JPS5814571A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5814571A
JPS5814571A JP11186381A JP11186381A JPS5814571A JP S5814571 A JPS5814571 A JP S5814571A JP 11186381 A JP11186381 A JP 11186381A JP 11186381 A JP11186381 A JP 11186381A JP S5814571 A JPS5814571 A JP S5814571A
Authority
JP
Japan
Prior art keywords
region
type
polycrystalline silicon
contact window
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11186381A
Other languages
Japanese (ja)
Other versions
JPS5943099B2 (en
Inventor
Hiroshi Goto
広志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11186381A priority Critical patent/JPS5943099B2/en
Priority to US06/395,907 priority patent/US4465528A/en
Priority to DE8282106245T priority patent/DE3274923D1/en
Priority to EP82106245A priority patent/EP0070499B1/en
Publication of JPS5814571A publication Critical patent/JPS5814571A/en
Publication of JPS5943099B2 publication Critical patent/JPS5943099B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To allow an emitter region to align itself to a base region by a method wherein a first and second non-doped polycrystalline Si layers are employed and P type and N type impurities are implanted in succession, in the process of manufacturing a biplolar type semiconductor device. CONSTITUTION:A thick field oxide film 11 is provided in the periphery of an N<-> type Si substrate 13 and the enclosed surface of the substrate 13 is coated with a thin SiO2 film 14. The entire surface is then covered with the first non-doped polycrystalline Si layer 15. Next, photo resist patterns 16a and 16b are respectively provided on an emitter forming region and a base forming region. P type impurity ion implantation follows for the formation of a P type outer base region 17 in the substrate 13. At the same time, a layer 15' located above the region 17 is made to contain a P type impurity, and layers 15 on the both sides thereof are dismantled together with the resist patterns 16a and 16b. After this, windows 18 and 19 are provided in the film 14, and the second non-doped polycrystalline Si film 20 is grown all over the surface, whereinto N type impurity ions are implanted for the formation of an N<+> type emitter region 24 in contact with the region 17.

Description

【発明の詳細な説明】 本発明はバイポーラ型半導体装置の製造方法に係り、特
に該バイポーラ型半導体装置におけるエンツタ領域をペ
ース領域に自己整合せしめて形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a bipolar semiconductor device, and more particularly to a method of forming an entrant region in the bipolar semiconductor device in self-alignment with a space region.

バイポーラ型の半導体集積回路においては、その集積度
を向上せしめる手段として、該集積(ロ)路を構成する
トランジスタに、例えばアイソ・プレ−ナ構造のように
、選択酸化で形成した酸化膜により素子分離かなされる
構造のバイポーラ・トランジスタが用いられる。このよ
うな酸化物分離構造のバイポーラ・トランジスタは、素
子分離領域とコレクタ・コンタクト窓及びベース領域が
一枚のフォト・マスクにより整合形成されるので、素子
を徽細化し集積度の向上を図るうえで極めて有利である
が、この構造においてもエミッタ領域形成窓としても用
いるエンツタ・コンタクト窓とベース+1:Iンタクト
窓は、通常の方法に従って、ベース領域上に形成した酸
化膜に別過7オト・エツチング法を用いて形成しなけれ
ばならない。従うて上記工程においては、マスク合わせ
の誤差のためにベース領域外側の選択酸化膜もエッーン
グさnて、エミッタ・コンタクト窓がベース領域外側の
選択酸化換部にはみ出して深く形成されることがあり、
このような場合には前記エミッタ・コンタクト窓からイ
オン注入等の方法により二イッタ領域を形成した際、該
工電ツタ領域がペース領域の側面に深く形成されるので
コレクタ0−工建ツタ■間シーートが発生し、顧造歩留
まりが低下するという間−がある。
In bipolar type semiconductor integrated circuits, as a means to improve the degree of integration, the transistors constituting the integrated circuits are formed with an oxide film formed by selective oxidation, such as in an iso-planar structure. A bipolar transistor of isolated structure is used. In bipolar transistors with such an oxide isolation structure, the element isolation region, collector contact window, and base region are formed in alignment using a single photomask, so it is possible to miniaturize the element and improve the degree of integration. However, in this structure, the entrance contact window and the base +1:I contact window, which are also used as the emitter region forming window, are formed by applying a separate layer to the oxide film formed on the base region according to a conventional method. It must be formed using an etching method. Therefore, in the above process, due to errors in mask alignment, the selective oxide film outside the base region may also be etched, and the emitter contact window may be formed deeply and protrude into the selective oxidation portion outside the base region. ,
In such a case, when a two-item region is formed from the emitter contact window by a method such as ion implantation, the electrical power ivy region is formed deep on the side surface of the pace region, so that the space between the collector 0 and the electrical ivy There are times when sheets are generated and the customer yield is reduced.

そこで上記問題点を解消するために、エミッタ・コンタ
クト窓をエツチング手段によらずに形成する方法として
従来は、第1図体)に示すように例えば選択酸化膜1に
よって画定されたベース領域2上に多結晶シリコン層3
を形成し、該多結晶シリコン層3上にエミッタ・コンタ
クト窓(工きツタ形成窓)に対応する窒化シリコン(8
1mNa)パターン4m及びベース・コンタクト窓に対
応する81.N、パターン4bを形成した後、多結晶シ
リコン層3を選択熱酸化し嬉1図(b)に示すようにベ
ース領域2上に多結晶シリコン酸化膜5を選択的に形成
し、然る後前記81.N、パターン4M及び4bを除去
して、#!1図<c>に示すようにベース領域2上に、
底部に多結晶シリコン層3が配設されたエミッタ・コン
タクト窓6及びベース・コンタクト窓7を有する多結晶
シVコン酸化膜5を設ける等の方法により、ベース領域
2を画定している選択酸化J[1をマスクの位置ずれに
関係なく完全な状態に保9て、二重ツタ領穢形成に際し
ての0−Eシ田−トを防止していた。
Therefore, in order to solve the above problems, a conventional method for forming an emitter contact window without using etching means is to form an emitter contact window on a base region 2 defined by a selective oxide film 1, for example, as shown in Figure 1. Polycrystalline silicon layer 3
, and silicon nitride (8
81.1mNa) corresponding to the 4m pattern and the base contact window. After forming the pattern 4b, the polycrystalline silicon layer 3 is selectively thermally oxidized to selectively form a polycrystalline silicon oxide film 5 on the base region 2 as shown in Figure 1(b). 81 above. N, remove patterns 4M and 4b, and #! As shown in Figure 1 <c>, on the base region 2,
Selective oxidation in which the base region 2 is defined by a method such as providing a polycrystalline silicon oxide film 5 having an emitter contact window 6 and a base contact window 7 with a polycrystalline silicon layer 3 disposed at the bottom. J[1 was maintained in a perfect state regardless of the misalignment of the mask, thereby preventing 0-E sheeting during the formation of double ivy stains.

然し上記従来方法に於ては単結晶シリコンの熱酸化膜に
比べて多結晶シリコン酸化層がボー2スで絶縁性に劣る
ために半導体装置の信頼性が低下するという問題並びに
、多結晶シリコン層の選択熱酸化を行う際にシリコン基
体の表面に結晶欠陥が誘起されて半導体装置の性能低下
を招くという問題があった。
However, in the above conventional method, there is a problem that the reliability of the semiconductor device decreases because the polycrystalline silicon oxide layer has a void and has poor insulation properties compared to a thermally oxidized film of single crystal silicon. There is a problem in that when performing selective thermal oxidation, crystal defects are induced on the surface of the silicon substrate, leading to a decrease in the performance of the semiconductor device.

本発明は上記間融点を除去する目的で、活性領域上を覆
う絶縁膜を単結晶シリコン基体の熱酸化膜で形成するこ
とによりその絶縁性を向上せしめると同時に活性領域面
に結晶欠陥か誘起されるのを防止し、且つベース領域と
工叱ツタ領域を自己整合せしめて形成することによりo
−n間のシーートを防止する酸化膜分離構造の半導体装
置の製造方法を提供する。
In order to eliminate the above-mentioned melting point, the present invention improves the insulation properties by forming an insulating film covering the active region with a thermally oxidized film of a single-crystal silicon substrate, and at the same time prevents crystal defects from being induced on the surface of the active region. By forming the base area and the vine area in self-alignment,
A method of manufacturing a semiconductor device having an oxide film isolation structure that prevents a sheet between -n is provided.

即ち本発明はバイポーラ型半導体装置の製造方法におい
て、第1導電型シリコン基体の活性領域上に熱酸化膜を
形成する工程、該熱酸化膜上に第1のノン・ドープ多結
晶シリコン層を形成する工程、皺ノン・ドープ多結晶シ
リコン層上に内部ペース形成領埴土及びエミッタ形放慴
域上をそれぞれ覆うレジスト・パターンを形成する工程
、該レジスト・パターンをマスクとして第2導電型不純
物を選1択的にイオン注入し、ノン・ドープ多結晶シリ
コン層に不純物を添加するとともに前記第1導電型シリ
コン基体面に第2導電型外部ペース領域を形成する工程
、前記レジスト・/(ターンを除去して後、前記レジス
ト・パターン下部に位置していたノン・ドープ多結晶シ
リコン層を選択的にエツチング除去して、前記熱酸化膜
上に前記外部ペース領域の上部を覆う第2導電型多結晶
シリコン・パターンを形成する工程、該第2導電型多結
晶シリコン・パターンをマスクとして前記熱酸化膜の選
択エツチングを行って%骸熱酸化膜にベース・コンタク
ト窓及び工ζツタ・コンタクト窓を形成する工程、前記
ベース・コンタクト窓及び工電ツタ・コンタクト窓から
諮2導電型不純物を選択的に導入して第1導電型シリコ
ン基体に第2導電型内部ベース領域を形成する工程、前
記エンツタ・コンタクト窓から選択的に第1導電型不純
物を導入して前記第2導電型内部ベース領域内に第1導
電型エミツタ領穢を形成する工程を有することを特徴と
する。
That is, the present invention provides a method for manufacturing a bipolar semiconductor device, including a step of forming a thermal oxide film on an active region of a first conductivity type silicon substrate, and forming a first non-doped polycrystalline silicon layer on the thermal oxide film. a step of forming a resist pattern on the wrinkle-free doped polycrystalline silicon layer covering the internal paste formation region and the emitter-shaped radiation region, and selecting a second conductivity type impurity using the resist pattern as a mask; selectively implanting ions to add impurities to the non-doped polycrystalline silicon layer and forming a second conductivity type external space region on the first conductivity type silicon substrate surface; removing the resist /(turn); After that, the non-doped polycrystalline silicon layer located under the resist pattern is selectively etched away, and a second conductivity type polycrystalline silicon layer is formed on the thermal oxide film to cover the upper part of the external space region. forming a silicon pattern, selectively etching the thermal oxide film using the second conductivity type polycrystalline silicon pattern as a mask to form a base contact window and a contact window in the thermal oxide film; a step of selectively introducing second conductivity type impurities from the base contact window and the electric power contact window to form a second conductivity type internal base region in the first conductivity type silicon substrate; The present invention is characterized by comprising a step of selectively introducing impurities of the first conductivity type through the contact window to form an emitter region of the first conductivity type in the internal base region of the second conductivity type.

以下本発明を一実施例について、第2図(a)乃至0)
に示す工程断面図を用いて肝細に説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 2(a) to 0).
This will be explained in detail using the process cross-sectional diagram shown in FIG.

本発−の方法を用いてアイソ・プレーナ等の選択酸化に
より素子分離がなされる構造のバイポーラ・トランジス
タを形成する際には、図示しない出するN−fiシリコ
ン基体面に対して選択的に、第21図(a)乃至(j)
を用いてa8Aする処理か施されて半導体装置が提供さ
れる。
When forming a bipolar transistor with a structure in which device isolation is achieved by selective oxidation such as iso-planar using the method of the present invention, selectively Figure 21 (a) to (j)
A semiconductor device is provided by performing a8A processing using .

即ち第2図(a)に示すよ・うに選択酸化膜11に形成
されたベース領域形成用窓12内に表出するコレクタ領
域例えばN +−,シリコン基体13の表面に、先ず通
常の熱酸化法を用いて例えは1000〜4000(X3
程度の所望の厚さを有する二酸化シリコン(8i0.)
膜14を形成した稜、該被処理基板上に通常の化学気相
成長(OVD)法を用いて1000〜2000(X)程
度の厚さを有する第1のノン・ドープ多結晶シリコン層
15を形成する。
That is, as shown in FIG. 2(a), the collector region exposed within the base region forming window 12 formed in the selective oxide film 11, for example N + -, is first subjected to normal thermal oxidation on the surface of the silicon substrate 13. An example using the method is 1000 to 4000 (X3
silicon dioxide (8i0.) with the desired thickness of about
A first non-doped polycrystalline silicon layer 15 having a thickness of about 1000 to 2000 (X) is formed on the edge where the film 14 is formed and on the substrate to be processed using a normal chemical vapor deposition (OVD) method. Form.

次いで通常のフォトΦプ四セスを用いて第2図中)に示
すようにノンφドープ多結晶シリコン層15上に、二重
ツタ形成飴域上を嶺うフォト・レジスト・パターン16
a及び内部ペース形成領ψ上を憶うフォト・レジスト・
パターン16bを形成した後、該フォト・レジスト・パ
ターン16J1及び16bをマスクとしてN−型シリコ
ン基体13面に、前記ノン・ドープ多結晶シリコン層1
5及び810、膜14を通してP型不純物イオン例えば
ほう素イオン(B+)を所望の条件で選択的に注入し、
次いでフォト・レジスト・パターン168,16bを除
去した彼、例えば900(’C)11度の活性化処理を
行って、第2図(C)に示すように該N−型シリ=ン基
体13面に例えば3000〜4000(X)s度の深さ
を有し、” ”” ”””/cd )程度の表面濃度を
有するP型外部ベース領域17を形成する◎(外部ベー
ス領域とは直接ベースとしては機能せず、ベースのコン
タクト領域と機能領域を電気的に接続するために設けら
れるベース領域を称する。)なお上記処理によってフォ
ト・レジスト・パターン16m、16bに棲われていな
かりた領域のノン・ドーグ多結晶シリコン層15には1
o如〜1oll(atom/cII)程度の高濃度にほ
う素03)を含んだP型多結晶シリコン層15’が形成
される◎又必要とあれば多結晶シリコン層のみを高濃度
にするためBP、をイオン打込みしてもよい。次いで上
記基板面を例えば10〜3Q(wt%〕程度の水酸化カ
リウム(KO)l)水溶液で処理し、ノン・ドーグ多結
晶シリコン層15を選択的にエツチング除去して、j1
!2図(d)に示すようにベース・コンタクト窓18 
 。
Next, a photoresist pattern 16 extending over the double vine forming area is formed on the non-φ doped polycrystalline silicon layer 15 using a conventional photo resist pattern 16 as shown in FIG.
Photoresist for recording a and internal pace formation area ψ
After forming the pattern 16b, the non-doped polycrystalline silicon layer 1 is applied to the surface of the N- type silicon substrate 13 using the photoresist patterns 16J1 and 16b as a mask.
5 and 810, selectively implanting P-type impurity ions, for example, boron ions (B+) through the film 14 under desired conditions;
Next, after removing the photoresist patterns 168 and 16b, an activation treatment is performed at, for example, 900 ('C) 11 degrees, and the 13th surface of the N-type silicon substrate is removed as shown in FIG. 2(C). For example, a P-type external base region 17 is formed with a depth of 3000 to 4000 (X) degrees and a surface concentration of approximately (This refers to a base region that is provided to electrically connect the contact region and the functional region of the base without functioning as a base. 1 in the non-dawg polycrystalline silicon layer 15
A P-type polycrystalline silicon layer 15' containing boron 03) at a high concentration of about 1 oll (atom/cII) is formed.If necessary, only the polycrystalline silicon layer can be made to have a high concentration. BP may be ion-implanted. Next, the substrate surface is treated with a potassium hydroxide (KO) aqueous solution of about 10 to 3 Q (wt%), for example, and the non-doped polycrystalline silicon layer 15 is selectively etched away.
! As shown in Figure 2(d), the base contact window 18
.

及びエミッタ・コンタクト窓19を有するP型番結晶シ
リコン層15′を形成する。なお上■OH水溶液に対す
るノン・ドープ多結晶シリコンとP製多結晶シリコンの
エツチング速度の比は1o:1以上であるので、上記選
択エツチング工程においてコンタクト窓寸法の拡大は殆
んど問題にならない量である。次いで上11!Pal多
結晶シリコン層15′をマスクとして基板面に対して曇
直な方向性を有するエツチング手段、例えば三ふり化メ
タン(OHFs)によるリアクティブ・イオン・エツチ
ング等の方法により8 i 0.膜を選択的にエツチン
グ除去して、第2図(e)に示すように前記S i O
,農14にベース・コンタクト窓18及び工ずツタ@P
ンタクト窓19を形成する。次いで通常のOVD法によ
り該基板面にノン・ドーグ多結晶シリコン層を成長せし
め、第2図(f)に示すように前記コンタクト窓18及
び19の内部及び前記P型多結晶シリコン層り5′上に
1ooo(X)程度の厚さの第2のノン・ドープ多結晶
シリコン層20を形成する。
and a P-type crystalline silicon layer 15' having an emitter contact window 19. Furthermore, since the etching rate ratio of non-doped polycrystalline silicon and P-made polycrystalline silicon to the OH aqueous solution is 1:1 or more, the enlargement of the contact window size in the selective etching process described above is an amount that hardly poses a problem. It is. Next is the top 11! Using the Pal polycrystalline silicon layer 15' as a mask, an etching process of 8 i 0. The film is selectively etched away to remove the S i O as shown in FIG. 2(e).
, base contact window 18 on farm 14 and construction ivy @P
A contact window 19 is formed. Next, a non-doped polycrystalline silicon layer is grown on the substrate surface by a normal OVD method, and as shown in FIG. A second non-doped polycrystalline silicon layer 20 having a thickness of about 100 (X) is formed thereon.

次いで第21@に示すようにベース[相]コンタクト窓
18及びエミッタ・コンタクト窓19を介し、前記第2
のノン・ドープ多結晶シリコン層20を通して、N″″
屋シリコン基体13面に所望の条件で選択的にP盤不純
物イオン例えばほう票イオン(B+)を注入し、例えば
900(C)程度の温度で所望の時間活性化して、30
00(X)程度の深さを有し、且つ10″(atm/c
Wt〕程度の表面濃度を有するP型内部ベース領#、2
1及び22を形成する。
Then, as shown in the 21st @, the second
N″″ through the non-doped polycrystalline silicon layer 20 of
P-board impurity ions, for example, ballast ions (B+) are selectively implanted into the surface of the silicon substrate 13 under desired conditions, and activated at a temperature of, for example, about 900 (C) for a desired period of time.
It has a depth of about 00 (X) and a depth of 10" (atm/c
P-type internal base region #, 2 having a surface concentration of about Wt]
1 and 22 are formed.

次いで第2図(h)に示すようにベース・コンタクト窓
18部をフォト・レジスト・パターン23で覆い、エミ
ッタ・コンタクト窓19を介し前記第2のノン・ドープ
多結晶シリコン層20を通して、P型内部ペース領域2
2面に所望の条件で選択的にN型不純物イオン例えばひ
紫イオン(As ” )を注入し、次いで前記フォト・
レジスト・パターン23を除去した@900CC〕程度
の温度で所望の時間活性化して、第2図(1)に示すよ
うにP型内部ペース領域22衣面に、例えば1000〔
X)程度の深さのN+型エミッタ領域24を形成する。
Next, as shown in FIG. 2(h), the base contact window 18 is covered with a photoresist pattern 23, and a P-type film is formed through the second non-doped polycrystalline silicon layer 20 through the emitter contact window 19. Internal pace area 2
N-type impurity ions, such as deep violet ions (As''), are selectively implanted into the second surface under desired conditions, and then the photo
After removing the resist pattern 23, the resist pattern 23 is activated at a temperature of about 900 CC] for a desired time, and as shown in FIG.
An N+ type emitter region 24 having a depth of approximately X) is formed.

なお該N+型エミッタ領域24は前述のようにエミッタ
・コンタクト窓19を介してP型内部ペース領域22に
自己整合され、゛且つP型内部ベース領域22より浅く
形成されるので、N型工電ツタ領域24とコレクタ領域
であるN−型シリコン基体13との間には必ずPg内部
ペース領域22が介在し、c−gシ曹−トが発生するこ
とがない。次いで第2図0)に示すようにペース拳コン
タクト窓18及び二重ツタ・コンタクト窓19上に通常
の方法により例えばアルjニウム配線25が形成され、
咳アルミニウム配線25をマスクとして配線間に表出し
ている多結晶シリコン層201及び15’を選択的にエ
ツチング除去した後、口承しないがカバー絶縁誤形成等
がなされて酸化農分**造のバイポーラ型半導体装置が
完成する。
Note that the N+ type emitter region 24 is self-aligned with the P-type internal space region 22 via the emitter contact window 19 as described above, and is formed shallower than the P-type internal base region 22, so that the N+ type emitter region 24 is The Pg internal space region 22 is always interposed between the ivy region 24 and the N-type silicon substrate 13, which is the collector region, and no c-g sheet is generated. Next, as shown in FIG. 20), for example, aluminum wiring 25 is formed on the pace fist contact window 18 and the double ivy contact window 19 by a conventional method, and
After selectively etching and removing the polycrystalline silicon layers 201 and 15' exposed between the wires using the aluminum wiring 25 as a mask, the cover insulation was incorrectly formed, although it is not known, and a bipolar film made of oxidized materials was formed. type semiconductor device is completed.

、なおここで、ジレクタ・コンタクト部について説明を
加えておくキ、ベース領域窓内に表出するシリコン基体
面を熱−化する際にはコレクタ・コンタクト窓内には”
sNJ!を残した状態で行い、又コレクターコンタクト
領域は通常1jリペース領域形成に先だって、ベース形
成窓上をレジスト族で覆った状態でN型不純物イオンの
注入によって形成される。又ベース領域を形成するため
のP型不純物イオンの注入は、通常通すコレクタのコン
タクト窓上をレジストで蝋つた状態でなされる。又工建
ツタ領域形成に際して注入されるN型不純物はコレクタ
・コンタクト窓内に同時に注入されることも通常の方法
と同様である。モして又前述した第2のノン・ドープ多
結晶シリコン層はコレクタ・コンタクト窓内にも形成さ
れる・ なお又上記*施例においてはN+型工電ツタ領域をイオ
ン注入法により形成したが、該エンツタ領域はりん珪酸
ガラス(P2O)Mからの固相−固相拡散で形成するこ
ともできる。
At this point, I would like to add an explanation about the collector contact area.
sNJ! The collector contact region is usually formed by implanting N-type impurity ions with the base forming window covered with a resist group, prior to forming the 1j respace region. In addition, the implantation of P-type impurity ions for forming the base region is carried out with resist applied over the contact window of the collector through which the base region is formed. Also, as in the usual method, the N-type impurity implanted when forming the vine region is simultaneously implanted into the collector contact window. Furthermore, the second non-doped polycrystalline silicon layer mentioned above is also formed within the collector contact window.In addition, in the above *example, the N+ type power supply vine region was formed by ion implantation. , the entrant region can also be formed by solid phase-solid phase diffusion from phosphosilicate glass (P2O)M.

又本発明の方法はPNP型の半導体装置にも適用できる
。また、以上は酸化−分離構造を例にとりで説明してき
たが、接合分離、VIP、08部等他の素子間分離構造
にも適用できることは明らかである。
Further, the method of the present invention can also be applied to a PNP type semiconductor device. Further, although the above description has been made by taking the oxidation-isolation structure as an example, it is obvious that the present invention can be applied to other element isolation structures such as junction isolation, VIP, and 08 parts.

以上説明したように本発明によればバイポーラ型半導体
装置における工きツタ領域及びベース領域上の絶縁膜を
単結晶シリコンの熱酸化による二酸化シリコン膜で形成
することができ、しかもベース領域とエミッタ領域とを
自己整合により形成することができるので、絶縁膜の絶
縁性能が向上し、且つ(コレクターエミッタ)シ曹−ト
も防止される・従りてバイポーラ型半導体装置の信頼性
及び製造歩留才りが向上する。
As explained above, according to the present invention, the insulating film on the ivy region and the base region in a bipolar semiconductor device can be formed of a silicon dioxide film formed by thermal oxidation of single crystal silicon, and moreover, the base region and the emitter region can be formed by self-alignment, the insulation performance of the insulation film is improved, and (collector emitter) shielding is also prevented.Therefore, the reliability and manufacturing yield of bipolar semiconductor devices are improved. Improves performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)乃至(C)は従来方法の工程断面図で、第
2図(a)乃至0)は本発明の方法における一実施例の
工程断面図である。 図において、11は選択酸化膜、12はベース領域窓、
13はN″″屋シリコン基体、14は二酸化シリコン膜
、15は第1のノン・ドープ多結晶シリコン層、15′
はP型多結晶シリコン層、16a。 16b、23はフォト−レジスト・パターン、17はP
型外部ベース領域、18はペース拳コンタクト窓、19
は工きツタ−コンタクト窓、20は第2のノン・ドープ
多結晶シリコン層、21,22はP型内部ベース領域、
24はN+型エミッタ価域、25はアルイニウム配線、
B+はほう素イオン、As+はひ素イオンを示す・  
□ 晃 1  閃 晃 2 図
FIGS. 1(1) to (C) are process sectional views of a conventional method, and FIGS. 2(a) to 0) are process sectional views of an embodiment of the method of the present invention. In the figure, 11 is a selective oxide film, 12 is a base region window,
13 is a N'''' silicon substrate, 14 is a silicon dioxide film, 15 is a first non-doped polycrystalline silicon layer, 15'
is a P-type polycrystalline silicon layer, 16a. 16b, 23 are photo-resist patterns, 17 are P
Mold external base area, 18, pace fist contact window, 19
20 is a second non-doped polycrystalline silicon layer; 21 and 22 are P-type internal base regions;
24 is the N+ type emitter value range, 25 is the aluminum wiring,
B+ indicates boron ion, As+ indicates arsenic ion・
□ Akira 1 Senko 2 Diagram

Claims (1)

【特許請求の範囲】[Claims] バイポーラ製半導体装置の製造方法において、第1導電
型シリコン基体の活性領域上に熱酸化膜を形成する工程
、該熱酸化膜上に第1のノン・ドープ多結晶シリコン層
を形成する工程、骸ノン・ドープ多結晶シリコン層上に
内部ペース形成領域上及びエミッタ形成領埴土をそれぞ
れ覆うレジスト・パターンを形成する工程、該レジス)
−パターンを1スクとして第2導′#IL型不純物を選
択的にイオン注入し、ノン・ドープ多結晶シリコン層に
不純物を添加するとともに前記第1導電型シリコン1体
面に第2導電型外部ベース餘域を形成する工程、前記レ
ジス)−パターンを除去して後、前記レジスト・パター
ン下部に位置していたノン・ドープ多結晶シリコン層を
選択的にエツチング除去して、前記熱酸化膜上に前記外
部ペース領域の上部を租う第2導電型多結晶シリコン・
パターンを形成する工程、該第2導電渥多結晶シリコン
・パターンをマスクとして前記熱酸化膜の選択エツチン
グを行って、骸熱酸化膜にペース・コンタクト窓及び工
建ツタ・コンタクト窓を形成する工程、前記ベース拳コ
ンタクト窓及び二重ツタ・コシタクト窓から第2導電型
不純物を選択的に導入して第1導電製シリコン基体に第
2導電製内部ペース領域を形成する工程、前記工ζツタ
・コンタクト窓から選択的に第1導電源不純物を導入し
て前記第2導電型内部ペース領域内に第1導電型エミツ
タ領域を形成する工程を有することを特徴とする半導体
装置の製造方法。
A method for manufacturing a bipolar semiconductor device includes: forming a thermal oxide film on an active region of a first conductivity type silicon substrate; forming a first non-doped polycrystalline silicon layer on the thermal oxide film; a step of forming a resist pattern on the non-doped polycrystalline silicon layer covering the internal space formation region and the emitter formation region, respectively;
- selectively ion-implanting a second conductive type impurity using the pattern as one mask, adding the impurity to the non-doped polycrystalline silicon layer, and adding a second conductive type external base to the first conductive type silicon body surface; After removing the resist pattern, the non-doped polycrystalline silicon layer located under the resist pattern is selectively etched away and etched onto the thermal oxide film. A second conductivity type polycrystalline silicon layer extending over the external space region.
forming a pattern; selectively etching the thermal oxide film using the second conductive polycrystalline silicon pattern as a mask to form a pace contact window and a construction ivy contact window in the thermal oxide film; , forming a second conductive inner space region in the first conductive silicon substrate by selectively introducing impurities of a second conductivity type through the base fist contact window and the double ivy contact window; 1. A method of manufacturing a semiconductor device, comprising the step of selectively introducing a first conductive source impurity through a contact window to form a first conductive type emitter region within the second conductive type internal space region.
JP11186381A 1981-07-15 1981-07-17 Manufacturing method of semiconductor device Expired JPS5943099B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11186381A JPS5943099B2 (en) 1981-07-17 1981-07-17 Manufacturing method of semiconductor device
US06/395,907 US4465528A (en) 1981-07-15 1982-07-07 Method of producing a walled emitter semiconductor device
DE8282106245T DE3274923D1 (en) 1981-07-15 1982-07-13 A method of producing a semiconductor device
EP82106245A EP0070499B1 (en) 1981-07-15 1982-07-13 A method of producing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11186381A JPS5943099B2 (en) 1981-07-17 1981-07-17 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5814571A true JPS5814571A (en) 1983-01-27
JPS5943099B2 JPS5943099B2 (en) 1984-10-19

Family

ID=14572047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11186381A Expired JPS5943099B2 (en) 1981-07-15 1981-07-17 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5943099B2 (en)

Also Published As

Publication number Publication date
JPS5943099B2 (en) 1984-10-19

Similar Documents

Publication Publication Date Title
JPH0581051B2 (en)
JP2782781B2 (en) Method for manufacturing semiconductor device
JPS5814571A (en) Manufacture of semiconductor device
JPH0653237A (en) Manufacture of semiconductor element
JPH0239091B2 (en)
JPH02288341A (en) Mis-type semiconductor device
JPH0366815B2 (en)
JPH08162523A (en) Semiconductor device, and its manufacture
JPH0794721A (en) Semiconductor device and manufacture thereof
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPS5866358A (en) Semiconductor device and manufacture thereof
JPH0487374A (en) Manufacture of nonvolatile memory element
JP2763216B2 (en) Method for manufacturing semiconductor device
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JP3124283B2 (en) Method for manufacturing semiconductor device
JP3312384B2 (en) Lateral bipolar transistor and manufacturing method thereof
JP2546650B2 (en) Method of manufacturing bipolar transistor
JP2750724B2 (en) Method for manufacturing semiconductor device
JPH03231431A (en) Manufacture of semiconductor device and semiconductor device
JPS5812358A (en) Manufacture of semiconductor device
JPS5966168A (en) Manufacture of semiconductor device
JPS5871654A (en) Manufacture of semiconductor device
JPH04199636A (en) Manufacture of semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPH02122620A (en) Manufacture of semiconductor device