weight of acetylene black, and 5 parts by weight of a fluororesin binder into a disk shape. 6 is a titanium current collector welded to the inner surface of the case 1, 7 is a polypropylene separator, and 8 is a polypropylene liquid retaining material. The electrolyte used was LiClO 4 dissolved at a ratio of 1.0 mol/mole in a mixed solvent of equal volume of propylene carbonate and 1,2-dimethoxyethane, and 200μ of the solution was injected and the container was sealed. 9 is a polypropylene gasket. The size of this battery is 23mm in diameter and 2.45mm in total height. With the above configuration, batteries A to F were constructed using the various manganese dioxides shown in the table above. Figure 3 shows the change in internal resistance of the battery over time, which best indicates the stability of the battery, and the storage temperature is 60°C. Note that the internal resistance is a value measured at 1KHz AC. In addition, Figure 4 shows the 20
℃, 1KΩ discharge characteristics. Note that F' in the figure is the discharge characteristic of battery F immediately after manufacture. It can be seen from FIG. 3 that the storage stability of the battery according to the present invention is superior to that of conventional batteries. Figure 4 shows the degree of deterioration in the falling voltage, discharge voltage, and discharge capacity of the conventional battery when stored at 60°C for 30 days. It was found that both discharge voltage and discharge capacity are excellent, and the discharge characteristics are a single thick line, but in terms of discharge voltage and capacity, it is A ~
E There is almost no difference, only the falling voltage
It can be seen that the larger the internal resistance shown in the figure, the lower the falling voltage (up to about 2.5 hours at the beginning of discharge). In the above examples, lithium was used for the negative electrode, but a light metal such as sodium may also be used. Although manganese dioxide was used as the metal oxide, other oxides such as molybdenum trioxide, cobalt sesquioxide, tricobalt tetroxide, cupric oxide, bismuth sesmuth oxide, vanadium pentoxide, and trilead tetroxide It can be applied to all things. Moreover, the organic solvent of the electrolyte is also effective against aprotic organic solvents such as γ-butyrolactone and ethylene carbonate in addition to propylene carbonate. The gist of the present invention is to form a chelate compound between a hydroxyl group on the surface of an oxide and a metal ion, and thereby the hydroxyl group is just neutralized and deactivated. Metal ions that stably form bonds include those shown in the examples,
Metal ions such as iron, palladium, cadmium, manganese, magnesium, and aluminum may also be used. As described above, according to the present invention, deterioration in storage performance due to decomposition of organic electrolytes can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二酸化マンガンの表面水酸基が銅イオ
ンとキレート結合を形成する例を模式的に示す
図、第2図は実施例に用いた電池の縦断面図、第
3図は電池内部抵抗の保存による経時変化を示す
図、第4図は電池の放電特性を示す。 4……負極、5……正極、7……セパレータ。
Figure 1 is a diagram schematically showing an example in which surface hydroxyl groups of manganese dioxide form chelate bonds with copper ions, Figure 2 is a longitudinal cross-sectional view of the battery used in the example, and Figure 3 is the preservation of battery internal resistance. Figure 4 shows the discharge characteristics of the battery. 4... Negative electrode, 5... Positive electrode, 7... Separator.

Claims (1)

【特許請求の範囲】 1 軽金属を活物質とする負極と、有機電解質、
および金属酸化物を活物質とする正極からなり、
前記金属酸化物表面の水酸基が金属イオンとキレ
ート結合を形成していることを特徴とする電池。 2 前記キレート結合を形成している金属イオン
が、銅、ニツケル、鉛、コバルト、亜鉛、鉄、パ
ラジウム、カドミウム、マンガン、マグネシウム
およびアルミニウムよりなる群から選んだ金属の
イオンである特許請求の範囲第1項記載の電池。 3 前記金属酸化物が、二酸化マンガン、三酸化
モリブデン、五酸化バナジウム、四三酸化コバル
ト、三二酸化コバルト、酸化第二銅、四三酸化鉛
および三二酸化ビスマスより群から選んだもので
ある特許請求の範囲第1項または第2項記載の電
池。
[Claims] 1. A negative electrode using a light metal as an active material, an organic electrolyte,
and a positive electrode using a metal oxide as an active material,
A battery characterized in that the hydroxyl group on the surface of the metal oxide forms a chelate bond with a metal ion. 2. The metal ion forming the chelate bond is an ion of a metal selected from the group consisting of copper, nickel, lead, cobalt, zinc, iron, palladium, cadmium, manganese, magnesium, and aluminum. The battery according to item 1. 3. A patent claim in which the metal oxide is selected from the group consisting of manganese dioxide, molybdenum trioxide, vanadium pentoxide, tricobalt tetroxide, cobalt sesquioxide, cupric oxide, trilead tetroxide, and bismuth sesmuth oxide. The battery according to the range 1 or 2.
JP6535879A 1979-05-25 1979-05-25 Cell Granted JPS55157861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6535879A JPS55157861A (en) 1979-05-25 1979-05-25 Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6535879A JPS55157861A (en) 1979-05-25 1979-05-25 Cell

Publications (2)

Publication Number Publication Date
JPS55157861A JPS55157861A (en) 1980-12-08
JPS6155741B2 true JPS6155741B2 (en) 1986-11-28

Family

ID=13284647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6535879A Granted JPS55157861A (en) 1979-05-25 1979-05-25 Cell

Country Status (1)

Country Link
JP (1) JPS55157861A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2553568B1 (en) * 1983-10-14 1986-04-11 Gipelec ELECTROCHEMICAL GENERATOR WITH NONAQUEOUS ELECTROLYTE, WHOSE POSITIVE ELECTRODE IS BASED ON MANGANESE BIOXIDE
US4911996A (en) * 1988-03-11 1990-03-27 Eic Laboratories, Inc. Electrochemical cell
US6228531B1 (en) * 1997-10-14 2001-05-08 Mitsubishi Chemical Corporation Electrode modification using surface associated lithium salts and an associated process for fabrication of an electrode
JP2002015775A (en) * 2000-06-29 2002-01-18 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell and positive active material for the same
CN109309223B (en) * 2018-10-16 2021-05-28 台州学院 Co3O4/Pd nano composite electrode material and preparation method thereof

Also Published As

Publication number Publication date
JPS55157861A (en) 1980-12-08

Similar Documents

Publication Publication Date Title
JPH038270A (en) Nonaqueous electrolyte secondary battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JPS6155741B2 (en)
JPS6122423B2 (en)
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
WO2023123842A1 (en) Additive, non-aqueous electrolyte solution containing said additive, and lithium-ion battery
JPS6090827A (en) Permanganic acid process for manufacturing manganese dioxide from manganous salt
JPH01264172A (en) Manufacture of organic electrolyte battery
JPS623546B2 (en)
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPS61264682A (en) Organic electrolyte battery
JP3424851B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JPH03285271A (en) Battery
JPS62217567A (en) Nonaqueous electrolyte battery
JPS5991670A (en) Manufacture of organic electrolyte battery
JP3379991B2 (en) Organic electrolyte battery and organic electrolyte used therefor
CN118198496A (en) Lithium ion battery electrolyte, preparation method thereof and lithium ion battery
JPH05275083A (en) Lithium cell
JPS62262371A (en) Organic electrolyte cell
JPS5836467B2 (en) non-aqueous electrolyte battery
JPH0254623B2 (en)
JPH0290473A (en) Lithium secondary battery
JPH07105233B2 (en) Organic electrolyte battery