JPH07107862B2 - Polyaniline battery - Google Patents

Polyaniline battery

Info

Publication number
JPH07107862B2
JPH07107862B2 JP1056794A JP5679489A JPH07107862B2 JP H07107862 B2 JPH07107862 B2 JP H07107862B2 JP 1056794 A JP1056794 A JP 1056794A JP 5679489 A JP5679489 A JP 5679489A JP H07107862 B2 JPH07107862 B2 JP H07107862B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
polyaniline
stainless steel
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1056794A
Other languages
Japanese (ja)
Other versions
JPH02236972A (en
Inventor
龍 長井
浩 服部
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP1056794A priority Critical patent/JPH07107862B2/en
Publication of JPH02236972A publication Critical patent/JPH02236972A/en
Publication of JPH07107862B2 publication Critical patent/JPH07107862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ポリアニリンを正極、リチウムまたはリチ
ウム合金を負極とし、電解液として非水有機電解液を使
用したポリアニリン電池に関する。
Description: TECHNICAL FIELD The present invention relates to a polyaniline battery using polyaniline as a positive electrode, lithium or a lithium alloy as a negative electrode, and a nonaqueous organic electrolytic solution as an electrolytic solution.

〔従来の技術〕[Conventional technology]

一般に、ポリアニリン電池は、ポリアニリンがイオンの
ドーピングによつて導電性を発現するという性質を有す
ることから、このポリアニリンを正極活物質として用い
てその導体領域におけるドーピング量の変化に伴う電極
電位の変化を利用するようにしたものであり、二次電池
として機能させることができる。
In general, a polyaniline battery has a property that polyaniline exhibits conductivity due to ion doping. Therefore, by using this polyaniline as a positive electrode active material, a change in the electrode potential due to a change in the doping amount in the conductor region is prevented. It is designed to be used and can function as a secondary battery.

ところで、従来のポリアニリン電池にあつては、正極
缶、負極缶の如き集電体の材料としてSUS304、SUS316な
どのオーステナイト系ステンレス鋼やSUS430系のフエラ
イト系ステンレス鋼が使用され、また非水有機電解液に
は非水有機溶媒に電解質としてLiClO4を溶解させたもの
が汎用されている(文献不詳)。
By the way, in the conventional polyaniline battery, austenitic stainless steel such as SUS304 and SUS316 and SUS430 based ferrite stainless steel are used as the material of the current collector such as the positive electrode can and the negative electrode can. A liquid in which LiClO 4 is dissolved as an electrolyte in a non-aqueous organic solvent is widely used (unknown literature).

しかるに、上記のLiClO4を含む非水有機電解液を用いた
ポリアニリン電池では、LiClO4の高酸化性により、過放
電を行つたり事故や誤使用などがあつた場合に発火や爆
発を生じる危険性があるとともに、電解液の有機溶媒が
酸化されて電池特性の低下を招くという難点があつた。
このため、最近では、電解質として、LiClO4に代えてLi
BF4、LiPF6などの含フツ素リチウム塩を使用することが
検討されている。
However, the polyaniline battery using a non-aqueous organic electrolyte solution containing LiClO 4 above, the high oxidizing LiClO 4, risk causing fire or explosion if there has been a such overdischarge Gyotsu or accident or misuse However, there is a problem in that the organic solvent of the electrolytic solution is oxidized and the battery characteristics are deteriorated.
For this reason, recently, LiClO 4 was replaced with Li as an electrolyte.
The use of fluorine-containing lithium salts such as BF 4 and LiPF 6 is being considered.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上記の含フツ素リチウム塩を用いた電解
液では、前記の危険性や有機溶媒の酸化の恐れがない半
面、酸化作用を有さないことに起因して、これを用いた
電池を高電圧放電させたり充放電を繰り返した場合に、
前記のステンレス鋼からなる集電体の正極に接する表面
に通常存在する酸化物保護膜が損傷して孔食腐蝕を生じ
易く、この腐蝕の進行により、溶出したステンレス鋼成
分が負極表面に析出して内部短絡による自己放電を促進
する結果、電池の耐久性が低下して短寿命化するという
問題があつた。
However, in the electrolytic solution using the above-mentioned lithium fluoride-containing salt, there is no risk of the above-mentioned danger or the oxidation of the organic solvent, but on the other hand, it does not have an oxidizing action. When voltage discharge or charge / discharge is repeated,
The oxide protective film, which is usually present on the surface of the current collector made of stainless steel in contact with the positive electrode, is easily damaged to cause pitting corrosion, and the progress of this corrosion causes the eluted stainless steel component to be deposited on the negative electrode surface. As a result of promoting self-discharge due to an internal short circuit, the durability of the battery is reduced and the service life is shortened.

この発明は、上述の事情に鑑みて、電解液の電解質とし
て含フツ素リチウム塩を用いた場合でも正極集電体表面
の腐蝕に起因した内部短絡の問題がなく、もつて安全性
および耐久性にすぐれたポリアニリン電池を提供するこ
とを目的としている。
In view of the above-mentioned circumstances, the present invention does not have a problem of internal short circuit due to corrosion of the positive electrode current collector surface even when using a fluorine-containing lithium salt as an electrolyte of an electrolytic solution, and thus has safety and durability. The purpose is to provide a superior polyaniline battery.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明者らは、上記目的を達成するために鋭意検討を
重ねた結果、正極集電体の少なくとも正極との接触部分
を従来汎用のステンレス鋼に代えて特定組成のフエライ
ト系ステンレス鋼にて構成した場合に、このステンレス
鋼が非常にすぐれた耐蝕性を発揮し、電解液の電解質と
して含フツ素リチウム塩を用いた電池構成において高電
圧放電を行つたり充放電を繰り返しても集電体の腐蝕に
起因する内部短絡が大きく抑制され、電池の耐久性が著
しく改善されて長寿命となることを見い出し、この発明
をなすに至つた。
As a result of intensive studies to achieve the above-mentioned object, the present inventors have constructed a ferrite composition stainless steel of a specific composition in place of at least the contact portion of the positive electrode current collector with the conventional general-purpose stainless steel. In this case, this stainless steel exhibits excellent corrosion resistance, and even if high voltage discharge is performed or charge / discharge is repeated in a battery configuration using a lithium salt containing fluorine as the electrolyte of the electrolytic solution, a current collector. It was found that the internal short circuit due to the corrosion of the battery was largely suppressed, the durability of the battery was remarkably improved and the battery had a long life, and the present invention was accomplished.

すなわち、この発明は、ポリアニリンを正極、リチウム
またはリチウム合金を負極とし、電解液として非水有機
電解液を使用したポリアニリン電池において、正極集電
体の少なくとも上記正極との接触部分がCrを18〜20重量
%、Moを1.75〜2.25重量%、TiとNbを含量で0.3〜1.0重
量%含有し、かつCとNとをそれぞれ0.02重量%以下と
したフエライト系ステンレス鋼にて構成されていること
を特徴とするポリアニリン電池に係るものである。
That is, the present invention is a polyaniline battery using polyaniline as a positive electrode, lithium or a lithium alloy as a negative electrode, and a non-aqueous organic electrolytic solution as an electrolytic solution, in which at least the contact portion of the positive electrode current collector with the positive electrode contains Cr of 18 to 20% by weight, 1.75 to 2.25% by weight of Mo, 0.3 to 1.0% by weight of Ti and Nb, and 0.02% by weight or less of C and N, respectively, and composed of ferritic stainless steel. The present invention relates to a polyaniline battery characterized by:

また、この発明においては、上記の非水有機電解液が含
フツ素リチウム塩を溶解したものからなる構成を好適態
様としている。
Further, in the present invention, a preferred embodiment is a configuration in which the above-mentioned non-aqueous organic electrolytic solution is obtained by dissolving a fluorine-containing lithium salt.

〔発明の構成・作用〕[Constitution / Operation of Invention]

この発明のポリアニリン電池では、正極集電体の少なく
とも正極との接触部分を構成する材料として前記の如く
Crを18〜20重量%、Moを1.75〜2.25重量%、TiとNbを合
量で0.3〜10重量%それぞれ含有し、かつCとNとをそ
れぞれ0.02重量%とした特定組成のフエライト系ステン
レス鋼(以下、高耐蝕性フエライト系ステンレス鋼とい
う)を用いていることから、含フツ素リチウム塩を含む
電解液のように酸化作用を有さない非水有機電解液が使
用されている場合でも、正極集電体の腐蝕に起因した内
部短絡を生じにくく、すぐれた耐久性を発揮する。
In the polyaniline battery of the present invention, as a material forming at least a contact portion of the positive electrode current collector with the positive electrode, as described above.
Ferrite stainless steel with a specific composition containing 18 to 20% by weight of Cr, 1.75 to 2.25% by weight of Mo, 0.3 to 10% by weight of Ti and Nb in total, and 0.02% by weight of C and N, respectively. Since steel (hereinafter referred to as high corrosion resistance ferritic stainless steel) is used, even when a non-aqueous organic electrolytic solution that does not have an oxidizing action, such as an electrolytic solution containing a lithium salt containing fluorine, is used. The internal short circuit due to corrosion of the positive electrode current collector is unlikely to occur, and excellent durability is exhibited.

上記の高耐蝕性フエライト系ステンレス鋼が従来よりこ
の種電池の集電体に使用されている前記の汎用ステンレ
ス鋼に比較して電池内部で非常に高い耐蝕性を示す理由
は明確ではないが、上記特定量含有されるTiおよびNbが
Fe−Cr−Mo組成において耐蝕性付与成分として大きく貢
献すること、ならびにCrと反応して結晶粒界でCrの欠乏
による粒界腐蝕を生じる要因となるCおよびN成分が極
めて少ないことなどにより、高電圧放電や充放電の繰り
返しによつて表面の酸化保護膜に損傷を生じても腐蝕溶
出が進行しにくいものと想定される。
It is not clear why the high corrosion resistant ferrite stainless steel has a very high corrosion resistance inside the battery as compared with the general-purpose stainless steel that has been conventionally used for the current collector of this type of battery, Ti and Nb contained in the above specified amount
Due to the fact that it greatly contributes as a corrosion resistance-imparting component in the Fe-Cr-Mo composition and that the C and N components that react with Cr and cause grain boundary corrosion due to the lack of Cr at the crystal grain boundaries are extremely small, It is assumed that corrosion elution is unlikely to proceed even if the oxidation protection film on the surface is damaged by repeated high-voltage discharge and charge / discharge.

この発明においては、正極集電体の少なくとも正極との
接触部分が上記の高耐蝕性フエライト系ステンレス鋼に
て構成されておればよく、たとえばボタン型やコイン型
の電池構成では、正極集電体をなす正極端子板(正極
缶)自体を該ステンレス鋼とする以外に、従来と同様の
汎用ステンレス鋼製の正極端子板の内面側に高耐蝕性フ
エライト系ステンレス鋼からなる箔ないし薄板を配置あ
るいは圧着した構成も採用できる。
In the present invention, at least the contact portion of the positive electrode current collector with the positive electrode may be made of the above-described highly corrosion-resistant ferrite stainless steel. For example, in a button type or coin type battery configuration, the positive electrode current collector is used. In addition to using the stainless steel as the positive electrode terminal plate (positive electrode can) itself, a foil or thin plate made of highly corrosion-resistant ferrite stainless steel is arranged on the inner surface side of a conventional general-purpose stainless steel positive electrode terminal plate, or A crimped configuration can also be adopted.

なお、ポリアニリンからなる正極に集電網を介在した
り、該正極として電解酸化重合法によつてネツト状電極
上にポリアニリン層を被着形成させたシートを用いる場
合は、上記集電網およびネツト状電極の材料として上記
の高耐蝕性フエライト系ステンレス鋼を用いることが望
ましい。
In the case where a positive electrode made of polyaniline is provided with a collector network or a sheet having a polyaniline layer deposited on the net-like electrode by an electrolytic oxidation polymerization method is used as the positive electrode, the above collector and net-like electrode are used. It is desirable to use the above-mentioned high corrosion resistance ferritic stainless steel as the material.

一方、負極集電体には、上記の高耐蝕性フエライト系ス
テンレス鋼も使用できるが、コスト面より従来と同様に
SUS304、SUS316の如きオーステナイト系やSUS304系の如
きフエライト系の汎用ステンレス鋼を使用するのがよ
い。
On the other hand, for the negative electrode current collector, the above-mentioned high corrosion-resistant ferrite stainless steel can be used, but in terms of cost, it is the same as the conventional one.
It is preferable to use general-purpose stainless steel such as austenitic stainless steel such as SUS304 and SUS316, or ferrite stainless steel such as SUS304.

この発明の電池の正極としては、化学酸化重合法や電解
酸化重合法などで合成されたポリアニリン粉末またはこ
れに炭素粉末の如き導電助剤を加えた粉末の圧縮成形
体、ならびに前記のネツト状電極上にポリアニリン層を
被着形成したシートが使用される。また負極としてはリ
チウムもしくはリチウム合金が使用されるが、ここでい
うリチウム合金は、冶金学上の合金のほかにリチウム箔
とアルミニウムなどの他の金属箔とを圧着一体化したも
のを包含する。
As the positive electrode of the battery of the present invention, a polyaniline powder synthesized by a chemical oxidative polymerization method, an electrolytic oxidative polymerization method, or the like, or a compression molded body of a powder obtained by adding a conductive auxiliary agent such as a carbon powder to the polyaniline powder, and the above net-shaped electrode A sheet having a polyaniline layer deposited thereon is used. Lithium or a lithium alloy is used as the negative electrode, and the lithium alloy here includes not only a metallurgical alloy but also a lithium foil and another metal foil such as aluminum which is pressure-bonded and integrated.

非水有機電解液としては、電解質であるリチウム塩をプ
ロピオンカーボーネート、γ−ブチロラクトン、ジメト
キシエタン、ジオキソランなどの非水系有機溶媒に溶解
してなるリチウムイオン伝導性電解液が好適に使用され
る。
As the non-aqueous organic electrolytic solution, a lithium ion conductive electrolytic solution obtained by dissolving a lithium salt as an electrolyte in a non-aqueous organic solvent such as propion carbonate, γ-butyrolactone, dimethoxyethane, dioxolane is preferably used. .

上記電解質のリチウム塩としては、とくに限定されない
が、LiBF4、LiPF6、LiCF3SO3などの含フツ素リチウム塩
が好適である。すなわち、これら含フツ素リチウム塩
は、LiClO4のような危険性や有機溶媒を酸化する恐れが
なく、かつこれを含む電解液が比較的高い電気伝導度を
示すという利点がある一方、その酸化作用を有さないこ
とによる正極集電体の腐蝕の難点が前記の高耐蝕性フエ
ライト系ステンレス鋼の使用によつて解消されるため、
とくにこの発明の適用効果が大きい。
The lithium salt of the electrolyte is not particularly limited, but a fluorine-containing lithium salt such as LiBF 4 , LiPF 6 , LiCF 3 SO 3 is suitable. That is, these fluorine-containing lithium salts have the advantage that they do not have the danger of oxidizing LiClO 4 or an organic solvent, and that the electrolytic solution containing them has a relatively high electrical conductivity. Since the difficulty of corrosion of the positive electrode current collector due to having no action is eliminated by the use of the above-mentioned highly corrosion-resistant ferrite stainless steel,
The application effect of the present invention is particularly great.

第1図および第2図は、それぞれボタン型電池に適用し
たこの発明のポリアニリン電池の構造例を示す。
FIG. 1 and FIG. 2 each show a structural example of the polyaniline battery of the present invention applied to a button type battery.

第1図の電池Aでは、前記の高耐蝕性フエライト系ステ
ンレス鋼からなる皿型の正極端子板1と汎用ステンレス
鋼からなる皿型の負極端子板2とを向かい合わせ、両者
の周縁部を合成ゴムや合成樹脂などの弾性絶縁材料から
なる環状ガスケツト3を介在して嵌合圧着することによ
り、偏平な密閉容器が構成されている。この密閉容器の
内部には、正極端子板1に接合したポリアニリンからな
る正極5と、負極端子板2にステンレスネツトなどの集
電網4を介して接合したリチウムまたはリチウム合金か
らなる負極6と、両極5,6間に介在するポリプロピレン
不織布などの多孔性絶縁材料からなるセパレータ7と
が、非水有機電解液に浸漬された状態で装填されてい
る。
In the battery A shown in FIG. 1, the dish-shaped positive electrode terminal plate 1 made of the above-described highly corrosion-resistant ferrite stainless steel and the dish-shaped negative electrode terminal plate 2 made of general-purpose stainless steel are opposed to each other, and the peripheral portions of both are synthesized. A flat airtight container is formed by fitting and press-fitting the annular gasket 3 made of an elastic insulating material such as rubber or synthetic resin. Inside the sealed container, a positive electrode 5 made of polyaniline bonded to the positive electrode terminal plate 1, a negative electrode 6 made of lithium or a lithium alloy bonded to the negative electrode terminal plate 2 via a current collecting network 4 such as a stainless net, and both electrodes A separator 7 made of a porous insulating material such as polypropylene non-woven fabric interposed between 5 and 6 is loaded while being immersed in the non-aqueous organic electrolytic solution.

一方、第2図の電池Bでは、正極端子板11として汎用ス
テンレス鋼製のものが使用され、かつその内面側に前記
の高耐蝕性フエライト系ステンレス鋼の箔12が配置され
ていることを除き、第1図の電池Aと同様であり、第1
図と共通する部分には同一符号を附している。
On the other hand, in the battery B of FIG. 2, except that a positive electrode terminal plate 11 made of general-purpose stainless steel is used and the foil 12 of the high corrosion-resistant ferrite stainless steel is arranged on the inner surface side thereof. , The same as battery A in FIG.
The same parts as those in the figure are designated by the same reference numerals.

なお、この発明は図示したボタン型電池に限らず、種々
の形態および構造のポリアニリン/リチウム系二次電池
に適用できる。
The present invention is not limited to the button type battery shown in the figure, but can be applied to polyaniline / lithium secondary batteries of various forms and structures.

〔発明の効果〕〔The invention's effect〕

この発明によれば、正極集電体の少なくとも正極との接
触部分に特定組成の高耐蝕性フエライト系ステンレス鋼
を用いていることから、高電圧放電や充放電の繰り返し
によつても正極集電体の腐蝕溶出に起因した内部短絡に
よる自己放電を生じにくく、耐久性にすぐれて長寿命な
ポリアニリン電池を提供できる。
According to the present invention, since at least a portion of the positive electrode current collector that is in contact with the positive electrode is made of highly corrosion-resistant ferrite stainless steel having a specific composition, the positive electrode current collector can be used even when repeated high voltage discharge or charge / discharge is performed. It is possible to provide a polyaniline battery having excellent durability and long life, which is unlikely to cause self-discharge due to an internal short circuit due to corrosion elution of the body.

また、上記ポリアニリン電池における非水有機電解液の
電解質として含フツ素リチウム塩を使用すれば、発火や
爆発の危険性が解消され、かつすぐれた耐久性および電
池特性が得られるという利点がある。
Further, when a fluorine-containing lithium salt is used as the electrolyte of the non-aqueous organic electrolytic solution in the polyaniline battery, there is an advantage that the danger of ignition and explosion is eliminated, and excellent durability and battery characteristics are obtained.

〔実施例〕〔Example〕

以下、この発明の実施例を具体的に説明する。 Hereinafter, examples of the present invention will be specifically described.

実施例1 2モル/濃度のHBF4を溶解した水溶液にアニリンを1
モル/の割合で溶解し、この溶液中に酸化剤としてK2
Cr2O7を0.2モル/となるように添加し、20℃において
1時間重合反応を行ない、重合後の反応液をろ過して得
られた重合生成物を充分に水洗したのち、100℃で真空
乾燥を行つて平均粒子径0.25μmのポリアニリン粉末を
得た。
Example 1 Aniline was added to an aqueous solution in which 2 mol / concentration of HBF 4 was dissolved.
It is dissolved at a ratio of mol / mol, and K 2 is added as an oxidant in this solution.
Cr 2 O 7 was added in an amount of 0.2 mol / mol, the polymerization reaction was carried out at 20 ° C. for 1 hour, the reaction solution after polymerization was filtered, and the obtained polymerization product was thoroughly washed with water and then at 100 ° C. Vacuum drying was performed to obtain a polyaniline powder having an average particle diameter of 0.25 μm.

このポリアニリン粉末50mgを全型に充填して常法によつ
て圧縮成形して、直径15mm、厚さ0.35mmのペレツト状の
成形体を作製した。
This polyaniline powder (50 mg) was filled in all the molds and compression-molded by a conventional method to prepare pellet-shaped compacts having a diameter of 15 mm and a thickness of 0.35 mm.

つぎに、正極端子板としてCrが19重量%、Moが2.05重量
%、Tiが0.3重量%、Nbが0.5重量%、Cが0.008重量
%、Nが0.0092重量%、残余がFeの組成を有するフエラ
イト系ステンレス鋼からなるもの、負極端子板としてSU
S430製のもの、正極として上記成形体、負極として厚さ
0.15mmのリチウム箔と厚さ0.2mmのアルミニウム箔とを
圧着してなる直径15mmのLi−Al合金、セパレータとして
ポリプロピレン不織布からなる厚さ0.13mmのシート、電
解液としてプロピレンカーボネートと1・2−ジメトキ
シエタンとの容量比1:1の混合溶媒に乾燥処理したLiBF4
を1モル/濃度で溶解してなる非水有機電解液、をそ
れぞれ使用して、第1図に示す構造のボタン型のポリア
ニリン電池Aを作製した。
Next, the positive electrode terminal plate has a composition of 19 wt% Cr, 2.05 wt% Mo, 0.3 wt% Ti, 0.5 wt% Nb, 0.008 wt% C, 0.0092 wt% N, and the balance Fe. Made of ferrite stainless steel, SU as negative electrode terminal plate
S430, molded product as positive electrode, thickness as negative electrode
Li-Al alloy with a diameter of 15 mm formed by crimping 0.15 mm lithium foil and 0.2 mm thick aluminum foil, a 0.13 mm thick sheet made of polypropylene nonwoven fabric as a separator, and propylene carbonate and 1.2 as an electrolyte. LiBF 4 dried in a mixed solvent of 1: 1 by volume with dimethoxyethane
A button type polyaniline battery A having a structure shown in FIG. 1 was prepared by using each of the non-aqueous organic electrolytic solutions prepared by dissolving 1 at a concentration of 1 mol / concentration.

実施例2 正極端子板としてSUS430製のものを使用するとともに、
この正極端子板とポリアニリンからなる正極との間に、
実施例1の正極端子板と同一組成のフエライト系ステン
レス鋼からなる厚さ20μmの箔を皿型にして配置した以
外は、実施例1と同様にして第2図に示す構造のボタン
型のポリアニリン電池Bを作製した。
Example 2 While using a positive electrode terminal plate made of SUS430,
Between the positive electrode terminal plate and the positive electrode made of polyaniline,
A button-shaped polyaniline having the structure shown in FIG. 2 was prepared in the same manner as in Example 1 except that a 20 μm thick foil made of ferrite stainless steel having the same composition as the positive electrode terminal plate of Example 1 was arranged in a dish shape. Battery B was produced.

比較例 フエライト系ステンレス鋼からなる箔を使用しなかつた
以外は、実施例2と同様にしてボタン型のポリアニリン
電池Cを作製した。
Comparative Example A button type polyaniline battery C was produced in the same manner as in Example 2 except that a foil made of ferrite stainless steel was not used.

上記のポリアニリン電池A,B,Cについて、それぞれ60℃
において、3.0V、3.3V、3.5V、3.7Vの各定電圧で20日間
のフローテイングを行つたのち、開路電圧を測定すると
ともに、充放電性能の保存性を調べたところ、次表の結
果が得られた。なお、この保存性は、上記フローテイン
グ後に充電終止電圧3.3V、放電終止電圧2.0V、充放電電
流0.5mAとして充放電試験を行つて電池容量を測定し、
この測定値をフローテイング前の初期容量に対する割合
(%)として示した。
For each of the above polyaniline batteries A, B, C, 60 ℃
In, at 3.0V, 3.3V, 3.5V, 3.7V constant voltage, after 20 days of floating, open circuit voltage was measured and the preservability of charge and discharge performance was examined. was gotten. In addition, this storability is measured by measuring the battery capacity by performing a charge / discharge test with a charge end voltage of 3.3 V, a discharge end voltage of 2.0 V, and a charge / discharge current of 0.5 mA after the above floating.
This measured value was shown as a ratio (%) to the initial capacity before floating.

上表の結果から、従来構成の電池Cでは、フローテイン
グ電圧が大きくなるほど、フローテイング後の開路電圧
および電池容量が著しく低下し、耐久性に問題があるこ
とが判る。これに対し、この発明の電池A,Bでは、フロ
ーテイング電圧が大きくなつても開路電圧および電池容
量の低下は非常に少なく、耐久性にすぐれて長寿命であ
ることが明らかである。
From the results in the above table, it is understood that in the battery C having the conventional structure, the open circuit voltage and the battery capacity after the floating are significantly reduced as the floating voltage is increased, and the durability is problematic. On the other hand, in the batteries A and B of the present invention, it is clear that even if the floating voltage is increased, the open circuit voltage and the battery capacity are reduced very little and the durability is excellent and the life is long.

なお、これら電池A,B,Cについて、上記の3.5Vおよび3.7
Vのフローテイング後に電池を分解したところ、電池A,B
では全く異常はなかつたが、電池Cではセパレータ上に
黒い析出物が認められ、この析出物は蛍光X線分析によ
つてステンレス鋼成分の析出物であることが確認され
た。このことから、従来構成の電池Cでは、高電圧放電
によつて正極端子板の内面に孔食腐蝕を生じ、溶出した
ステンレス鋼成分が負極側に析出してセパレータを貫通
する結果、内部短絡による自己放電が促進されて耐久性
の低下を招いていることが判る。
For these batteries A, B, C, the above 3.5V and 3.7
After disassembling the battery after floating V, batteries A and B
However, black deposits were observed on the separator in Battery C, and it was confirmed by fluorescent X-ray analysis that the deposits were stainless steel component deposits. From this, in the battery C having the conventional configuration, pitting corrosion occurs on the inner surface of the positive electrode terminal plate due to high-voltage discharge, and the eluted stainless steel component is deposited on the negative electrode side and penetrates the separator, resulting in an internal short circuit. It can be seen that self-discharge is promoted and durability is deteriorated.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はこの発明のポリアニリン電池の構
造例を示す縦断面図である。 1,11……正極端子板(正極集電体)、2……負極端子
板、5……正極、6……負極、7……セパレータ、12…
…箔(正極集電体)
1 and 2 are vertical cross-sectional views showing a structural example of the polyaniline battery of the present invention. 1, 11 …… Positive electrode terminal plate (positive electrode current collector), 2 …… Negative electrode terminal plate, 5 …… Positive electrode, 6 …… Negative electrode, 7 …… Separator, 12…
… Foil (positive electrode current collector)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ポリアニリンを正極、リチウムまたはリチ
ウム合金を負極とし、電解液として非水有機電解液を使
用したポリアニリン電池において、正極集電体の少なく
とも上記正極との接触部分がCrを18〜20重量%、Moを1.
75〜2.25重量%、TiとNbとを合量で0.3〜1.0重量%含有
し、かつCとNをそれぞれ0.02重量%以下としたフエラ
イト系ステンレス鋼にて構成されていることを特徴とす
るポリアニリン電池。
1. A polyaniline battery using polyaniline as a positive electrode and lithium or a lithium alloy as a negative electrode and a non-aqueous organic electrolytic solution as an electrolytic solution, wherein at least a contact portion of the positive electrode current collector with the positive electrode contains 18 to 20 Cr. Wt%, Mo 1.
Polyaniline containing 75 to 2.25% by weight, 0.3 to 1.0% by weight of Ti and Nb in a total amount, and 0.02% by weight or less of C and N, respectively, made of ferritic stainless steel. battery.
【請求項2】非水有機電解液が電解質として含フツ素リ
チウム塩を溶解したものからなる請求項(1)に記載の
ポリアニリン電池。
2. The polyaniline battery according to claim 1, wherein the non-aqueous organic electrolytic solution comprises a solution containing a fluorine-containing lithium salt as an electrolyte.
JP1056794A 1989-03-09 1989-03-09 Polyaniline battery Expired - Fee Related JPH07107862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056794A JPH07107862B2 (en) 1989-03-09 1989-03-09 Polyaniline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056794A JPH07107862B2 (en) 1989-03-09 1989-03-09 Polyaniline battery

Publications (2)

Publication Number Publication Date
JPH02236972A JPH02236972A (en) 1990-09-19
JPH07107862B2 true JPH07107862B2 (en) 1995-11-15

Family

ID=13037312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056794A Expired - Fee Related JPH07107862B2 (en) 1989-03-09 1989-03-09 Polyaniline battery

Country Status (1)

Country Link
JP (1) JPH07107862B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451476A (en) * 1992-11-23 1995-09-19 The Trustees Of The University Of Pennsylvania Cathode for a solid-state battery
JP4877678B2 (en) * 2000-08-16 2012-02-15 日立マクセルエナジー株式会社 Flat non-aqueous electrolyte secondary battery
WO2012063489A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Lithium primary cell
WO2012132452A1 (en) * 2011-03-30 2012-10-04 パナソニック株式会社 Lithium primary cell

Also Published As

Publication number Publication date
JPH02236972A (en) 1990-09-19

Similar Documents

Publication Publication Date Title
JP3066126B2 (en) Non-aqueous electrolyte battery
US4717634A (en) Electric cells utilizing polyaniline as a positive electrode active material
JP3167513B2 (en) Non-aqueous electrolyte battery
JPH0487156A (en) Nonaqueous electrolyte battery
JPH0428172A (en) Secondary battery
EP0364626B1 (en) Lithium secondary battery
CA1288472C (en) Cathode material for use in lithium electrochemical cell and lithium electrochemical cell including said cathode material
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
WO1985004763A1 (en) Rechargeable electrochemical device and a positive electrode therefor
JPH07107862B2 (en) Polyaniline battery
JPH07161382A (en) Nonaqueous electrolyte secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPH02204976A (en) Electrochenical battery and its manufacture
JP3263430B2 (en) Lithium secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP4753690B2 (en) Organic electrolyte battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP3418715B2 (en) Organic electrolyte secondary battery
JPH0650635B2 (en) Non-aqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JP3891188B2 (en) Non-aqueous electrolyte battery and battery case material
JP3273569B2 (en) Lithium battery
JPH0353743B2 (en)
JPH02239573A (en) Polyaniline battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees