JPS6122423B2 - - Google Patents

Info

Publication number
JPS6122423B2
JPS6122423B2 JP54073394A JP7339479A JPS6122423B2 JP S6122423 B2 JPS6122423 B2 JP S6122423B2 JP 54073394 A JP54073394 A JP 54073394A JP 7339479 A JP7339479 A JP 7339479A JP S6122423 B2 JPS6122423 B2 JP S6122423B2
Authority
JP
Japan
Prior art keywords
salt
metal oxide
battery
battery according
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54073394A
Other languages
Japanese (ja)
Other versions
JPS55165580A (en
Inventor
Nobuo Eda
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7339479A priority Critical patent/JPS55165580A/en
Publication of JPS55165580A publication Critical patent/JPS55165580A/en
Publication of JPS6122423B2 publication Critical patent/JPS6122423B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、リチウムで代表される軽金属を活物
質とする負極と、有機電解質、および金属酸化物
を活物質とする正極からなる電池の改良に関する
もので、特に保存による電池特能の低下を防止す
ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the improvement of a battery consisting of a negative electrode made of a light metal such as lithium as an active material, an organic electrolyte, and a positive electrode made of a metal oxide as an active material. The purpose is to prevent deterioration of battery performance.

この種電池の正極活物質としては、フツ化炭
素、二酸化マンガンなどが実用化され、さらに酸
化第二銅、酸化ビスマス、五酸化バナジウム、四
三酸化鉛などの金属酸化物や硫化銅、硫化鉄など
の金属硫化物など広範に検討されている。
Carbon fluoride, manganese dioxide, etc. have been put into practical use as positive electrode active materials for this type of battery, and metal oxides such as cupric oxide, bismuth oxide, vanadium pentoxide, trilead tetroxide, copper sulfide, iron sulfide, etc. Metal sulfides such as these are being extensively studied.

一方、電解質には、電気化学的に安定性のある
炭酸プロピレン、γ−ブチロラクトンなどの非プ
ロトン性有機溶媒に支持塩を溶解したものが用い
られている。
On the other hand, the electrolyte used includes a supporting salt dissolved in an electrochemically stable aprotic organic solvent such as propylene carbonate or γ-butyrolactone.

このような有機電解質電池は、高エネルギー密
度を有し、電子卓上計算機や腕時計などの小形電
子機器の電源として好適であるが、保存性能にお
いてまだ不満足な点がある。本発明者らの検討結
果によれば、電解質の有機溶媒が、電池保存中に
分解してガスを発生したり、その分解生成物が電
池の内部抵抗を増大させたりすることが保存性能
を劣化させる最も大きな原因である。
Such organic electrolyte batteries have high energy density and are suitable as power sources for small electronic devices such as electronic desktop calculators and wristwatches, but they still have unsatisfactory points in terms of storage performance. According to the study results of the present inventors, the organic solvent of the electrolyte decomposes during battery storage and generates gas, and the decomposition products increase the internal resistance of the battery, which deteriorates storage performance. This is the biggest cause of this.

有機溶媒には、電気化学的に安定性のある炭酸
プロピレンやγ−ブチロラクトンがよく用いられ
るが、これらはエステルやラクトンであるためま
だ活性を残している。このため酸やアルカリを触
媒として加水分解を起こしたり、ある種の溶質の
存在下などで分解を起こしてガスを発生する。こ
のようなガスの発生が著しくなると電池の膨張を
〓〓〓〓
生じさせる不都合があるばかりでなく、分解生成
物が電池性能を低下させることになる。
Propylene carbonate and γ-butyrolactone, which are electrochemically stable, are often used as organic solvents, but since these are esters or lactones, they still have some activity. For this reason, it undergoes hydrolysis using acids or alkalis as catalysts, or decomposes in the presence of certain solutes to generate gas. If the generation of such gas becomes significant, the battery will expand.
Not only are there inconveniences caused, but the decomposition products degrade battery performance.

上記の現象は正極活物質に二酸化マンガンなど
の金属酸化物を用いた場合に著しい。この原因に
ついて検討した結果、次のことが判明した。すな
わち、金属酸化物の表面にはかなりの量の水酸基
が存在し、その割合は金属酸化物の種類により異
なるが、10Å×10Åの面積中に1〜9個の水酸基
がある。かりに比表面積50m2/gの電解二酸化マ
ンガンを例にとれば、その1gには(1〜9)×
50×1018個の水酸基があることになる。そして、
これらの水酸基は金属原子への結合の仕方により
酸となつたり塩基となつたりし、これによつて炭
酸プロピレンやγ−ブチロラクトンなどの有機溶
媒を分解させるのである。
The above phenomenon is remarkable when a metal oxide such as manganese dioxide is used as the positive electrode active material. As a result of examining the cause of this, the following was found. That is, there are a considerable amount of hydroxyl groups on the surface of the metal oxide, and the proportion varies depending on the type of metal oxide, but there are 1 to 9 hydroxyl groups in an area of 10 Å x 10 Å. For example, if we take electrolytic manganese dioxide with a specific surface area of 50 m 2 /g, 1 g has (1 to 9) x
There are 50×10 18 hydroxyl groups. and,
These hydroxyl groups can become acids or bases depending on how they are bonded to metal atoms, thereby decomposing organic solvents such as propylene carbonate and γ-butyrolactone.

本発明者らは、上記に鑑み、正極活物質に金属
酸化物を用いる電池の前記のような不都合を除去
すべく種々検討した結果、金属酸化物表面の水酸
基と、後述のような陰イオンまたは陽イオンとキ
レート結合を形成することが有効であることを見
出した。このキレート結合によつて金属酸化物表
面の水酸基は失活し、有機溶媒の分解が抑制され
るのである。従つて本発明はこれらのイオンを含
む塩を電解質中に添加するものである。
In view of the above, the present inventors have conducted various studies to eliminate the above-mentioned disadvantages of batteries using metal oxides as positive electrode active materials. It has been found that forming a chelate bond with a cation is effective. This chelate bond deactivates the hydroxyl groups on the surface of the metal oxide and suppresses the decomposition of the organic solvent. Therefore, the present invention involves adding a salt containing these ions to the electrolyte.

まず陰イオンで水酸基を失活させる方法につい
て説明すると、支持塩として知られているホウフ
ツ化リチウムLiBF4、ヒフツ化リチウム
LiAsF6、アルミニウム塩化リチウムLiAlCl4など
を電解質中に微量添加して、選択的に表面水酸基
と反応させるのである。
First, we will explain how to deactivate hydroxyl groups with anions. Lithium borofluoride LiBF 4 , lithium borofluoride
A small amount of LiAsF 6 , lithium aluminum chloride, LiAlCl 4 , etc. is added to the electrolyte to selectively react with surface hydroxyl groups.

有機電解質における溶質塩の濃度の最適値は、
伝導度などから1モル/付近にあり、実際の電
池においてもこの程度の濃度で用いられている。
しかし、上記の塩を1モル/もの高濃度で用い
ると、金属酸化物正極の溶解と、それに伴う保存
性能の低下、セパレータの負極表面への付着、電
池ケースの腐食などの問題が生じるので、実際、
金属酸化物を活物質に用いる電池においては、溶
質としてLiClO4を用いるのが普通である。この
LiClO4やその他の溶質、例えばLiPF6では、それ
らの陰イオン中のCl、Pが水酸基とキレート結
合を形成できないので、水酸基を失活させること
はできない。
The optimum concentration of solute salts in organic electrolytes is
It is around 1 mol/mole/mole/mole/mole based on conductivity, and this concentration is used in actual batteries as well.
However, if the above-mentioned salts are used at a high concentration of 1 mol/mol, problems such as dissolution of the metal oxide positive electrode and the resulting reduction in storage performance, adhesion of the separator to the negative electrode surface, and corrosion of the battery case will occur. actual,
In batteries that use metal oxides as active materials, it is common to use LiClO 4 as the solute. this
In LiClO 4 and other solutes, such as LiPF 6 , Cl and P in their anions cannot form chelate bonds with hydroxyl groups, so the hydroxyl groups cannot be deactivated.

一方、LiBF4、LiAsF6、LiAlCl4は、その陰イ
オン中のB、As、Al原子は、水酸基と容易にか
つ安定にキレート結合を形成するので、前記のよ
うな不都合を生じさせない程度の微量を電解質中
に添加することによつて水酸基を失活させること
ができる。
On the other hand, in LiBF 4 , LiAsF 6 , and LiAlCl 4 , the B, As, and Al atoms in their anions easily and stably form chelate bonds with hydroxyl groups, so they can be used in trace amounts that do not cause the above-mentioned disadvantages. The hydroxyl group can be deactivated by adding it to the electrolyte.

次に添加塩中の陽イオンで水酸基を失活させる
ことができる。この場合の陽イオンとしては、
銅、ニツケル、鉛、コバルト、亜鉛、鉄、パラジ
ウム、カドミウム、マンガン、マグネシウム、ア
ルミニウムなどが用いられる。
The hydroxyl groups can then be deactivated with the cations in the added salt. In this case, the cation is
Copper, nickel, lead, cobalt, zinc, iron, palladium, cadmium, manganese, magnesium, aluminum, etc. are used.

以下本発明を、金属酸化物のなかでも一般的
で、高電圧、低コストである二酸化マンガンを例
にとり説明する。
The present invention will be explained below by taking as an example manganese dioxide, which is common among metal oxides and has high voltage and low cost.

一般に二酸化マンガンは、空気中において熱処
理したものを用いる。熱処理を施すと表面積はか
なり減少するが、表面活性種である水酸基ははじ
めとほとんど変わらない。
Generally, manganese dioxide is heat-treated in air. When heat treated, the surface area decreases considerably, but the hydroxyl groups, which are surface active species, remain almost unchanged.

先きに電解二酸化マンガンには(1〜9)×50
×1018個/gの水酸基が存在すると述べたが、こ
れをLiBF4で失活させる場合は、第1図のように
BF イオン1個で2〜3個の水酸基を失活させる
ことになる。LiAsF6、LiAlCl4を用いる場合も同
様である。従つて、電解二酸化マンガン1g上の
水酸基を失活させるには、 (1〜9)×50×1018/(2〜3)×6×1023=2.8
×10-5〜3.8×10-4モル(グラム分子)のLiBF4
LiAsF6、LiAlCl4があればよいことになる。
First, add (1 to 9) x 50 to electrolytic manganese dioxide.
As mentioned above, there are 18 x 10 hydroxyl groups/g, but when this is deactivated with LiBF 4 , as shown in Figure 1,
One BF - 4 ion deactivates 2 to 3 hydroxyl groups. The same applies when LiAsF 6 and LiAlCl 4 are used. Therefore, to deactivate the hydroxyl group on 1 g of electrolytic manganese dioxide, (1 to 9) x 50 x 10 18 / (2 to 3) x 6 x 10 23 = 2.8
×10 -5 to 3.8 × 10 -4 moles (gram molecule) of LiBF4 ,
LiAsF 6 and LiAlCl 4 are sufficient.

一方、陽イオンによる場合、例えば銅イオンの
場合は、第2図のような機構でキレートを形成す
ると考えられ、同様に計算して二酸化マンガン1
g当たり、4.2×10-5〜3.8×10-4モル添加すれば
よい。この場合陽イオンの対イオンとなるべき陰
イオンは、前記のClO 、AsF 、AlCl が好まし
いものであるが、電解二酸化マンガンの場合は、
硫酸マンガン浴または塩化マンガン浴から電析し
たものを用いるときはCl-、SO2− を約10-5モル含
有しているので、これと同種のイオンであつても
よい。
On the other hand, in the case of cations, for example, copper ions, it is thought that chelates are formed by the mechanism shown in Figure 2, and similarly calculated.
It is sufficient to add 4.2×10 −5 to 3.8×10 −4 mol per g. In this case, the anion that should serve as a counter ion to the cation is preferably the aforementioned ClO - 4 , AsF - 6 , or AlCl - 4 , but in the case of electrolytic manganese dioxide,
When using a material electrodeposited from a manganese sulfate bath or a manganese chloride bath, it contains about 10 -5 moles of Cl - and SO 2-4 , so ions of the same type as these may be used.

次に硫酸マンガン浴から電析した二酸化マンガ
ンを空気中において400℃で4時間熱処理したも
のを正極活物質としたリチウム電池に適用した実
施例を説明する。
Next, an example will be described in which manganese dioxide electrodeposited from a manganese sulfate bath was heat-treated at 400° C. for 4 hours in air and applied to a lithium battery using the positive electrode active material.

第3図において、1はステンレス鋼製のケー
ス、2は同材質の封口板、3は封口板の内面に溶
〓〓〓〓
着したグリツドであり、このグリツドの表面に負
極のリチウムシート4を圧着している。5は正極
で、前記の二酸化マンガン100重量部、アセチレ
ンブラツク3重量部およびフツ素樹脂結着剤5重
量部の混合物0.75g(うちMnO20.70g)をデイ
スク状に成型したものである。6はケース1の内
面に溶着したチタン集電体、7はポリプロピレン
製セパレータ、8はポリプロピレン製保液材、9
はポリプロピレン製ガスケツトである。電解質に
は炭酸プロピレンと1・2−ジメトキシエタンの
等容積混合溶媒にLiClO4を1.0モル/の割合
で、溶解したものを用い、その200μを注液
し、封口した。
In Fig. 3, 1 is a case made of stainless steel, 2 is a sealing plate made of the same material, and 3 is a case made of stainless steel.
A lithium sheet 4 as a negative electrode is pressure-bonded to the surface of this grid. 5 is a positive electrode, which is made by molding 0.75 g of a mixture of 100 parts by weight of manganese dioxide, 3 parts by weight of acetylene black, and 5 parts by weight of a fluororesin binder (including 0.70 g of MnO 2 ) into a disk shape. 6 is a titanium current collector welded to the inner surface of case 1, 7 is a polypropylene separator, 8 is a polypropylene liquid retaining material, 9
is a polypropylene gasket. The electrolyte used was LiClO 4 dissolved in a mixed solvent of equal volumes of propylene carbonate and 1,2-dimethoxyethane at a ratio of 1.0 mole/mole, and 200 μ of the solution was injected and the container was sealed.

上記の構成において、LiBF4、LiAsF6
LiAlCl4を各種の割合で電解質中に添加した電池
を作り、60℃で30日間保存した後の電池内部抵抗
を第4図に示す。なお内部抵抗は交流1KHzで測
定した値である。またこの場合の上記塩の添加量
は二酸化マンガン1g当たり、2.8×10-5、6×
10-5、15×10-5、40×10-5モル相当、すなわち二
酸化マンガン0.70gに対し電解質200μ中に2.0
×10-5、4.2×10-5、10.5×10-5、28×10-5モルと
した。
In the above configuration, LiBF 4 , LiAsF 6 ,
Figure 4 shows the internal resistance of batteries made by adding LiAlCl 4 to the electrolyte in various proportions and stored at 60°C for 30 days. Note that the internal resistance is a value measured at 1KHz AC. In addition, the amount of the above salt added in this case is 2.8×10 -5 and 6× per 1 g of manganese dioxide.
10 -5 , 15 x 10 -5 , equivalent to 40 x 10 -5 moles, i.e. 2.0 in 200 μ of electrolyte for 0.70 g of manganese dioxide.
×10 −5 , 4.2×10 −5 , 10.5×10 −5 , and 28×10 −5 moles.

また第5図は、上記塩の添加量を4.2×10-5
ルとした電池を60℃で保存したときの内部抵抗の
経時変化を示す。第5図のように上記の塩を添加
した電池も保存中に内部抵抗は若干増加するが、
その率は無添加のものよりかなり小さい。
Furthermore, FIG. 5 shows the change in internal resistance over time when a battery containing the above-mentioned salt added in an amount of 4.2×10 −5 mol was stored at 60° C. As shown in Figure 5, the internal resistance of batteries with the above salt added increases slightly during storage, but
The rate is significantly lower than that without additives.

第6図は、Cu(ClO42、Ni(ClO42、Pb
(ClO42、Co(ClO42、Zn(ClO42を二酸化マン
ガン1g当たり4.0×10-5、8.0×10-5、20×
10-5、40×10-5モル相当を電解質中に添加した電
池について、60℃で30日間保存後の内部抵抗を示
す。
Figure 6 shows Cu(ClO 4 ) 2 , Ni(ClO 4 ) 2 , Pb
(ClO 4 ) 2 , Co(ClO 4 ) 2 , Zn(ClO 4 ) 2 per gram of manganese dioxide at 4.0×10 -5 , 8.0×10 -5 , 20×
The internal resistance after storage at 60°C for 30 days is shown for a battery in which 10 -5 , equivalent to 40 x 10 -5 moles, is added to the electrolyte.

第4図および第6図より本発明による電池の保
存安定性が従来の電池に比して優れていることが
わかる。塩の添加量は、陰イオンでキレート結合
を形成する場合は、第4図から1×10-5〜35×
10-5モルの範囲でその効果が認められると思われ
るので、二酸化マンガン1gに対し、1.3×10-5
〜5×10- 4モルの添加量が、陽イオンでキレート
結合を形成する場合は、第6図から同様にして、
二酸化マンガン1gに対して、1×10-5〜8×
10-4モルの添加量が好ましい。
It can be seen from FIGS. 4 and 6 that the storage stability of the battery according to the present invention is superior to that of conventional batteries. When forming a chelate bond with anion, the amount of salt added is 1×10 -5 to 35× from Figure 4.
It seems that the effect is recognized in the range of 10 -5 mol, so 1.3 x 10 -5 per 1 g of manganese dioxide.
When the addition amount of ~5 x 10 - 4 moles forms a chelate bond with a cation, similarly from Figure 6,
1×10 -5 to 8× for 1g of manganese dioxide
The amount added is preferably 10 −4 mol.

実施例においてはリチウムを負極に用いたが、
ナトリウムなどの軽金属でもよい。また金属酸化
物として二酸化マンガンを用いたが、他の酸化物
である三酸化モリブデン、三二酸化コバルト、四
三酸化コバルト、酸化第二銅、三二酸化ビスマ
ス、五酸化バナジウム、四三酸化鉛など、酸化物
であればすべて表面に水酸基をもつており、また
それら酸化物の比表面積もほぼ同じ位の範囲であ
るから、添加量の割合も上記の量程度で充分であ
る。また電解質を構成する有機溶媒として、炭酸
エチレン、γ−ブチロラクトンを用いる場合に対
しても同様に有効である。
In the examples, lithium was used as the negative electrode, but
Light metals such as sodium may also be used. Although manganese dioxide was used as the metal oxide, other oxides such as molybdenum trioxide, cobalt sesquioxide, tricobalt tetroxide, cupric oxide, bismuth sesmuth oxide, vanadium pentoxide, and trilead tetroxide, etc. Since all oxides have hydroxyl groups on their surfaces, and the specific surface areas of these oxides are approximately in the same range, the above-mentioned amount ratio is sufficient. It is also similarly effective when using ethylene carbonate or γ-butyrolactone as the organic solvent constituting the electrolyte.

陰イオンでキレート結合を形成させる場合の添
加塩の陽イオンである金属イオンはリチウムが最
も好ましいが、添加量がごく微量でありその影響
は小さいと考えられるから、アルカリ金属、アル
カリ土類金属をはじめとする他の金属でも構わな
い。
When forming a chelate bond with an anion, the most preferable metal ion is lithium, which is the cation of the added salt. However, since the amount added is very small and its influence is considered to be small, alkali metals and alkaline earth metals are preferred. It may also be made of other metals.

また陽イオンでキレート結合を形成させる場合
の添加塩中のイオンは酸化物に最も影響が少ない
と言われているClO イオンが最も好ましいが、
添加量が微量であるから、例えば電解二酸化マン
ガン中に含まれているSO2− やCl-イオンをはじめ
とする他の陰イオンでも構わない。また、この方
法は金属陽イオンの配位による効果であるから、
鉄、パラジウム、カドミウム、マンガン、アルミ
ニウムのイオンを用いる場合も同様の効果が期待
できる。
In addition, when forming a chelate bond with a cation, the most preferable ion in the added salt is ClO - 4 ion, which is said to have the least effect on oxides.
Since the amount added is very small, other anions such as SO 2-4 and Cl - ions contained in electrolytic manganese dioxide may also be used. In addition, since this method relies on the coordination of metal cations,
A similar effect can be expected when iron, palladium, cadmium, manganese, or aluminum ions are used.

以上のように、本発明によれば、保存性能の優
れた有機電解質電池が得られる。
As described above, according to the present invention, an organic electrolyte battery with excellent storage performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二酸化マンガンの表面水酸基がBF
キレート結合を形成する機構を示す模式図、第2
図は同じく銅イオンとキレート結合を形成する機
構を示す模式図、第3図は本発明の実施例の二酸
化マンガン−リチウム電池の縦断面図、第4図お
よび第6図は電解質中の各種添加塩の量と電池保
存後の内部抵抗との関係を示す図、第5図は電池
保存中の内部抵抗の経時変化を示す図である。 4……負極、5……正極、7……セパレータ。 〓〓〓〓
Figure 1 is a schematic diagram showing the mechanism by which the surface hydroxyl groups of manganese dioxide form a chelate bond with BF - 4 .
The figure is also a schematic diagram showing the mechanism of forming a chelate bond with copper ions, Figure 3 is a longitudinal cross-sectional view of a manganese dioxide-lithium battery according to an embodiment of the present invention, and Figures 4 and 6 are various additions in the electrolyte. FIG. 5 is a diagram showing the relationship between the amount of salt and the internal resistance after storage of the battery, and FIG. 5 is a diagram showing the change over time in the internal resistance during storage of the battery. 4... Negative electrode, 5... Positive electrode, 7... Separator. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 軽金属を活物質とする負極と、溶媒として炭
酸プロピレン、炭酸エチレン、γ−ブチロラクト
ン、1・2−ジメキシエタンの少なくとも一種を
含む有機電解質、および金属酸化物を活物質とす
る正極からなり、前記電解質が、前記金属酸化物
表面の水酸基とキレート結合を形成するイオンを
含む塩を含有することを特徴とする電池。 2 前記塩が、BF 、AsF およびAlCl よりな

群から選んだ一種を含む塩である特許請求の範囲
第1項記載の電池。 3 前記塩が、銅、ニツケル、鉛、コバルト、亜
鉛、鉄、パラジウム、カドミウム、マンガン、マ
グネシウムおよびアルミニウムよりなる群から選
んだ金属のイオンを含む塩である特許請求の範囲
第1項記載の電池。 4 前記塩の含有量が、前記金属酸化物1グラム
当たり10-5〜10-3グラム分子である特許請求の範
囲第1〜3項のいずれかに記載の電池。 5 前記金属酸化物が、二酸化マンガン、三酸化
モリブデン、五酸化バナジウム、四三酸化鉛、三
二酸化ビスマス、酸化第二銅、四三酸化コバルト
および三二酸化コバルトよりなる群から選んだも
のである特許請求の範囲第1項記載の電池。
[Claims] 1. A negative electrode containing a light metal as an active material, an organic electrolyte containing at least one of propylene carbonate, ethylene carbonate, γ-butyrolactone, and 1,2-dimexyethane as a solvent, and a metal oxide as an active material. 1. A battery comprising a positive electrode, wherein the electrolyte contains a salt containing an ion that forms a chelate bond with a hydroxyl group on the surface of the metal oxide. 2. The battery according to claim 1, wherein the salt is a salt containing one selected from the group consisting of BF - 4 , AsF - 6 , and AlCl - 4 . 3. The battery according to claim 1, wherein the salt is a salt containing ions of a metal selected from the group consisting of copper, nickel, lead, cobalt, zinc, iron, palladium, cadmium, manganese, magnesium, and aluminum. . 4. The battery according to any one of claims 1 to 3, wherein the content of the salt is 10 -5 to 10 -3 gram molecules per gram of the metal oxide. 5. A patent in which the metal oxide is selected from the group consisting of manganese dioxide, molybdenum trioxide, vanadium pentoxide, trilead tetroxide, bismuth sesmuth oxide, cupric oxide, tricobalt tetroxide, and cobalt sesquioxide. A battery according to claim 1.
JP7339479A 1979-06-11 1979-06-11 Cell Granted JPS55165580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7339479A JPS55165580A (en) 1979-06-11 1979-06-11 Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7339479A JPS55165580A (en) 1979-06-11 1979-06-11 Cell

Publications (2)

Publication Number Publication Date
JPS55165580A JPS55165580A (en) 1980-12-24
JPS6122423B2 true JPS6122423B2 (en) 1986-05-31

Family

ID=13516930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7339479A Granted JPS55165580A (en) 1979-06-11 1979-06-11 Cell

Country Status (1)

Country Link
JP (1) JPS55165580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371113A (en) * 1986-09-12 1988-03-31 三菱農機株式会社 Running wheel rising and falling control apparatus of walking type paddy field working machine
JPS63103219U (en) * 1986-12-24 1988-07-05

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141879A (en) * 1981-02-24 1982-09-02 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithium secondary battery
JPS61148771A (en) * 1984-12-21 1986-07-07 Matsushita Electric Ind Co Ltd Chargeable electrochemical device
JPS61239571A (en) * 1985-04-15 1986-10-24 Nippon Telegr & Teleph Corp <Ntt> Electrolytic solution for lithium secondary cell
JPH0831338B2 (en) * 1986-03-25 1996-03-27 日本電信電話株式会社 Lithium secondary battery
DE4316104A1 (en) * 1993-05-13 1994-11-17 Manfred Wuehr Electrolyte for use in a galvanic cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446345A (en) * 1977-09-20 1979-04-12 Sanyo Electric Co Nonnaqueous electrolyte battery
JPS5465334A (en) * 1977-10-14 1979-05-25 Accumulateurs Fixes Battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446345A (en) * 1977-09-20 1979-04-12 Sanyo Electric Co Nonnaqueous electrolyte battery
JPS5465334A (en) * 1977-10-14 1979-05-25 Accumulateurs Fixes Battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371113A (en) * 1986-09-12 1988-03-31 三菱農機株式会社 Running wheel rising and falling control apparatus of walking type paddy field working machine
JPS63103219U (en) * 1986-12-24 1988-07-05

Also Published As

Publication number Publication date
JPS55165580A (en) 1980-12-24

Similar Documents

Publication Publication Date Title
US5180642A (en) Electrochemical cells with end-of-service indicator
US4158722A (en) High energy electrochemical current source
KR930000426B1 (en) Secondary battery of lithium
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH06333569A (en) Nonaqueous secondary battery
JPS6122423B2 (en)
JP2701327B2 (en) Non-aqueous electrolyte secondary battery
JPH01200572A (en) Electrolyte for lithium storage battery
US4374910A (en) Electrolyte for secondary electrochemical cell
JP7313021B2 (en) Lithium primary batteries and non-aqueous electrolytes for lithium primary batteries
JPS6155741B2 (en)
USH829H (en) Rechargeable lithium-organic electrolyte battery having overcharge protection and method of providing overcharge protection for a lithium-organic electrolyte battery
CN106099186A (en) A kind of high pressure corrosion resistant erosion electrolyte and preparation method and application
JP2000285928A (en) Nonaqueous electrolyte battery
JPS6041774A (en) Nonaqueous electrolyte battery
JPH0650635B2 (en) Non-aqueous electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JPS623546B2 (en)
JP2656305B2 (en) Organic electrolyte secondary battery
JP3379991B2 (en) Organic electrolyte battery and organic electrolyte used therefor
JP2000268830A (en) Nonaqueous electrolyte battery
JPS5973849A (en) Nonaqueous electrolyte battery
JP2000268860A (en) Nonaqueous electrolyte battery
JPH053114B2 (en)
JPH07105233B2 (en) Organic electrolyte battery