JPS58147610A - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPS58147610A
JPS58147610A JP3091382A JP3091382A JPS58147610A JP S58147610 A JPS58147610 A JP S58147610A JP 3091382 A JP3091382 A JP 3091382A JP 3091382 A JP3091382 A JP 3091382A JP S58147610 A JPS58147610 A JP S58147610A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
optical
signal
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3091382A
Other languages
Japanese (ja)
Inventor
Nobuyuki Katsuta
葛田 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP3091382A priority Critical patent/JPS58147610A/en
Publication of JPS58147610A publication Critical patent/JPS58147610A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0076Transmitting or indicating the displacement of flexible diaphragms using photoelectric means

Abstract

PURPOSE:To make it possible to perform measurement in an explosive atmosphere, by providing an optical waveguide, a light introducing means, and a light absorbing body, and varying the magnitude of an input signal, which is introduced by the light introducing means based on a physical amount acting on the light absorbing body. CONSTITUTION:Light is introduced into optical waveguide 3 from a light source 1 through an optical fiber and advanced to a glass fiber 7. When the light is totally reflected, a slight amount of the light leaks into the upper space part of the optical waveguide 3 and lower glass substrate 5. Part of the light leaked into the space is absorbed by a pressure sensitive diaphragm 4 comprising the light absorbing body. The amount of the light advancing to the glass fiber 7 in the optical waveguide 3 is varied by the pressure. Said light signal taken out of the glass fiber 7, which is the light introducing means, is transduced into an electric signal by an optical diode 8, and taken out as a pressure signal.

Description

【発明の詳細な説明】 本発明は光学的測定装置に駒する。[Detailed description of the invention] The present invention applies to an optical measuring device.

本発明の目的は圧力、温度等の物理酌量を、電気的、磁
気的な外来ノイズの影智を受けず、また、爆発性雰囲気
中においても安全に測定できる、光学的手段による物理
量測定装置を提供することである。
The object of the present invention is to provide a physical quantity measuring device using optical means, which can safely measure physical extenuating quantities such as pressure and temperature without being influenced by external electrical or magnetic noise, and even in an explosive atmosphere. It is to provide.

本発明は光導波路と、光導波路へ光源より光を導入する
手段と、光導波路を通過した光を導出する光導出手段と
、この光導出手段より導出された光を入力信号とする光
電気変換手段と、上記光導波路に接近して設けられた光
吸収体とを有し、その光吸収体に作用する物理量により
上記入力信号の大きさが変化するよう構成されている。
The present invention relates to an optical waveguide, a means for introducing light from a light source into the optical waveguide, a light deriving means for deriving the light that has passed through the optical waveguide, and a photoelectric conversion using the light derived from the light deriving means as an input signal. and a light absorber provided close to the optical waveguide, and is configured such that the magnitude of the input signal changes depending on a physical quantity acting on the light absorber.

以下に、本発明を圧力測定に応用した場合の実施例を図
に基づいて説明する。第1図は本実施例の構成図である
。図において発光ダイオードを用いた光源lより光ファ
イバを通じて光導波M3に導入された光は、光導波路表
面に接する空間およびガラス基板5との境界面で、全反
射を繰り返しなから光導出手段であるガラスファイバー
7へ向って進行するか、全反射に際して光導波路3の上
方9間部と、下方ガラス基板5の中へ、僅かな光の浸み
出しが生じる(第2Jl!Jo図番こおいて2は空間座
標、Xは光の強度を示す。)。空間側へ浸み出した元は
この光浸み出し領域へはみ出した形で設けられた、光吸
収体から成る感圧ダイアフラム4にその一部が吸収され
る。光浸み出し像域への感圧ダイアフラム4のはみ出し
hは感圧ダイアフラムにかかる圧力rに依存するので、
光導波路3をガラスファイバー7に向う光の量は圧力に
よって変化する。第3図は感圧ダイアフラム4の、光浸
み出し領域のはみ出しを説明する模式図である。
An example in which the present invention is applied to pressure measurement will be described below with reference to the drawings. FIG. 1 is a configuration diagram of this embodiment. In the figure, the light introduced into the optical waveguide M3 through the optical fiber from the light source l using a light emitting diode is repeatedly totally reflected in the space in contact with the optical waveguide surface and the interface with the glass substrate 5, so it is a light guiding means. A slight amount of light leaks out into the upper part of the optical waveguide 3 and into the lower glass substrate 5 when it travels toward the glass fiber 7 or is totally reflected. 2 indicates the spatial coordinate, and X indicates the intensity of light.) A portion of the light that has leaked out into the space is absorbed by the pressure sensitive diaphragm 4, which is made of a light absorber and is provided so as to protrude into this light leakage region. Since the protrusion h of the pressure sensitive diaphragm 4 into the light seepage image area depends on the pressure r applied to the pressure sensitive diaphragm,
The amount of light passing through the optical waveguide 3 toward the glass fiber 7 changes depending on the pressure. FIG. 3 is a schematic diagram illustrating the protrusion of the light seepage area of the pressure sensitive diaphragm 4.

図において10は光浸み出し領域を示す。この光信号は
、光導出手段である上記のガラスファイバー7を通じて
導比され、光ダイオード8で電気信号に変換された後、
増幅器9で増幅され、圧力測定信号として取り出される
In the figure, 10 indicates a light seepage area. This optical signal is guided through the above-mentioned glass fiber 7, which is a light guiding means, and converted into an electric signal by a photodiode 8, and then
It is amplified by an amplifier 9 and taken out as a pressure measurement signal.

また本発明を温度測定用に応用した場合の実施例を第4
図および第5図に基づいて説明する。第4図は、本発明
を圧力測定用に実施した場合のダイアフラムに代って、
バイメタル13を光導波路に接近して設けた状態を示し
ている。本実施例においてバイメタル13は、第5因に
示すように温度上昇に伴って光導波路3に凸面を向けて
一曲するよう取り付けられている。バイメタル13の、
この凸面側表面には光吸収体14が貼着されていて、こ
の部分か光導波w113の光浸み出し領域10にはみ出
している。尚、図において11および12はバイメタル
13を構成する2種類の金属を示している。以上の構成
において、光吸収体14の、光浸み出し領域10へのは
み出し量か温度によって変化し、これが光導岐路3を通
過する光量に変化を与える。この光信号を電気信号に変
換して温度測定か行われる。
In addition, the fourth embodiment shows an example in which the present invention is applied to temperature measurement.
This will be explained based on the figure and FIG. FIG. 4 shows, in place of the diaphragm, when the invention is implemented for pressure measurement.
A state in which the bimetal 13 is provided close to the optical waveguide is shown. In this embodiment, the bimetal 13 is attached so that the convex surface faces the optical waveguide 3 and bends as the temperature rises, as shown in the fifth factor. bimetal 13,
A light absorber 14 is attached to this convex surface, and this portion protrudes into the light seepage region 10 of the optical waveguide w113. In the figure, 11 and 12 indicate two types of metals forming the bimetal 13. In the above configuration, the amount of protrusion of the light absorber 14 into the light seepage region 10 changes depending on the temperature, and this changes the amount of light passing through the light guide path 3. This optical signal is converted into an electrical signal to measure temperature.

以上のように、本発明によれは、電気的および磁気的な
外来ノイズに影脅されることもなく、また、有害性また
は爆発性の雰囲気中でも安全に物理量の測定かできる、
光学的測定装置が得られる。
As described above, according to the present invention, physical quantities can be measured safely even in a toxic or explosive atmosphere without being affected by external electrical and magnetic noise.
An optical measuring device is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第4図は本発明実施例の構成図、第3図お
よび第5図は本発明実施例の作用、説明図、第2図は、
光導波路内外の光強度分布を示す図である。 l・・・光源、2.7・・・ガラスファイバー、3・・
・光導岐路、4・・・感圧ダイアフラム、5・・・光導
波路ガラス基板、8・・・九ダイオード、9・・・増幅
器、10・−・導波路の光浸み出し領域、11.12・
−・バイメタル構成金属、13・−・バイメタル、14
・−・光吸収体。 特許出願人 株式会社島津製作所 代理人 西1)新
1 and 4 are configuration diagrams of the embodiment of the present invention, FIGS. 3 and 5 are operation and explanatory diagrams of the embodiment of the present invention, and FIG.
FIG. 3 is a diagram showing a light intensity distribution inside and outside an optical waveguide. l...Light source, 2.7...Glass fiber, 3...
- Optical branch, 4... Pressure sensitive diaphragm, 5... Optical waveguide glass substrate, 8... Nine diodes, 9... Amplifier, 10... Light seepage area of waveguide, 11.12・
- Bimetal constituent metal, 13 - Bimetal, 14
・−・Light absorber. Patent applicant Shimadzu Corporation Agent Nishi 1) Arata

Claims (1)

【特許請求の範囲】[Claims] 光導波路と、光導波路へ光源より光を導入する手段と、
光導波路を通過した光を導出する光導出手段と、この光
導出手段より導出された光を入力光信号とする光電気変
換手段と、上記光導波路に接近して設けられた光吸収体
とを有し、その光吸収体に作用する物理量により上記入
力信号の大きさか変化するよう構成された光学的測定装
置。
an optical waveguide, a means for introducing light from a light source into the optical waveguide,
A light guiding means for guiding the light that has passed through the optical waveguide, a photoelectric conversion means that uses the light guided by the light guiding means as an input optical signal, and a light absorber provided close to the optical waveguide. an optical measuring device comprising: an optical measuring device configured such that the magnitude of the input signal changes depending on a physical quantity acting on the light absorber;
JP3091382A 1982-02-26 1982-02-26 Optical measuring device Pending JPS58147610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3091382A JPS58147610A (en) 1982-02-26 1982-02-26 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091382A JPS58147610A (en) 1982-02-26 1982-02-26 Optical measuring device

Publications (1)

Publication Number Publication Date
JPS58147610A true JPS58147610A (en) 1983-09-02

Family

ID=12316934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091382A Pending JPS58147610A (en) 1982-02-26 1982-02-26 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS58147610A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199049A (en) * 1975-02-10 1976-09-01 Shiro Okamura
JPS55166799A (en) * 1979-06-12 1980-12-26 Matsushita Electric Ind Co Ltd Optical detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199049A (en) * 1975-02-10 1976-09-01 Shiro Okamura
JPS55166799A (en) * 1979-06-12 1980-12-26 Matsushita Electric Ind Co Ltd Optical detector

Similar Documents

Publication Publication Date Title
EP0120205A3 (en) Encapsulated optoelectronic measuring device
ES440060A1 (en) Opto-electronic focus detection system
KR101947054B1 (en) Deformation measurement sensor operating in a hostile environment and including an integrated optical movement measurement module, and a measurement system using said sensor
JPS58147610A (en) Optical measuring device
JPS6465430A (en) Manufacture of measuring device and fiber for transparent object and fiber manufactured thereby
FI963612A0 (en) Device for measuring surface pressure
JPS6413439A (en) Light absorbing gas sensor
JPS5750058B2 (en)
JPS6250643A (en) Humidity sensor
DK164780A (en) PROCEDURE FOR TESTING HEPATITIS AND ANTIGEN
JPS55134321A (en) Liquid level detector
JPS57111423A (en) Measuring device for absorption intensity of infrared ray by atr method
JPS56145326A (en) Detecting method for stress
JPH04258744A (en) Optical fiber gas sensor
SU1686321A1 (en) Device for measuring sound pressure
JPS6418234A (en) Semiconductor evaluation device
JPS5462879A (en) Optical temperature detector
JPS54131980A (en) Pressure measuring apparatus
JPS56129830A (en) Pressure measuring apparatus
JPS5599855A (en) Mobile body communication system
JPH05273074A (en) Liquid leak detector
JPS5595887A (en) Detector
JPS56106110A (en) Position detector
JPS5611328A (en) Temperature measuring unit
JPS5696876A (en) Semiconductor light receiving element