JPS5943099B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5943099B2
JPS5943099B2 JP11186381A JP11186381A JPS5943099B2 JP S5943099 B2 JPS5943099 B2 JP S5943099B2 JP 11186381 A JP11186381 A JP 11186381A JP 11186381 A JP11186381 A JP 11186381A JP S5943099 B2 JPS5943099 B2 JP S5943099B2
Authority
JP
Japan
Prior art keywords
region
layer
emitter
type
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11186381A
Other languages
Japanese (ja)
Other versions
JPS5814571A (en
Inventor
広志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11186381A priority Critical patent/JPS5943099B2/en
Priority to US06/395,907 priority patent/US4465528A/en
Priority to EP82106245A priority patent/EP0070499B1/en
Priority to DE8282106245T priority patent/DE3274923D1/en
Publication of JPS5814571A publication Critical patent/JPS5814571A/en
Publication of JPS5943099B2 publication Critical patent/JPS5943099B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Description

【発明の詳細な説明】 本発明はバイポーラ型半導体装置の製造方法に係り、特
に該バイポーラ型半導体装置におけるエミッタ領域をベ
ース領域に自己整合せしめて形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a bipolar semiconductor device, and more particularly to a method of forming an emitter region of the bipolar semiconductor device in self-alignment with a base region.

バイポーラ型の半導体集積回路においては、その集積度
を向上せしめる手段として、該集積回路を構成するトラ
ンジスタに、例えばアイソ・プレーナ構造のように、選
択酸化で形成した酸化膜により素子分離がなされる構造
のバイポーラ・トランジスタが用いられる。
In bipolar semiconductor integrated circuits, as a means to improve the degree of integration, the transistors that make up the integrated circuit have a structure in which elements are isolated by an oxide film formed by selective oxidation, such as an iso-planar structure. Bipolar transistors are used.

このような酸化物分離構造のバイポーラ・トランジスタ
は、素子分離領域とコレクタ・コンタクト窓及びベース
領域が一枚のフォト・マスクにより整合形成されるので
、素子を微細化し集積度の向上を図るうえで極めて有利
であるが、この構造においてもエミッタ領域形成窓とし
ても用いるエミッタ・コンタクト窓とベース・コンタク
ト窓は、通常の方法に従つて、ベース領域上に形成した
酸化膜に別途フォト・エッチング法を用いて形成しなけ
ればならない。従つて上記工程においては、マスク合わ
せの誤差のためにベース領域外側の選択酸化膜もエッチ
ングされて、エミッタ・コンタクト窓がベース領域外側
の選択酸化膜部にはみ出して深く形成されることがあり
、このような場合には前記エミッタ・コンタクト窓から
イオン注入等の方法によりエミッタ領域を形成した際、
該エミッタ領域がベース領域の側面に深く形成されるの
でコレクタC−エミッタE間ショートが発生し、製造歩
留まりが低下ホるという問題がある。そこで上記問題点
を解消するために、エミッタ・コンタクト窓をエッチン
グ手段によらずに形成する方法として従来は、第1図a
に示すように例えば選択酸化膜1によつて画定されたベ
ース領域2上に多結晶シリコン層3を形成し、該多結晶
シリコン層3上にエミッタ・コンタクト窓(エミッタ形
成窓)に対応する窒化シリコン(Si3N4)パターン
4a及びベース・コンタクト窓に対応するSi3N4パ
ターン4bを形成した後、多結晶シリコン層3を選択熱
酸化し第1図bに示すようにベース領域2上に多結晶シ
リコン酸化膜5を選択的に形成し、然る後前記Si3N
4パターン4a及び4bを除去して、第1図cに示すよ
うにベース領域2上に、底部に多結晶シリコン層3が配
設されたエミッタ・コンタクト窓6及びベース・コンタ
クト窓7を有する多結晶シリコン酸化膜5を設ける等の
方法により、ベース領域2を画定している選択酸化膜1
をマスクの位置ずれに関係なく完全な状態に保つて、エ
ミッタ領域形成に際してのCEシヨートを防止していた
In bipolar transistors with such an oxide isolation structure, the element isolation region, the collector contact window, and the base region are aligned and formed using a single photomask, which makes it easy to miniaturize the element and improve the degree of integration. Although this structure is extremely advantageous, the emitter contact window and the base contact window, which are also used as emitter region forming windows, are formed by separately photo-etching the oxide film formed on the base region according to the usual method. It must be formed using Therefore, in the above process, due to errors in mask alignment, the selective oxide film outside the base region may also be etched, and the emitter contact window may protrude into the selective oxide film portion outside the base region and be formed deeply. In such a case, when an emitter region is formed by a method such as ion implantation from the emitter contact window,
Since the emitter region is formed deeply on the side surface of the base region, a short circuit occurs between the collector C and the emitter E, resulting in a decrease in manufacturing yield. Therefore, in order to solve the above problems, a conventional method for forming an emitter contact window without using etching means is shown in Fig. 1a.
As shown in FIG. 2, for example, a polycrystalline silicon layer 3 is formed on a base region 2 defined by a selective oxide film 1, and a nitrided silicon layer 3 corresponding to an emitter contact window (emitter formation window) is formed on the polycrystalline silicon layer 3. After forming a silicon (Si3N4) pattern 4a and a Si3N4 pattern 4b corresponding to the base contact window, the polycrystalline silicon layer 3 is selectively thermally oxidized to form a polycrystalline silicon oxide film on the base region 2, as shown in FIG. 1b. 5 and then the Si3N
4 patterns 4a and 4b are removed, and a polygonal pattern is formed on the base region 2, as shown in FIG. A selective oxide film 1 defining a base region 2 by a method such as providing a crystalline silicon oxide film 5.
This prevents CE shot during formation of the emitter region by keeping it in a perfect state regardless of mask misalignment.

然し上記従来方法に於ては単結晶シリコンの熱酸化膜に
比べて多結晶シリコン酸化膜がポーラスで絶縁性に劣る
ために半導体装置の信頼性が低下するという問題並びに
、多結晶シリコン層の選択熱酸化を行う際にシリコン基
体の表面に結晶欠陥が誘起されて半導体装置の性能低下
を招くという問題があつた。
However, in the above conventional method, there is a problem that the reliability of the semiconductor device decreases because the polycrystalline silicon oxide film is porous and has inferior insulating properties compared to the thermal oxide film of single crystal silicon, and the selection of the polycrystalline silicon layer is difficult. There has been a problem in that when performing thermal oxidation, crystal defects are induced on the surface of the silicon substrate, leading to a decline in the performance of the semiconductor device.

本発明は上記問題点を除去する目的で、活性領域上を覆
う絶縁膜を単結晶シリコン基体の熱酸化膜で形成するこ
とによりその絶縁性を向上せしめると同時に活性領域面
に結晶欠陥が誘起されるのを防止し、且つベース領域と
エミツタ領域を自己整合せしめて形成することによりC
−E間のシヨートを防止する酸化膜分離構造の半導体装
置の製造方法を提供する。
In order to eliminate the above-mentioned problems, the present invention improves the insulation properties by forming an insulating film covering the active region with a thermally oxidized film of a single-crystal silicon substrate, and at the same time prevents crystal defects from being induced on the surface of the active region. By forming the base region and emitter region in self-alignment, C.
A method for manufacturing a semiconductor device having an oxide film isolation structure that prevents shorts between -E is provided.

本発明によれば、第1導電型を有する半導体基板上に絶
縁層を形成する工程、該絶縁層上に多結晶半導体層を形
成する工程、該多結晶半導体層上に形成されたマスク層
をマスクとして、半導体基板中に第2導電型不純物を導
入する工程、前記マスク層と該マスク層の下の多結晶半
導体層を除去する工程、残された多結晶半導体層をマス
クとして、前記絶縁層に開口を形成する工程、該開口を
通して、半導体基板中に第2導電型不純物を導入する工
程、該開口を通して、前記第2導電型不純物の導入領域
中に、選択的に第1導電型不純物を導入する工程を有す
る半導体装置の製造方法が提供される。
According to the present invention, a step of forming an insulating layer on a semiconductor substrate having a first conductivity type, a step of forming a polycrystalline semiconductor layer on the insulating layer, and a step of forming a mask layer formed on the polycrystalline semiconductor layer. A step of introducing a second conductivity type impurity into the semiconductor substrate as a mask, a step of removing the mask layer and the polycrystalline semiconductor layer under the mask layer, and a step of removing the insulating layer using the remaining polycrystalline semiconductor layer as a mask. a step of forming an opening in the semiconductor substrate, a step of introducing a second conductivity type impurity into the semiconductor substrate through the opening, and a step of selectively introducing a first conductivity type impurity into the region where the second conductivity type impurity is introduced through the opening. A method of manufacturing a semiconductor device is provided, which includes a step of introducing.

以下本発明を一実施例について、第2図a乃至jに示す
工程断面図を用いて詳細に説明する。
Hereinafter, one embodiment of the present invention will be explained in detail using process cross-sectional views shown in FIGS. 2a to 2j.

本発明の方法を用いてアイソ・プレーナ等の選択酸化に
より素子分離がなされる構造のバイポーラ・トランジス
タを形成する際には、図示しないが先ず通常の選択酸化
法により、下層に例えばN+型埋込み層等を有するN一
型シリコン基体面に素子間及びコレクタ・コンタクト領
域・ベース領域間を分離する酸化膜域窓を形成する。そ
して以後該酸化膜のベース領域窓部に表出するN一型シ
リコン基体面に対して選択的に、第2図a乃至jを用い
て説明する処理が施されて半導体装置が提供される。即
ち第2図aに示すように選択酸化膜11に形成されたベ
ース領域形成用窓12内に表出するコレクタ領域例えば
N一型シリコン基体13の表面に、先ず通常の熱酸化法
を用いて例えば1000〜4000〔λ〕程度の所望の
厚さを有する二酸化シリコン(SiO2)膜14を形成
した後、該被処理基板上に通常の化学気相成長(CVD
)法を用いて1000〜2000〔λ〕程度の厚さを有
する第1のノン・ドープ多結晶シリコン層15を形成す
る。
When forming a bipolar transistor having a structure in which element isolation is achieved by selective oxidation such as iso-planar using the method of the present invention, first, although not shown, a normal selective oxidation method is used to form a lower layer, for example, an N+ type buried layer. An oxide film region window is formed on the surface of an N-type silicon substrate having a substrate having a conductive structure, etc., for separating the elements and the collector/contact region/base region. Thereafter, the N-type silicon substrate surface exposed in the base region window of the oxide film is selectively subjected to the process described with reference to FIGS. 2a to 2j to provide a semiconductor device. That is, as shown in FIG. 2a, the collector region exposed within the base region forming window 12 formed in the selective oxide film 11, for example, the surface of the N-type silicon substrate 13, is first etched using a normal thermal oxidation method. For example, after forming a silicon dioxide (SiO2) film 14 having a desired thickness of about 1,000 to 4,000 [λ], it is deposited on the substrate to be processed using normal chemical vapor deposition (CVD).
) method to form a first non-doped polycrystalline silicon layer 15 having a thickness of about 1000 to 2000 [λ].

次いで通常のフオト・プロセスを用いて第2図bに示す
ようにノン・ドープ多結晶シリコン層15上に、エミツ
タ形成領域上を覆うフオト・レジスト・パターン16a
及び内部ベース形成領域上を覆うフオト・レジスト・パ
ターン16bを形成した後、該フオト・レジスト・パタ
ーン16a及び16bをマスクとしてN一型シリコン基
体13面に、前記ノン・ドープ多結晶シリコン層15及
びSiO2膜14を通してP型不純物イオン例えばほう
素イオン(B+)を所望の条件で選択的に注入し、次い
でフオト・レジスト・パターン16a,16bを除去し
た後、例えば900〔℃〕程度の活性化処理を行つて、
第2図cに示すように該N一型シリコン基体13面に例
えば3000〜4000〔λ〕程度の深さを有し、10
19〔AtOm/〜〕程度の表面濃度を有するP型外部
ベース領域17を形成する。(外部ベース領域とは直接
ベースとしては機能せず、ベースのコンタクト領域と機
能領域を電気的に接続するために設けられるベース領域
を称する。)なお上記処理によつてフオト・レジスト・
パターン16a,16bに覆われていなかつた領域のノ
ン・ドープ多結晶シリコン層15には1020〜102
1〔AtOm/d〕程度の高濃度にほう素(B)を含ん
だP型多結晶シリコン層15′が形成される。又必要と
あれば多結晶シリコン層のみを高濃度にするためBF2
をイオン打込みしてもよい。次いで上記基板面を例えば
10〜30〔Wt%〕程度の水酸化カリウム(KOH)
水溶液で処理し、ノン.ドープ多結晶シリコン層15を
選択的にエツチング除去して、第2図dに示すようにベ
ース・コンタクト窓18及びエミツタ・コンタクト窓1
9を有するP型多結晶シリコン層15′を形成する。な
お上記KOH水溶液に対するノン・ドープ多結晶シリコ
ンとP型多結晶シリコンのエツチング速度の比は10:
1以上であるので、上記選択エツチング工程においてコ
ンタクト窓寸法の拡大は殆んど問題にならない量である
。次いで上記P型多結晶シリコン層15′をマスクとし
て基板面に対して垂直な方向性を有するエツチング手段
、例えは三ふつ化メタン(C゛3)によるリアクテイブ
・イオン・エツチング等の方法によりSiO2膜を選択
的にエツチング除去して、第2図eに示すように前記S
iO2膜14にベース・コンタクト窓18及びエミツタ
・コンタクト窓19を形成する。次いで通常のCVD法
により該基板面にノン・ドープ多結晶シリコン層を成長
せしめ、第2図fに示すように前記コンタクト窓18及
び19の内部及び前記P型多結晶シリコン層15′上に
1000〔λ〕程度の厚さの第2のノン・ドープ多結晶
シリコン層20を形成する。次いで第2図gに示すよう
にベース・コンタクト窓18及びエミツタ・コンタクト
窓19を介し、前記第2のノン・ドープ多結晶シリコン
層20を通して、N一型シリコン基体13面に所望の条
件で選択的にP型不純物イオン例えばほう素イオン(B
+)を注入し、例えば900〔℃〕程度の温度で所望の
時間活性化して、3000〔λ〕程度の深さを有し、且
つ1019〔Atm/d〕程度の表面濃度を有するP型
内部ベース領域21及び22を形成する。次いで第2図
hに示すようにベース・コンタクト窓18部をフオト・
レジスト・パターン23で覆い、エミツタ・コンタクト
窓19を介し前記第2のノン・ドープ多結晶シリコン層
20を通して、P型内部ベース領域22面に所望の条件
で選択的にN型不純物イオン例えばひ素イオン(As+
)を注入し、次いで前記フオト・レジスト・パターン2
3を除去した後900〔℃〕程度の温度で所望の時間活
性化して、第2図1に示すようにP型内部ベース領域2
2表面に、例えば1000〔λ〕程度の深さのN+型エ
ミツタ領域24を形成する。なお該N+型エミツタ領域
24は前述のようにエミツタ・コンタクト窓19を介し
てP型内部ベース領域22に自己整合され、且つP型内
部ベース領域22より浅く形成されるので、N型エミツ
タ領域24とコレクタ領域であるN一型シリコン基体1
3との間には必ずP型内部ベース領域22が介在し、C
−Eシヨートが発生することがない。次いで第2図jに
示すようにベース・コンタクト窓18及びエミツタ・コ
ンタクト窓19上に通常の方法により例えばアルミニウ
ム配線25が形成され、該アルミニウム配線25をマス
クとして配線間に表出している多結晶シリコン層20及
び15′を選択的にエツチング除去した後、図示しない
がカバー絶縁膜形成等がなされて酸化膜分離構造のバイ
ポーラ型半導体装置が完成する。なおここでコレクタ・
コンタクト部について説明を加えておくと、ベース領域
窓内に表出するシリコン基体面を熱酸化する際にはコレ
クタ・コレタクト窓内にはSi3N4膜を残した状態で
行い、又コレクタ・コンタクト領域は通常通りベース領
域形成に先だつて、ベース形成窓上をレジスト膜で覆つ
た状態でN型不純物イオンの注入によつて形成される。
Next, using a normal photo process, a photo resist pattern 16a is formed on the non-doped polycrystalline silicon layer 15 to cover the emitter formation region as shown in FIG. 2b.
After forming a photoresist pattern 16b covering the internal base formation region, the non-doped polycrystalline silicon layer 15 and P-type impurity ions, such as boron ions (B+), are selectively implanted under desired conditions through the SiO2 film 14, and then, after removing the photoresist patterns 16a and 16b, activation treatment is performed at, for example, about 900°C. go and
As shown in FIG.
A P-type external base region 17 having a surface concentration of about 19 [AtOm/~] is formed. (The external base region refers to a base region that does not directly function as a base but is provided to electrically connect the contact region and functional region of the base.)
The regions of the non-doped polycrystalline silicon layer 15 that are not covered by the patterns 16a and 16b have 1020 to 102
A P-type polycrystalline silicon layer 15' containing boron (B) at a high concentration of about 1 [AtOm/d] is formed. If necessary, BF2 can be added to make only the polycrystalline silicon layer highly concentrated.
may be ion implanted. Next, the surface of the substrate is coated with potassium hydroxide (KOH) of about 10 to 30 [Wt%].
Treated with an aqueous solution, non- The doped polycrystalline silicon layer 15 is selectively etched away to form a base contact window 18 and an emitter contact window 1 as shown in FIG.
9 is formed as a P-type polycrystalline silicon layer 15'. The etching rate ratio of non-doped polycrystalline silicon and P-type polycrystalline silicon to the KOH aqueous solution is 10:
1 or more, the enlargement of the contact window size in the selective etching step is such an amount that it hardly causes any problem. Next, using the P-type polycrystalline silicon layer 15' as a mask, the SiO2 film is etched by an etching method having a direction perpendicular to the substrate surface, such as reactive ion etching using methane trifluoride (C3). is selectively etched away to remove the S as shown in FIG.
A base contact window 18 and an emitter contact window 19 are formed in the iO2 film 14. Next, a non-doped polycrystalline silicon layer is grown on the substrate surface by a conventional CVD method, and as shown in FIG. A second non-doped polycrystalline silicon layer 20 having a thickness of about [λ] is formed. Next, as shown in FIG. 2g, a film is selectively applied to the surface of the N-type silicon substrate 13 through the second non-doped polycrystalline silicon layer 20 through the base contact window 18 and the emitter contact window 19 under desired conditions. Generally, P-type impurity ions such as boron ions (B
+) and activated for a desired time at a temperature of about 900 [°C] to form a P-type interior having a depth of about 3000 [λ] and a surface concentration of about 1019 [Atm/d]. Base regions 21 and 22 are formed. Next, as shown in FIG. 2h, the base contact window 18 is photo-photographed.
Covering with a resist pattern 23, N-type impurity ions, for example, arsenic ions, are selectively applied to the surface of the P-type internal base region 22 under desired conditions through the emitter contact window 19 and the second non-doped polycrystalline silicon layer 20. (As+
), then the photoresist pattern 2
After removing the P-type internal base region 2, the P-type internal base region 2 is activated at a temperature of about 900[° C.] for a desired period of time as shown in FIG.
An N+ type emitter region 24 having a depth of, for example, about 1000 [λ] is formed on the two surfaces. Note that the N+ type emitter region 24 is self-aligned with the P-type internal base region 22 via the emitter contact window 19 as described above, and is formed shallower than the P-type internal base region 22, so that the N-type emitter region 24 and the N-type silicon substrate 1 which is the collector region.
There is always a P-type internal base region 22 between C and C.
-E-shot does not occur. Next, as shown in FIG. 2J, for example, an aluminum wiring 25 is formed on the base contact window 18 and the emitter contact window 19 by a conventional method, and using the aluminum wiring 25 as a mask, the polycrystals exposed between the wirings are formed. After selectively etching away the silicon layers 20 and 15', a cover insulating film is formed (not shown), and a bipolar semiconductor device with an oxide film isolation structure is completed. Here, the collector
To add an explanation about the contact area, when thermally oxidizing the silicon substrate surface exposed within the base region window, the Si3N4 film is left in the collector/collector window, and the collector/contact region is As usual, prior to forming the base region, the base region is formed by implanting N-type impurity ions while covering the base formation window with a resist film.

又ベース領域を形成するためのP型不純物イオンの注入
は、通常通りコレクタ・コンタクト窓上をレジストで覆
つた状態でなされる。又エミッタ領域形成に際して注入
されるN型不純物はコレクタ・コンタクト窓内に同時に
注入されることも通常の方法と同様である。そして又前
述した第2のノン・ドープ多結晶シリコン層はコレクタ
・コンタクト窓内にも形成される。なお又上記実施例に
おいてはN+型エミツタ領域をイオン注入法により形成
したが、該エミツタ領域はりん珪酸ガラス(PSG)膜
からの固相固相拡散で形成することもできる。
In addition, the implantation of P-type impurity ions for forming the base region is performed with the collector contact window covered with resist as usual. Also, as in the usual method, the N-type impurity implanted when forming the emitter region is simultaneously implanted into the collector contact window. The second non-doped polycrystalline silicon layer described above is also formed within the collector contact window. Furthermore, in the above embodiment, the N+ type emitter region was formed by ion implantation, but the emitter region can also be formed by solid phase solid phase diffusion from a phosphosilicate glass (PSG) film.

又本発明の方法はPNP型の半導体装置にも適用できる
Further, the method of the present invention can also be applied to a PNP type semiconductor device.

また、以上は酸化膜分離構造を例にとつて説明してきた
が、接合分離、IP、0ST等他の素子間分離構造にも
適用できることぱ明らかである。以上説明したように本
発明によればバイポーラ型半導体装置におけるエミッタ
領域及びベース領域上の絶縁膜を単結晶シリコンの熱酸
化による二酸化シリコン膜で形成することができ、しか
もベース領域とエミツタ領域とを自已整合により形成す
ることができるので、絶縁膜の絶縁性能が向上し、且つ
(コレクターエミツタ)シヨートも防止される。
Further, although the above description has been made using an oxide film isolation structure as an example, it is obvious that the present invention can also be applied to other element isolation structures such as junction isolation, IP, and OST. As explained above, according to the present invention, the insulating film on the emitter region and the base region in a bipolar semiconductor device can be formed of a silicon dioxide film formed by thermal oxidation of single crystal silicon, and the base region and the emitter region can be Since it can be formed by self-alignment, the insulating performance of the insulating film is improved and (collector emitter) shorting is also prevented.

従つてバイポーラ型半導体装置の信頼性及び製造歩留ま
りが向上する。
Therefore, the reliability and manufacturing yield of bipolar semiconductor devices are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至cは従来方法の工程断面図で、第2図a乃
至jは本発明の方法における一実施例の工程断面図であ
る。 図において、11は選択酸化膜、12はベース領域窓、
13はN一型シリコン基体、14は二酸化シリコン膜、
15は第1のノン・ドープ多結晶シリコン層、15′は
P型多結晶シリコン層、16a,16b,23はフオト
・レジスト・パターン、17はP型外部ベース領域、1
8はベース・コンタクト窓、19はエミツタ・コンタク
ト窓、20は第2のノン・ドープ多結晶シリコン層、2
1,22はP型内部ベース領域、24はN+型エミツタ
領域、25はアルミニウム配線、B+はほう素イオン、
As+はひ素イオンを示す。
1A to 1C are process sectional views of a conventional method, and FIGS. 2A to 2J are process sectional views of an embodiment of the method of the present invention. In the figure, 11 is a selective oxide film, 12 is a base region window,
13 is an N-type silicon substrate, 14 is a silicon dioxide film,
15 is a first non-doped polycrystalline silicon layer; 15' is a P-type polycrystalline silicon layer; 16a, 16b, and 23 are photoresist patterns; 17 is a P-type external base region;
8 is a base contact window, 19 is an emitter contact window, 20 is a second non-doped polycrystalline silicon layer, 2
1 and 22 are P-type internal base regions, 24 is N+ type emitter region, 25 is aluminum wiring, B+ is boron ion,
As+ represents an arsenic ion.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型を有する半導体基板上に絶縁層を形成す
る工程、該絶縁層上に多結晶半導体層を形成する工程、
該多結晶半導体層上に形成されたマスク層をマスクとし
て、半導体基板中に第2導電型不純物を導入する工程、
前記マスク層と該マスク層の下の多結晶半導体層を除去
する工程、残された多結晶半導体層をマスクとして、前
記絶縁層に開口を形成する工程、該開口を通して、半導
体基板中に第2導電型不純物を導入する工程、該開口を
通して、前記第2導電型不純物の導入領域中に、選択的
に第1導電型不純物を導入する工程を有することを特徴
とする半導体装置の製造方法。
1 a step of forming an insulating layer on a semiconductor substrate having a first conductivity type, a step of forming a polycrystalline semiconductor layer on the insulating layer,
introducing a second conductivity type impurity into the semiconductor substrate using the mask layer formed on the polycrystalline semiconductor layer as a mask;
removing the mask layer and the polycrystalline semiconductor layer under the mask layer; forming an opening in the insulating layer using the remaining polycrystalline semiconductor layer as a mask; A method for manufacturing a semiconductor device, comprising the steps of introducing a conductivity type impurity, and selectively introducing a first conductivity type impurity into the second conductivity type impurity introduction region through the opening.
JP11186381A 1981-07-15 1981-07-17 Manufacturing method of semiconductor device Expired JPS5943099B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11186381A JPS5943099B2 (en) 1981-07-17 1981-07-17 Manufacturing method of semiconductor device
US06/395,907 US4465528A (en) 1981-07-15 1982-07-07 Method of producing a walled emitter semiconductor device
EP82106245A EP0070499B1 (en) 1981-07-15 1982-07-13 A method of producing a semiconductor device
DE8282106245T DE3274923D1 (en) 1981-07-15 1982-07-13 A method of producing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11186381A JPS5943099B2 (en) 1981-07-17 1981-07-17 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5814571A JPS5814571A (en) 1983-01-27
JPS5943099B2 true JPS5943099B2 (en) 1984-10-19

Family

ID=14572047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11186381A Expired JPS5943099B2 (en) 1981-07-15 1981-07-17 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5943099B2 (en)

Also Published As

Publication number Publication date
JPS5814571A (en) 1983-01-27

Similar Documents

Publication Publication Date Title
US5304510A (en) Method of manufacturing a multilayered metallization structure in which the conductive layer and insulating layer are selectively deposited
EP0088922B1 (en) A method of forming electrodes and wiring strips on a semiconductor device
US4830972A (en) Method of manufacturing bipolar transistor
US4826781A (en) Semiconductor device and method of preparation
JPH0628266B2 (en) Method for manufacturing semiconductor device
US4210993A (en) Method for fabricating a field effect transistor
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
US5130271A (en) Method of manufacturing a semiconductor device having no step at the boundary between self aligned p- or n- type impurity regions
JPH0324737A (en) Semiconductor device and manufacture thereof
JPS62291176A (en) Semiconductor device and manufacture thereof
JPH07245400A (en) Field-effect transistor and its manufacture
EP0104079A2 (en) Integrated circuit contact structure
JPH0415619B2 (en)
JPS5943099B2 (en) Manufacturing method of semiconductor device
JP2940492B2 (en) Semiconductor device and manufacturing method thereof
JP2707536B2 (en) Method for manufacturing semiconductor device
JPH08162523A (en) Semiconductor device, and its manufacture
JP2842075B2 (en) Method for manufacturing semiconductor device
JPS60258964A (en) Manufacture of semiconductor device
JPH0239093B2 (en)
JPS5943098B2 (en) Manufacturing method of semiconductor device
JP2785854B2 (en) Method for manufacturing semiconductor device
JPS58142573A (en) Semiconductor integrated circuit and preparation thereof
JPH1126756A (en) Manufacture of semiconductor device
JPH05226353A (en) Manufacture of semiconductor device