JPH0254623B2 - - Google Patents

Info

Publication number
JPH0254623B2
JPH0254623B2 JP16481981A JP16481981A JPH0254623B2 JP H0254623 B2 JPH0254623 B2 JP H0254623B2 JP 16481981 A JP16481981 A JP 16481981A JP 16481981 A JP16481981 A JP 16481981A JP H0254623 B2 JPH0254623 B2 JP H0254623B2
Authority
JP
Japan
Prior art keywords
ethylene glycol
battery
ether
aqueous electrolyte
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16481981A
Other languages
Japanese (ja)
Other versions
JPS5864768A (en
Inventor
Sanehiro Furukawa
Toshihiko Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16481981A priority Critical patent/JPS5864768A/en
Publication of JPS5864768A publication Critical patent/JPS5864768A/en
Publication of JPH0254623B2 publication Critical patent/JPH0254623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はリチウム、ナトリウム、マグネシウ
ム等の軽金属を活物質とする負極と、金属の酸化
物、硫化物、ハロゲン化物等を活物質とする正極
と、非水系電解液とを備えた非水電解液電池に関
し、特に電解液を改良して電池特性の改善を計る
ものである。 従来、この種の電池の電解液としてはプロピレ
ンカーボネート、エチレングリコールジメチルエ
ーテル(1,2―ジメトキシエタン:DME)γ
―ブチロラクトン等の有機溶媒に過塩素酸リチウ
ム、ホウフツ化リチウム等の溶質を溶解したもの
が知られている。 ここでプロピレンカーボネートは誘電率が大で
良好なるものの粘度が高く、そのため電解液と活
物質との接触面積は小さくなり活物質の利用率及
び高率放電特性において満足しうるものではな
い。又、凝固点も高い(約−49℃)ため低温特性
において特に問題がある。 そこで、プロピレンカーボネートに低粘度の有
機溶媒であるエチレングリコールジメチルエーテ
ル(1,2―ジメトキシエタン:DME)を加え
て粘度を低下させると共に凝固点を引下げること
により活物質の利用率、高率放電特性及び低温特
性を改善することが知られている。 しかし、上記目的のためにDMEを加えその混
合割合を大きくしていくと、上記のごとき溶質の
DMEに対する溶解度が小さいので、特に0℃以
下の低温では溶質が析出し電池の内部抵抗を著し
く上昇させるという不都合がある。 この発明の発明者らは上記欠点を解消すべく研
究を重ね、上記のDMEの代りに、エチレングリ
コールジアルキルエーテル(但しアルキル基は同
一もしくは異なつて少なくともひとつが炭素数2
以上のアルキル基)を用いることによつて、常温
における電池特性を低下させずに低温特性を向せ
うることを見出した。 かくしてこの発明は軽金属を活物質とする負
極、これに対応する正極及び溶質と溶媒とからな
る非水系の電解液とを備えた電池であつて、前記
溶媒がプロピレンカーボネートとエチレングリコ
ールジアルキルエーテル(但しアルキル基は同一
もしくは異なつて少なくともひとつが炭素数2以
上のアルキル基)との混合有機溶媒であることを
特徴とする非水電解液電池を提供するものであ
る。 この発明に用いられる有機溶媒のエチレングリ
コールジアルキルエーテル類において二つのアル
キル基が同一の場合の具体例としては、エチレン
グリコールジエチルエーテル、エチレングリコー
ルプロピルエーテル、エチレングリコールジブチ
ルエーテル、エチレングリコールジアミルエーテ
ル、エチレングリコールジヘキシルエーテル等が
挙げられ、またアルキル基の異なる具体例として
はエチレングリコールジメチルエチルエーテル、
エチレングリコールメチルブチルエーテル、エチ
レングリコールエチルブチルエーテル、エチレン
グリコールエチルアミルエーテル、エチレングリ
コールブチルアミルエーテルなどが挙げられる。
アルキル基の炭素数が増大すると融点と粘度が上
昇するので炭素数6までのものを使用するのが適
切である。 上記のエチレングリコールジアルキルエーテル
類のうちで好ましいのは、エチレングリコールジ
エチルエーテル、エチレングリコールジプロピル
エーテル及びエチレングリコールジブチルエーテ
ルである。 またこの発明の電池に用いられる混合溶媒のプ
ロピレンカーボネートとエチレングリコールエー
テルとの容量比は4:1〜1:4の範囲のものが
用いられ、好ましいのは約1:1の容量比のもの
である。 またこの発明の電池に用いられる溶質として
は、この種の電池に通常用いられているものが使
用される。例えば過塩素酸リチウム、ホウフツ化
リチウムなどが挙げられる。またその電解液中の
濃度はこの種の電池に従来用いられている程度で
よく、通常0.5〜2.0モル濃度で用いられる。 次にこの発明を実施例で説明する。 実施例 電解液として下記の表に示したものを用いこの
発明の電池の実施例のA及びBと比較例C(各々
直径24.5mm、高さ2.8mm)を作製した。
This invention provides a non-aqueous electrolyte solution comprising: a negative electrode using a light metal such as lithium, sodium, or magnesium as an active material; a positive electrode using a metal oxide, sulfide, or halide as an active material; and a non-aqueous electrolyte solution. Regarding batteries, the aim is to improve battery characteristics, especially by improving the electrolyte. Conventionally, propylene carbonate and ethylene glycol dimethyl ether (1,2-dimethoxyethane: DME) γ have been used as electrolytes for this type of battery.
-It is known that solutes such as lithium perchlorate and lithium borofluoride are dissolved in organic solvents such as butyrolactone. Here, although propylene carbonate has a high dielectric constant and is good, it has a high viscosity, so the contact area between the electrolyte and the active material is small, and the utilization rate of the active material and high rate discharge characteristics are not satisfactory. Furthermore, since it has a high freezing point (approximately -49°C), it has particular problems in low-temperature properties. Therefore, by adding ethylene glycol dimethyl ether (1,2-dimethoxyethane: DME), a low-viscosity organic solvent, to propylene carbonate to lower the viscosity and lower the freezing point, the utilization rate of the active material, high rate discharge characteristics, and Known to improve low temperature properties. However, when DME is added and the mixing ratio is increased for the above purpose, the solutes mentioned above are
Since the solubility in DME is low, there is a disadvantage that the solute precipitates, particularly at low temperatures below 0° C., and significantly increases the internal resistance of the battery. The inventors of this invention have conducted extensive research to eliminate the above-mentioned drawbacks, and in place of the above-mentioned DME, ethylene glycol dialkyl ether (however, the alkyl groups may be the same or different and at least one has 2 carbon atoms) is used.
It has been found that by using the above alkyl groups, low-temperature characteristics can be improved without deteriorating battery characteristics at room temperature. Thus, the present invention provides a battery comprising a negative electrode having a light metal as an active material, a corresponding positive electrode, and a non-aqueous electrolyte comprising a solute and a solvent, wherein the solvent is propylene carbonate and ethylene glycol dialkyl ether (however, The present invention provides a non-aqueous electrolyte battery characterized in that the alkyl group is the same or different and at least one is an alkyl group having 2 or more carbon atoms in a mixed organic solvent. Specific examples of ethylene glycol dialkyl ethers used in the organic solvent in which two alkyl groups are the same include ethylene glycol diethyl ether, ethylene glycol propyl ether, ethylene glycol dibutyl ether, ethylene glycol diamyl ether, and ethylene glycol dibutyl ether. Examples of different alkyl groups include glycol dihexyl ether, ethylene glycol dimethyl ethyl ether,
Examples include ethylene glycol methyl butyl ether, ethylene glycol ethyl butyl ether, ethylene glycol ethyl amyl ether, and ethylene glycol butyl amyl ether.
As the number of carbon atoms in the alkyl group increases, the melting point and viscosity increase, so it is appropriate to use an alkyl group with up to 6 carbon atoms. Among the above ethylene glycol dialkyl ethers, ethylene glycol diethyl ether, ethylene glycol dipropyl ether and ethylene glycol dibutyl ether are preferred. In addition, the volume ratio of propylene carbonate and ethylene glycol ether in the mixed solvent used in the battery of the present invention is in the range of 4:1 to 1:4, preferably about 1:1. be. Further, as the solute used in the battery of the present invention, those commonly used in this type of battery are used. Examples include lithium perchlorate and lithium borofluoride. Further, the concentration in the electrolyte may be at a level conventionally used in this type of battery, and is usually used at a concentration of 0.5 to 2.0 molar. Next, this invention will be explained with examples. Examples Examples A and B of batteries of the present invention and Comparative Example C (each having a diameter of 24.5 mm and a height of 2.8 mm) were prepared using the electrolytes shown in the table below.

【表】 なおプロピレンカーボネートは55mmHgの減圧
下で蒸留したもの、エチレングリコールエーテル
類はモレキユラーシーブ5Aで脱水し常圧蒸留し
たもの、過塩素酸リチウムは加熱乾燥したものを
それぞれ用い、いずれの電解液も残存水分濃度は
20ppm程度であつた。 一方正極は、400℃で熱処理した二酸化マンガ
ンと導電剤のアセチレンブラツクと結着剤の4フ
ツ化エチレン樹脂エマルジヨンとを85:10:5の
各重量%で混合し、内径20mmφのステンレス製内
缶に入れ7トンの重量圧で加圧成形し次いで300
℃で乾燥して作製した。負極は圧延リチウム板を
所定形状に打抜いたものを用いた。また電解液を
含浸させて正負両極間に介在させるセパレータと
してはポリプロピレン不織布を用いた。 上記A,B及びC電池に5.6KΩの負荷を与え
た場合の、−20℃における放電曲線を第1図に示
し、25℃における放電曲線を第2図に示した。 第1図から−20℃において、有機溶媒としてプ
ロピレンカーボネートとDMEとを用いる比較例
Cの電池は、放電初期で電池電圧の落ち込みが大
であると共に全放電時間にわたつて電池電圧が低
く、この発明の電池の実施例(A及びB)の方が
優れていることは明らかである。また第2図か
ら、25℃においてはA,B及びC各電池いずれも
同等の放電曲線を示している。 また−20℃において放電したA,B及びC電池
を分解してみると、C電池の負極表面には過塩素
酸リチウムの析出が認められたが、A及びB電池
にはこの析出が認められなかつた。 このようにこの発明によれば、常温における特
性を低下させずに特に0℃以下の低温特性の良好
な非水電解液電池を提供することができる。
[Table] Propylene carbonate was distilled under reduced pressure of 55 mmHg, ethylene glycol ethers were dehydrated with molecular sieve 5A and distilled under normal pressure, and lithium perchlorate was heated and dried. The residual water concentration of the electrolyte is
It was around 20ppm. On the other hand, the positive electrode was made by mixing manganese dioxide heat-treated at 400°C, acetylene black as a conductive agent, and tetrafluoroethylene resin emulsion as a binder in a ratio of 85:10:5 by weight, and using a stainless steel inner container with an inner diameter of 20 mmφ. Pressure molded with 7 tons of weight pressure and then 300
It was prepared by drying at ℃. The negative electrode used was a rolled lithium plate punched into a predetermined shape. Further, a polypropylene nonwoven fabric was used as a separator impregnated with an electrolytic solution and interposed between the positive and negative electrodes. FIG. 1 shows the discharge curves at -20 DEG C. and FIG. 2 shows the discharge curves at 25 DEG C. when a load of 5.6 K.OMEGA. is applied to the batteries A, B, and C. From Figure 1, at -20°C, the battery of Comparative Example C, which uses propylene carbonate and DME as organic solvents, has a large drop in battery voltage at the beginning of discharge and is low throughout the entire discharge time. It is clear that the inventive battery embodiments (A and B) are superior. Moreover, from FIG. 2, at 25°C, batteries A, B, and C all show equivalent discharge curves. Furthermore, when batteries A, B, and C were disassembled after being discharged at -20°C, precipitation of lithium perchlorate was observed on the negative electrode surface of battery C; however, this precipitation was not observed in batteries A and B. Nakatsuta. As described above, according to the present invention, it is possible to provide a non-aqueous electrolyte battery with good low-temperature characteristics, especially at temperatures below 0° C., without deteriorating the characteristics at room temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種電解液を用いた非水電解液電池
の−20℃における放電特性比較図、第2図は第1
図の電池と同じ電池の25℃における放電特性比較
図である。
Figure 1 is a comparison diagram of the discharge characteristics at -20℃ of non-aqueous electrolyte batteries using various electrolytes, and Figure 2 is a comparison diagram of the discharge characteristics of non-aqueous electrolyte batteries using various electrolytes.
It is a comparison diagram of the discharge characteristics at 25°C of the same battery as the battery shown in the figure.

Claims (1)

【特許請求の範囲】[Claims] 1 軽金属を活物質とする負極、これに対応する
正極及び溶質と溶媒とからなる非水系の電解液と
を備えた電池であつて、前記溶媒がプロピレンカ
ーボネートとエチレングリコールジアルキルエー
テル(但しアルキル基は同一もしくは異なつて少
なくともひとつが炭素数2以上のアルキル基)と
の混合有機溶媒であることを特徴とする非水電解
液電池。
1 A battery comprising a negative electrode having a light metal as an active material, a corresponding positive electrode, and a non-aqueous electrolyte comprising a solute and a solvent, wherein the solvent is propylene carbonate and ethylene glycol dialkyl ether (however, the alkyl group is 1. A non-aqueous electrolyte battery characterized by being a mixed organic solvent with at least one of the same or different alkyl groups having 2 or more carbon atoms.
JP16481981A 1981-10-14 1981-10-14 Nonaqueous electrolytic solution battery Granted JPS5864768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16481981A JPS5864768A (en) 1981-10-14 1981-10-14 Nonaqueous electrolytic solution battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16481981A JPS5864768A (en) 1981-10-14 1981-10-14 Nonaqueous electrolytic solution battery

Publications (2)

Publication Number Publication Date
JPS5864768A JPS5864768A (en) 1983-04-18
JPH0254623B2 true JPH0254623B2 (en) 1990-11-22

Family

ID=15800514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16481981A Granted JPS5864768A (en) 1981-10-14 1981-10-14 Nonaqueous electrolytic solution battery

Country Status (1)

Country Link
JP (1) JPS5864768A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996665A (en) * 1982-11-25 1984-06-04 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithium battery
JPS59205167A (en) * 1983-05-06 1984-11-20 Mitsubishi Petrochem Co Ltd Solvent for lithium secondary battery
JPH0652670B2 (en) * 1983-05-27 1994-07-06 日本電信電話株式会社 Lithium secondary battery electrolyte

Also Published As

Publication number Publication date
JPS5864768A (en) 1983-04-18

Similar Documents

Publication Publication Date Title
JP2001093573A (en) Lithium battery
KR100402997B1 (en) Polymer Solid Electrolyte
JPH07153486A (en) Lithium secondary battery
JPH0161232B2 (en)
JPH07282849A (en) Nonaqueous electrolytic battery
JPH0254623B2 (en)
CA1044753A (en) Non-aqueous, primary battery having a blended cathode active material comprising silver chromate and a metallic phosphate
JP3016447B2 (en) Non-aqueous electrolyte battery
JP3613908B2 (en) Polymer solid electrolyte and battery using the same
JPS5812991B2 (en) battery
JPH0254624B2 (en)
JPH11260402A (en) Nonaqueous electrolye battery
JPS6155741B2 (en)
JP2594036B2 (en) Non-aqueous electrolyte battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JPH0428171A (en) Nonaqueous electrolytic liquid battery
JP3236121B2 (en) Electrochemical equipment
JP2016091668A (en) Organic secondary battery
JP2022062997A (en) Positive electrode for power storage device, manufacturing method of positive electrode for power storage device, and power storage device
JPH06150968A (en) Nonaqueous secondary battery
JPS6149791B2 (en)
JPS63239779A (en) Solid electrolyte and electrochemical reaction tank housing the same
JPH06150969A (en) Nonaqueous secondary battery
JPH0547418A (en) Manufacture of organic solvent secondary battery
JP2001035534A (en) Gel composition