JPH07153486A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH07153486A
JPH07153486A JP5326273A JP32627393A JPH07153486A JP H07153486 A JPH07153486 A JP H07153486A JP 5326273 A JP5326273 A JP 5326273A JP 32627393 A JP32627393 A JP 32627393A JP H07153486 A JPH07153486 A JP H07153486A
Authority
JP
Japan
Prior art keywords
added
mixed
mixture
dmc
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5326273A
Other languages
Japanese (ja)
Other versions
JP3401884B2 (en
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP32627393A priority Critical patent/JP3401884B2/en
Publication of JPH07153486A publication Critical patent/JPH07153486A/en
Application granted granted Critical
Publication of JP3401884B2 publication Critical patent/JP3401884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the high-rate discharge characteristic at a low temperature by using a lithium secondary battery added with gamma butyrolactone of a specific range % (volume &) to a mixture of ethylene carbonate and dimethyl carbonate at the specific volume ratio. CONSTITUTION:The dielectric constant of an electrolyte added and mixed with gamma butyrolactone to a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) at the volume ratio of 1:1 at -20 deg.C is higher than that of the conventional mixture of EC+DMC+DEC (2:2:1). LiCoO2 having the average grain size of 6mum, acetylene black powder, and polyvinylidene fluoride are mixed, N-methyl pyrrolidone is added into a paste shape, and it is coated with an Al foil to form a positive electrode plate, for example. Artificial graphite and spherical graphite are mixed, polyvinylidene is mixed, N-methyl pyrrolidone is added, and it is applied to a copper foil to form a negative electrode plate. Both electrode plates are stored in a container, and the electrolyte is injected to obtain a battery having a high-rate discharge characteristic at a low temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery.

【0002】[0002]

【従来の技術とその課題】リチウム二次電池は、高電圧
で高エネルギー密度な電池であるが、安全性の点で問題
があった。負極に炭素材料を用いたリチウム二次電池
は、金属リチウムを負極に用いた従来の電池に比較して
安全性が著しく高い。特に、炭素材料としてグラファイ
トを用いたリチウム二次電池は、エネルギー密度が高い
ので優れている。しかし、グラファイトは、電解液の種
類によっては、充放電特性が大きく低下することがわか
った。すなわち、グラファイト負極は、プロピレンカー
ボネート(PC)との相性が悪く、エチレンカーボネー
ト(EC)が良いことがわかった。しかし、ECは、凝
固点が高い(室温で固体)点に問題がある。
2. Description of the Related Art A lithium secondary battery is a battery having a high voltage and a high energy density, but has a problem in safety. A lithium secondary battery using a carbon material for the negative electrode has significantly higher safety than a conventional battery using metallic lithium for the negative electrode. In particular, a lithium secondary battery using graphite as a carbon material is excellent because it has a high energy density. However, it was found that the charge / discharge characteristics of graphite are significantly reduced depending on the type of electrolyte. That is, it was found that the graphite negative electrode has a poor compatibility with propylene carbonate (PC) and ethylene carbonate (EC) is good. However, EC has a problem in that it has a high freezing point (solid at room temperature).

【0003】ECの凝固点を低下させ、かつ電導性や安
定性を低下させない添加物について検討した結果、現
在、エチレンカーボネートとジメチルカーボネート(D
MC)との1:1混合物(体積比)にジエチルカーボネ
ート(DEC)をEC:DMC:DEC=2:2:1
(体積比)になるように混合したものを用いている。
As a result of examination of additives which lower the freezing point of EC and do not lower the electrical conductivity and stability, it is found that ethylene carbonate and dimethyl carbonate (D
MC: 1: 1 mixture (volume ratio) with diethyl carbonate (DEC) EC: DMC: DEC = 2: 2: 1
The mixture is used so as to have a (volume ratio).

【0004】DMCは、電解液の粘度を低下させ、低温
導電率を向上させる効果がある。ECとDMCとを1:
1で混合するのは、このとき凝固点がもっとも低下する
からである。DECを添加すると凝固点がさらに低下し
て低温特性が向上する。
DMC has the effect of lowering the viscosity of the electrolyte and improving the low temperature conductivity. EC and DMC 1:
The reason for mixing at 1 is that the freezing point is the lowest at this time. Addition of DEC further lowers the freezing point and improves low temperature characteristics.

【0005】しかし、リチウム二次電池は、有機電解液
を用いている以上、低温での特性低下が著しく、この特
性を改良することは常に重要な課題である。すなわち、
−20℃などの低温での電導度を向上させることが重要
である。ただし、このとき高温安定性を犠牲にしてはな
らない。
However, since the lithium secondary battery uses an organic electrolyte solution, its characteristics are remarkably deteriorated at low temperatures, and it is always an important subject to improve the characteristics. That is,
It is important to improve the conductivity at low temperatures such as -20 ° C. However, high temperature stability should not be sacrificed at this time.

【0006】[0006]

【課題を解決するための手段】本発明は、エチレンカー
ボネートとジメチルカーボネートとの1:1(体積比)
混合物にガンマブチロラクトンを0.5%以上かつ50
%以下(体積分率)添加したことを特徴とするリチウム
二次電池を用いて前記の課題を解決するものである。
SUMMARY OF THE INVENTION The present invention is a 1: 1 (volume ratio) of ethylene carbonate and dimethyl carbonate.
Gamma-butyrolactone in the mixture is 0.5% or more and 50
% Or less (volume fraction) is added to solve the above-mentioned problems by using a lithium secondary battery.

【0007】[0007]

【作用】発明者は、ECとDMCとの1:1混合物に種
々の溶媒を混合して、低温電導度を向上することを試み
た。この結果、ガンマブチロラクトン(GBL)を混合
すると優れた効果が得られることがわかった。ただし、
GBLの添加量を増やし過ぎると導電率がかえって低下
することもわかった。GBLを添加して電導度が向上す
るのは、凝固点がさらに低下するためと、GBLが高い
溶質溶解度を持つためであろうと考えられる。
The inventor has tried to improve low temperature conductivity by mixing various solvents into a 1: 1 mixture of EC and DMC. As a result, it was found that excellent effects can be obtained by mixing gamma-butyrolactone (GBL). However,
It was also found that if the amount of GBL added is increased too much, the conductivity rather decreases. It is considered that the reason why the conductivity is improved by adding GBL is that the freezing point is further lowered and that GBL has high solute solubility.

【0008】また、従来のDME添加品に比較してGB
L添加品は、60℃を越える高温での安定性がより優れ
ていることもわかった。これは、環状構造を有するGB
Lは、直鎖構造を有すDECよりも安定性の点で優れて
いるためであろうと考えられる。なお、DMCも直鎖構
造を有するので安定性の点で劣っているものと考えられ
るが、電解液の粘度を低下させる効果を有する他の適当
な溶媒が無いので今のところ使わざるを得ない。
In addition, compared with the conventional DME-added product, GB
It was also found that the L-added product was more excellent in stability at high temperatures exceeding 60 ° C. This is GB with a cyclic structure
It is considered that L is more excellent in stability than DEC having a linear structure. DMC is also considered to be inferior in stability because it has a straight-chain structure, but since there is no other suitable solvent that has the effect of lowering the viscosity of the electrolytic solution, it must be used at this time. .

【0009】[0009]

【実施例】以下に実施例を示す。EXAMPLES Examples will be shown below.

【0010】エチレンカーボネート(EC)とジメチル
カーボネート(DMC)との1:1(体積比)混合物に
ガンマブチロラクトン(GBL)を添加混合した電解液
のー20℃での導電率を従来のEC+DMC+DEC
(2:2:1)電解液の導電率と比較したものを図1に
示す。図から明らかなようにGBLを0.5%から50
%まで添加した電解液は、従来の電解液に比較して同等
もしくはそれ以上の高い導電率を示す。
The electrical conductivity at -20 ° C. of an electrolytic solution prepared by adding and mixing gammabutyrolactone (GBL) to a 1: 1 (volume ratio) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) is the conventional EC + DMC + DEC.
A comparison with the conductivity of the (2: 2: 1) electrolyte is shown in FIG. As can be seen from the figure, GBL was increased from 0.5% to 50
The electrolyte solution added up to 10% shows a high conductivity equal to or higher than that of the conventional electrolyte solution.

【0011】次に、本発明のリチウム二次電池を次のよ
うに製作した。
Next, the lithium secondary battery of the present invention was manufactured as follows.

【0012】平均粒径6 ミクロンの LiCoO2 とアセチレ
ンブラック粉末とポリフッ化ビニリデンとを86:5:
9(重量比)に混合しN−メチルピロリドンを加えてペ
ースト状にして厚さが20ミクロンのアルミニウム箔に塗
布した。これを、乾燥、圧延したのち切断して、厚さが
0.150mm 、幅が40mm、長さが28mmの短冊状正極板と、厚
さが0.150mm 、幅が40mm、長さが300mm の帯状正極板と
を試作した。
86: 5: LiCoO 2 having an average particle size of 6 μm, acetylene black powder and polyvinylidene fluoride were mixed.
9 (weight ratio) and N-methylpyrrolidone were added to form a paste, which was applied to an aluminum foil having a thickness of 20 microns. This is dried, rolled, and then cut to reduce the thickness.
A strip-shaped positive electrode plate having a length of 0.150 mm, a width of 40 mm, and a length of 28 mm, and a strip-shaped positive electrode plate having a thickness of 0.150 mm, a width of 40 mm, and a length of 300 mm were prototyped.

【0013】つぎに、平均粒径25ミクロンの人造グラフ
ァイトと20ミクロンの球状グラファイトとを重量比で3:
1 に混合したグラファイト混合物と、ポリフッ化ビニリ
デンとを86:14(重量比)に混合しN−メチルピロ
リドンを加えてペースト状にして厚さが18ミクロンの銅
箔に塗布した。これを、乾燥、圧延したのち切断して厚
さが0.110mm 、幅が41mm、長さが430mm の帯状負極板を
試作した。
Next, artificial graphite having an average particle size of 25 microns and spherical graphite having an average particle size of 20 microns are mixed in a weight ratio of 3:
The graphite mixture mixed with 1 and polyvinylidene fluoride were mixed at 86:14 (weight ratio), N-methylpyrrolidone was added to form a paste, and the paste was applied to a copper foil having a thickness of 18 microns. This was dried, rolled, and then cut to fabricate a strip negative electrode plate having a thickness of 0.110 mm, a width of 41 mm, and a length of 430 mm.

【0014】短冊状正極板を巻芯にして、厚さが25ミク
ロンの微多孔膜ポリエチレンセパレーターを介して帯状
負極板で巻回し、さらに続いて帯状正極板を巻回して、
巻回面が長円状の電池発電要素を試作した。
With the strip-shaped positive electrode plate as a core, the strip-shaped negative electrode plate is wound through a microporous polyethylene separator having a thickness of 25 μm, and then the strip-shaped positive electrode plate is wound.
A battery power generation element with an elliptical winding surface was prototyped.

【0015】上記の発電要素を70ミクロンのPPフィル
ムを内面に接着し外面に8 ミクロンの塗装膜を施した厚
さ0.22mmの鋼板製の角形容器および容器蓋に密封し、容
器蓋に設けたステンレス製リベット端子(2個)に正極
板と負極板とをそれぞれ電気的に接続した。リベット端
子は、メチルペンテンコポリマー(TPX)製のガスケ
ットによって絶縁と気密が保たれている。また、容器蓋
と容器は、2重巻締め封口によって気密封口されてい
る。
The above power-generating element was sealed in a square container and a container lid made of a 0.22-mm-thick steel plate having a 70-micron PP film adhered to the inner surface and an 8-micron coating film on the outer surface, and provided on the container lid. The positive electrode plate and the negative electrode plate were electrically connected to the stainless steel rivet terminals (two pieces). The rivet terminal is insulated and airtight by a gasket made of methylpentene copolymer (TPX). In addition, the container lid and the container are hermetically sealed by a double-winding sealing port.

【0016】上記の電池にEC+DMC+GBL(4
0:40:10)電解液を注液した本発明のリチウム二
次電池(A)とEC+DMC+DEC(40:40:2
0)を注液した比較のための電池(ア)とを試作した。
これらの電池を常温で200mA で4.1Vまで充電し、500mA
で2.75V まで放電した。続いて-20 ℃で同じように充放
電した。このときの放電容量の比較を表1に示す。
EC + DMC + GBL (4
0:40:10) The lithium secondary battery (A) of the present invention into which an electrolytic solution has been injected and EC + DMC + DEC (40: 40: 2).
0) was injected and a battery (a) for comparison was manufactured as a trial.
Charge these batteries up to 4.1V at 200mA at room temperature to reach 500mA
Discharged to 2.75V. Subsequently, the battery was charged and discharged in the same manner at -20 ° C. Table 1 shows a comparison of the discharge capacities at this time.

【0017】[0017]

【表1】 表1から明らかなように本発明の電池は、従来の電池に
比較して低温での放電容量の低下が少ない。
[Table 1] As is clear from Table 1, the battery of the present invention shows less decrease in discharge capacity at low temperatures than the conventional battery.

【0018】[0018]

【発明の効果】本発明により低温時の高率放電特性が優
れたリチウム二次電池を得ることができる。
According to the present invention, a lithium secondary battery having excellent high rate discharge characteristics at low temperature can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】−20℃の導電率を示す図。FIG. 1 is a graph showing electric conductivity at −20 ° C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解液としてエチレンカーボネートとジメ
チルカーボネートとの1:1(体積比)混合物にガンマ
ブチロラクトンを0.5%以上かつ50%以下(体積分
率)添加したものを用いたことを特徴とするリチウム二
次電池。
1. An electrolytic solution comprising a 1: 1 (volume ratio) mixture of ethylene carbonate and dimethyl carbonate to which gamma-butyrolactone is added in an amount of 0.5% or more and 50% or less (volume fraction). And a lithium secondary battery.
JP32627393A 1993-11-30 1993-11-30 Lithium secondary battery Expired - Fee Related JP3401884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32627393A JP3401884B2 (en) 1993-11-30 1993-11-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32627393A JP3401884B2 (en) 1993-11-30 1993-11-30 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07153486A true JPH07153486A (en) 1995-06-16
JP3401884B2 JP3401884B2 (en) 2003-04-28

Family

ID=18185928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32627393A Expired - Fee Related JP3401884B2 (en) 1993-11-30 1993-11-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3401884B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766332A1 (en) * 1995-09-27 1997-04-02 Sony Corporation Nonaqueous electrolytic secondary cell
WO2002071528A3 (en) * 2001-03-08 2003-10-23 Chemetall Gmbh Electrolytes for lithium ion batteries
KR20040036817A (en) * 2002-10-25 2004-05-03 한국전기연구원 Lithium secondary battery
JP2006108100A (en) * 2004-10-01 2006-04-20 Samsung Sdi Co Ltd Electrolyte for lithium ion secondary battery and lithium ion secondary battery containing this
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
US7078132B2 (en) 2003-10-29 2006-07-18 Samsung Sdi Co., Ltd. Lithium battery having effective performance
WO2008153347A1 (en) 2007-06-15 2008-12-18 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device having the same
WO2009022848A1 (en) 2007-08-16 2009-02-19 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
WO2009038358A1 (en) 2007-09-19 2009-03-26 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
CN101916878A (en) * 2010-08-27 2010-12-15 上海奥威科技开发有限公司 Low-temperature organic electrolyte taking gamma-butyrolactone as base solvent and application thereof
US8546024B2 (en) 2007-09-12 2013-10-01 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US8673506B2 (en) 2007-06-12 2014-03-18 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery having the same
US8741473B2 (en) 2008-01-02 2014-06-03 Lg Chem, Ltd. Pouch-type lithium secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101685882A (en) * 2008-09-26 2010-03-31 深圳市比克电池有限公司 Additive of lithium ion battery electrolyte and electrolyte containing same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766332A1 (en) * 1995-09-27 1997-04-02 Sony Corporation Nonaqueous electrolytic secondary cell
US5773165A (en) * 1995-09-27 1998-06-30 Sony Corporation Nonaqueous electrolytic secondary cell
WO2002071528A3 (en) * 2001-03-08 2003-10-23 Chemetall Gmbh Electrolytes for lithium ion batteries
JP2004523073A (en) * 2001-03-08 2004-07-29 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrolyte for lithium ion batteries
US7226704B2 (en) 2001-03-08 2007-06-05 Chemetall Gmbh Electrolytes for lithium ion batteries
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
KR20040036817A (en) * 2002-10-25 2004-05-03 한국전기연구원 Lithium secondary battery
US7078132B2 (en) 2003-10-29 2006-07-18 Samsung Sdi Co., Ltd. Lithium battery having effective performance
EP1528617A3 (en) * 2003-10-29 2006-10-04 Samsung SDI Co., Ltd. Lithium battery having effective performance
JP2006108100A (en) * 2004-10-01 2006-04-20 Samsung Sdi Co Ltd Electrolyte for lithium ion secondary battery and lithium ion secondary battery containing this
US8673506B2 (en) 2007-06-12 2014-03-18 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery having the same
WO2008153347A1 (en) 2007-06-15 2008-12-18 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device having the same
WO2009022848A1 (en) 2007-08-16 2009-02-19 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US9825327B2 (en) 2007-08-16 2017-11-21 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US8546024B2 (en) 2007-09-12 2013-10-01 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US9105943B2 (en) 2007-09-12 2015-08-11 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US9246191B2 (en) 2007-09-12 2016-01-26 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
WO2009038358A1 (en) 2007-09-19 2009-03-26 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
US8741473B2 (en) 2008-01-02 2014-06-03 Lg Chem, Ltd. Pouch-type lithium secondary battery
CN101916878A (en) * 2010-08-27 2010-12-15 上海奥威科技开发有限公司 Low-temperature organic electrolyte taking gamma-butyrolactone as base solvent and application thereof

Also Published As

Publication number Publication date
JP3401884B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
JP4794893B2 (en) Non-aqueous electrolyte secondary battery
JP3957415B2 (en) Non-aqueous secondary battery
JP2002203562A (en) Non-aqueous electrolyte secondary battery
US20030096163A1 (en) Non aqueous electrolyte secondary battery
JP3401884B2 (en) Lithium secondary battery
US5773165A (en) Nonaqueous electrolytic secondary cell
JPH08236155A (en) Lithium secondary battery
JP3938442B2 (en) Non-aqueous secondary battery
US20040191629A1 (en) Positive electrode, non-aqueous electrolyte secondary battery, and method of manufacturing the same
JPH10289731A (en) Nonaqueous electrolytic battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JPH11329447A (en) Non-aqueous secondary battery
JPH1012272A (en) Nonaqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
EP3742532A1 (en) Non-aqueous electrolyte secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3712250B2 (en) Non-aqueous secondary battery
JP4159005B2 (en) Non-aqueous secondary battery
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture
JP2003331847A (en) Nonaqueous secondary battery and method for manufacturing paint of positive electrode
JP2018133335A (en) Nonaqueous electrolyte battery
JPH0963645A (en) Lithium secondary battery
JPH0415584B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees