JPH02288341A - Mis-type semiconductor device - Google Patents

Mis-type semiconductor device

Info

Publication number
JPH02288341A
JPH02288341A JP10964789A JP10964789A JPH02288341A JP H02288341 A JPH02288341 A JP H02288341A JP 10964789 A JP10964789 A JP 10964789A JP 10964789 A JP10964789 A JP 10964789A JP H02288341 A JPH02288341 A JP H02288341A
Authority
JP
Japan
Prior art keywords
sidewall
diffusion layer
impurity diffusion
type impurity
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10964789A
Other languages
Japanese (ja)
Inventor
Makio Goto
後藤 万亀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10964789A priority Critical patent/JPH02288341A/en
Publication of JPH02288341A publication Critical patent/JPH02288341A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable easy manufacture process and high controllability by positioning a low concentration second conductivity type impurity diffusion layer formed on a surface of a first conductivity type semiconductor substrate immediately below a sidewall. CONSTITUTION:After an isolation oxide film 102 is formed on a P-type Si substrate 101, a gate oxide film 103 is formed, polycrystalline Si 104 is formed all over, N-type impurity is injected all over, and Mo silicide 105 is formed thereafter. Then, the Mo silicide 105 is partially etched and removed into a mask, phosphorus 106' is ion-implanted, a low concentration N-type impurity diffusion layer 106 is formed on a surface of a substrate 101, etching is carried out through reactive ion after an insulating film is formed, and an insulating film sidewall 107 or a tungsten sidewall 107' is formed. As 108' is ion-implanted using the Mo silicide 105 and the sidewall 107 as a mask, annealing is carried out, and a high concentration N-type impurity diffusion layer 108 is formed. Easy manufacture process and high controllability can be realized in this way.

Description

【発明の詳細な説明】 [産業上の利用分野j 本発明は、MIS型半導体装置の構造に関する。[Detailed description of the invention] [Industrial field of use] The present invention relates to the structure of a MIS type semiconductor device.

〔従来の技術] 半導体装置の微細化、高集積化にともないMO8型トラ
ンジスタも微細化されてきている。しかし、素子寸法を
微細化することによりホットキャリアによる特性劣化と
いう問題が生じてきている。この問題を解決するための
LDD(Lightly  Doped  Drain
)という横道が提案されているが、このLDDをさらに
改良した構造が次の文献に掲載されている。  (R,
IZAWA、T、にURE、E、 TAKEDA、 ”
THE IuPACT OF GATE−DIIIAI
N  0VERLAPPED  LDD  (GOLD
J  FORDEEP  SUB  MICRON V
LSI’S ” 、 IEDM Tech、 Dig−
pp38−pp4119〔発明が解決しようとする課題
1 しかし、前述の従来技術では、製造プロセスがかなり複
雑であり、低濃度不純物拡散層の寸法制御性が悪く、ゲ
ート電極の段差が大きいために、平坦性が悪いという課
題を有する。
[Prior Art] As semiconductor devices become smaller and more highly integrated, MO8 type transistors are also becoming smaller. However, miniaturization of element dimensions has led to the problem of deterioration of characteristics due to hot carriers. LDD (Lightly Doped Drain) is used to solve this problem.
) has been proposed, and a structure that further improves this LDD is published in the following document. (R,
IZAWA, T, URE, E, TAKEDA,”
THE IuPACT OF GATE-DIIIIAI
N 0VERLAPPED LDD (GOLD
J FORDEEP SUB MICRON V
LSI'S'', IEDM Tech, Dig-
pp38-pp4119 [Problem to be Solved by the Invention 1] However, with the above-mentioned conventional technology, the manufacturing process is quite complicated, the dimensional control of the low concentration impurity diffusion layer is poor, and the step of the gate electrode is large, so it is difficult to achieve a flat surface. It has the problem of poor sex.

そこで本発明はこのような課題を解決するもので、その
目的とするところは、製造プロセスが容易であり、寸法
制御性、平坦性が良好な半導体装置を提供するところに
ある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a semiconductor device that is easy to manufacture and has good dimensional controllability and flatness.

〔課題を解決するための手段] 本発明の半導体装置は、 l)第1導電型半導体基板、ゲート絶縁膜、ゲート電極
から成るMIS型半導体装置において、前記ゲート電極
が下層筒1の導電体、上層は下層より幅の狭い第2の導
電体であり、前記第2の導電体の側壁には絶縁膜もしく
は第3の導電体のサイドウオールが形成され、前記サイ
ドウオールの端部が前記第1の導電体の端部に一致し。
[Means for Solving the Problems] A semiconductor device of the present invention includes l) an MIS type semiconductor device comprising a first conductivity type semiconductor substrate, a gate insulating film, and a gate electrode, wherein the gate electrode is a conductor of the lower cylinder 1; The upper layer is a second conductor having a width narrower than that of the lower layer, an insulating film or a sidewall of a third conductor is formed on the sidewall of the second conductor, and an end of the sidewall is connected to the first conductor. Match the ends of the conductors.

前記第1導電型半導体基板表面に形成された低濃度第2
導電型不純物拡散層が、@記すイドウオールの直下に位
置することを特徴とする。
A second low concentration layer formed on the surface of the first conductivity type semiconductor substrate.
It is characterized in that the conductive type impurity diffusion layer is located directly under the id wall marked with @.

〔実 施 例1 以下図面を用いて、本発明の実施例を詳細に説明する。[Implementation example 1] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a)は本発明による半導体装置を表わす断面図
であり、101はP型Si基板、102は素子分離用酸
化膜、103はゲート酸化膜、104は多結晶Si (
1000〜2000人)、105はMoシリサイド (
1500〜2500人)、107は絶縁膜サイドウオー
ルである。106は低濃度N型不純物拡散層、108は
高濃度不純物拡散層であり、図示したように前記低1度
不純物拡散層106は、前記ゲート酸化膜103をはさ
んで、先端部が前記Moシリサイド105の端部のほぼ
直下にくるように形成されている。
FIG. 1(a) is a cross-sectional view showing a semiconductor device according to the present invention, in which 101 is a P-type Si substrate, 102 is an oxide film for element isolation, 103 is a gate oxide film, and 104 is a polycrystalline Si (
1000-2000 people), 105 is Mo silicide (
1500 to 2500 people), 107 is an insulating film side wall. 106 is a low concentration N-type impurity diffusion layer, 108 is a high concentration impurity diffusion layer, and as shown in the figure, the low 1 degree impurity diffusion layer 106 is sandwiched between the gate oxide film 103 and the tip thereof is formed of the Mo silicide. It is formed so as to be located almost directly below the end of 105.

第1図(b)は本発明の伯の実施例を表わす断面図であ
り、ここでは第1図(a)で用いた絶縁膜サイドウオー
ルの代わりにダンゲステンサイドウオール107′が用
いられている。
FIG. 1(b) is a cross-sectional view showing an embodiment of the present invention, in which a Dungesten sidewall 107' is used in place of the insulating film sidewall used in FIG. 1(a). .

次に本発明の製造方法を第2図(a)〜 により説明す
る。
Next, the manufacturing method of the present invention will be explained with reference to FIGS.

工程(1)・・・第2図(a) P型Si基板101上にLOCO5法で素子分離用酸化
膜102を2000〜7000人形成した後に、ゲート
酸化膜103を熱酸化法により100〜300人形成し
、さらに化学的気相成長法により全面に多結晶5i10
4を1000〜2000人形成する。全面にリンあるい
はAs等のN型不純物を拡散法またはイオン打込法にて
注入した後に、スパッタ法でMoシリサイド105を1
500〜2500人形成する。
Step (1)...FIG. 2(a) After forming an oxide film 102 for element isolation of 2,000 to 7,000 layers on a P-type Si substrate 101 by the LOCO5 method, a gate oxide film 103 of 100 to 300 layers is formed by a thermal oxidation method. Polycrystalline 5i10 is formed on the entire surface by chemical vapor deposition.
Form 4 of 1000 to 2000 people. After implanting N-type impurities such as phosphorus or As into the entire surface by diffusion or ion implantation, 10% of Mo silicide 105 is added by sputtering.
Form 500 to 2,500 people.

工程(2)・・・第2図(b) レジストパターンを用いて、前記Moシリサイド105
の一部をエツチング除去し、レジストパターン除去後、
@記MOシリサイドパターンをマスクにリン106′を
DO3E量10′2〜101011C”、エネルギー1
00〜200keVでイオン注入することで前記多結晶
5i104を通過し、低濃度N型不純物拡散層106を
前記基板101表面に形成する。
Step (2)...FIG. 2(b) Using the resist pattern, the Mo silicide 105 is
After removing a part of the resist pattern by etching,
@ Using the MO silicide pattern as a mask, add phosphorus 106' to DO3E amount 10'2~101011C'', energy 1
By implanting ions at 00 to 200 keV, the ions pass through the polycrystal 5i 104 and form a low concentration N-type impurity diffusion layer 106 on the surface of the substrate 101.

工程(3)・・・第2図(c) 全面に化学的気相成長法により絶縁膜(酸化膜または窒
化膜)またはタングステンを2000〜6000人形成
した後に全面リアクティブイオンでエツチングし、絶縁
膜サイドウオール107またはタングステンサイドウオ
ール107′を形成する。
Step (3)...Figure 2(c) After forming 2,000 to 6,000 insulating films (oxide films or nitride films) or tungsten on the entire surface by chemical vapor deposition, the entire surface is etched with reactive ions to form the insulation. A membrane sidewall 107 or tungsten sidewall 107' is formed.

工程(4)・・・第2図(d) 前記Moシリサイド105及び絶縁膜サイドウオール1
07(又はタングステンサイドウオール107′)をマ
スクにAs 108゛を60〜120keVのエネルギ
ー +QIS程度のDO5Eilでイオン注入し、電気
炉、またはハロゲンランプでアニールし、高濃度N型不
純物拡散層108を形成する0以上実施例に基づき本発
明を説明してきたが、本発明は実施例に限定されるもの
ではなく、発明の主旨を逸脱しない範囲で種々変更可能
なことは言うまでもない。
Step (4)...FIG. 2(d) Mo silicide 105 and insulating film sidewall 1
Using 07 (or tungsten sidewall 107') as a mask, As 108'' is ion-implanted with an energy of 60 to 120 keV and DO5Eil of approximately QIS, and annealed in an electric furnace or halogen lamp to form a high concentration N-type impurity diffusion layer 108. Although the present invention has been described based on zero or more examples, it goes without saying that the present invention is not limited to the examples and can be modified in various ways without departing from the gist of the invention.

例えばゲート電極に用いた導電体は多結晶Si及びMo
シリサイドであるが、これらはC01Ni、Pt、W、
Ti、Ta等の高融点金属もしくはそのシリサイドであ
ってもよいし、サイドウオールとして用いたWの代わり
に上記の材料を用いてもかまわない。
For example, the conductor used for the gate electrode is polycrystalline Si and Mo.
These are silicides such as C01Ni, Pt, W,
It may be a high melting point metal such as Ti or Ta or its silicide, or the above materials may be used instead of W used as the sidewall.

[発明の効果] 本発明によれば、製造プロセスが容易で$1目J口性の
よいGOLD構造の半導体装置を提供できるという効果
を有する。
[Effects of the Invention] According to the present invention, it is possible to provide a semiconductor device having a GOLD structure that has an easy manufacturing process and good quality.

具体的には、 1)低濃度不純物拡散層の寸法制御性が良い。in particular, 1) Good dimensional controllability of the low concentration impurity diffusion layer.

2)ゲート電極の段差が小さく平坦性が良い。2) The gate electrode has small steps and good flatness.

07′ 08 ・ 08′ 絶縁膜サイドウオール タングステンサイドウオール ・高濃度N型不純物拡散層 ・ As 以上07' 08・ 08' Insulating film side wall tungsten sidewall ・High concentration N-type impurity diffusion layer ・As that's all

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は本発明の構造を表わす断面図。 第2図(a)〜(d)は本発明の製造方法を表わす断面
図。
FIGS. 1(a) and 1(b) are cross-sectional views showing the structure of the present invention. FIGS. 2(a) to 2(d) are cross-sectional views showing the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板、ゲート絶縁膜、ゲート電
極から成るMIS型半導体装置において、前記ゲート電
極が下層第1の導電体、上層は下層より幅の狭い第2の
導電体であり、前記第2の導電体の側壁には絶縁膜もし
くは第3の導電体のサイドウォールが形成され、前記サ
イドウォールの端部が前記第1の導電体の端部に一致し
、 前記第1導電型半導体基板表面に形成された低濃度第2
導電型不純物拡散層が、前記サイドウォールの直下に位
置することを特徴とするMIS型半導体装置。
(1) In an MIS type semiconductor device comprising a first conductivity type semiconductor substrate, a gate insulating film, and a gate electrode, the gate electrode is a lower layer first conductor, and the upper layer is a second conductor narrower than the lower layer, An insulating film or a sidewall of a third conductor is formed on the sidewall of the second conductor, an end of the sidewall matches an end of the first conductor, and the first conductor is of the first conductivity type. A low concentration second layer formed on the surface of the semiconductor substrate
A MIS type semiconductor device, wherein a conductive type impurity diffusion layer is located directly under the sidewall.
JP10964789A 1989-04-28 1989-04-28 Mis-type semiconductor device Pending JPH02288341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10964789A JPH02288341A (en) 1989-04-28 1989-04-28 Mis-type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10964789A JPH02288341A (en) 1989-04-28 1989-04-28 Mis-type semiconductor device

Publications (1)

Publication Number Publication Date
JPH02288341A true JPH02288341A (en) 1990-11-28

Family

ID=14515590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10964789A Pending JPH02288341A (en) 1989-04-28 1989-04-28 Mis-type semiconductor device

Country Status (1)

Country Link
JP (1) JPH02288341A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600153A (en) * 1994-10-07 1997-02-04 Micron Technology, Inc. Conductive polysilicon lines and thin film transistors
US5804838A (en) * 1995-05-26 1998-09-08 Micron Technology, Inc. Thin film transistors
US6204521B1 (en) 1998-08-28 2001-03-20 Micron Technology, Inc. Thin film transistors
JP2007524984A (en) * 2003-01-15 2007-08-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Low GIDLMOSFET structure and manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600153A (en) * 1994-10-07 1997-02-04 Micron Technology, Inc. Conductive polysilicon lines and thin film transistors
US5658807A (en) * 1994-10-07 1997-08-19 Micron Technology, Inc. Methods of forming conductive polysilicon lines and bottom gated thin film transistors
US5670794A (en) * 1994-10-07 1997-09-23 Micron Technology, Inc. Thin film transistors
US5985702A (en) * 1994-10-07 1999-11-16 Micron Technology, Inc, Methods of forming conductive polysilicon lines and bottom gated thin film transistors, and conductive polysilicon lines and thin film transistors
US5804838A (en) * 1995-05-26 1998-09-08 Micron Technology, Inc. Thin film transistors
US6204521B1 (en) 1998-08-28 2001-03-20 Micron Technology, Inc. Thin film transistors
JP2007524984A (en) * 2003-01-15 2007-08-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Low GIDLMOSFET structure and manufacturing method
JP4678875B2 (en) * 2003-01-15 2011-04-27 インターナショナル・ビジネス・マシーンズ・コーポレーション MOSFET device with low gate induced drain leakage (GIDL) current

Similar Documents

Publication Publication Date Title
US6087234A (en) Method of forming a self-aligned silicide MOSFET with an extended ultra-shallow S/D junction
US5231038A (en) Method of producing field effect transistor
US7338874B2 (en) Highly integrated semiconductor device with silicide layer that secures contact margin and method of manufacturing the same
US6153485A (en) Salicide formation on narrow poly lines by pulling back of spacer
JPH01134972A (en) Manufacture of semiconductor device
JPH10284728A (en) Manufacture of mosfet having cobalt silicide film
JPH0750276A (en) Method for manufacture of low-resistance contact in junction between regions of different conductivity types
JP2925008B2 (en) Method for manufacturing semiconductor device
US6258682B1 (en) Method of making ultra shallow junction MOSFET
US5731240A (en) Manufacturing method for semiconductor depositing device
JPH02288341A (en) Mis-type semiconductor device
JP3866874B2 (en) Method for forming a silicidation element
JPH02271674A (en) Semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JP2910064B2 (en) Method for manufacturing semiconductor device
JP2007508705A (en) Semiconductor device and method of manufacturing this type of semiconductor device
US6221725B1 (en) Method of fabricating silicide layer on gate electrode
JPH0653237A (en) Manufacture of semiconductor element
JPS63275181A (en) Manufacture of semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPS61156883A (en) Manufacture of semiconductor device
TW304304B (en) The MOSFET performance and reliability reinforce method
TW466767B (en) Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor
JP2911255B2 (en) Semiconductor device and manufacturing method thereof
JPH11297985A (en) Semiconductor device and manufacture thereof