JPS58142573A - Semiconductor integrated circuit and preparation thereof - Google Patents

Semiconductor integrated circuit and preparation thereof

Info

Publication number
JPS58142573A
JPS58142573A JP2435182A JP2435182A JPS58142573A JP S58142573 A JPS58142573 A JP S58142573A JP 2435182 A JP2435182 A JP 2435182A JP 2435182 A JP2435182 A JP 2435182A JP S58142573 A JPS58142573 A JP S58142573A
Authority
JP
Japan
Prior art keywords
film
emitter
base
layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2435182A
Other languages
Japanese (ja)
Inventor
Yoichi Tamaoki
玉置 洋一
Shiyoujirou Sugashiro
菅城 象二郎
Hiroyuki Itou
以頭 博之
Naoki Yamamoto
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2435182A priority Critical patent/JPS58142573A/en
Publication of JPS58142573A publication Critical patent/JPS58142573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To obtain a high performance IC apparatus through formation of base and emitter by using a metal silicide for leadout of base in view of reducing a resistance and by forming base and emitter on the self-alignment basis utilizing growth of silicides. CONSTITUTION:A buried collector 2 and a epitaxial layer 3 are stacked on an Si substrate 1, forming a collector leadout layer 5 and a base layer 6. Layers SiO2 4, Si3N4 13 are stacked and window is opened selectively and then an Mo 16 is also stacked thereon. An MoSi 17 is formed by the heat processing under the N2 ambient under the control of temperature and time and the length of eaves part 18 is set to the desired value within the range of 0.5-1.5mum. Then, the Mo 16 is removed by phosphoric acid and an SiO2 19 is formed on the MoSi 17 through high temperature heat processing in the O2 ambient. After forming an emitter layer 7, the base, emitter and collector electrodes 10-12 are attached. The space between base and emitter is kept at 1mum or less in such a structure and moreover since the resistance of MoSi 17 is low, an external resistance of base can be reduced up to about 1/5 of the ordinary one, thus extremely improving the high frequency characteristic.

Description

【発明の詳細な説明】 本発明はバイポーラトランジスタのエミッタとベースを
自己整合的に形成した高集積、高性能半導体集積回路及
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly integrated, high-performance semiconductor integrated circuit in which the emitter and base of a bipolar transistor are formed in a self-aligned manner, and a method for manufacturing the same.

最近のバイポーラ集積回路は、素子の微細化とトランジ
スタの高性能化が求められている。ところが、従来構造
のバイポーラトランジスタを微細化しようとすると、エ
ミッタとベースのコンタクトの間隔がホトマスクの位置
合せ精度で制限されるため、トランジスタの寸法が余り
小さくならない、外部ベース抵抗が高くなって高周波特
性が改善され力い等の問題が発生し、バイポーラ集積回
路の高集積化、高性能化が妨げられていた。
Recent bipolar integrated circuits are required to have smaller elements and higher performance transistors. However, when trying to miniaturize a bipolar transistor with a conventional structure, the spacing between the emitter and base contacts is limited by the alignment accuracy of the photomask, so the transistor dimensions cannot be reduced very much, and the external base resistance increases, resulting in poor high-frequency characteristics. However, problems such as power failure occurred, which hindered the high integration and performance of bipolar integrated circuits.

上記の問題点を解決するために、ベース−エミッタ間を
セルファライン技術を用いて狭くした構造のものが提案
されている。その−例を第1図に示す。
In order to solve the above problems, a structure has been proposed in which the distance between the base and the emitter is narrowed using self-line technology. An example of this is shown in FIG.

第1図は従来のバイポーラ集積回路の要部構成を示す断
面図である。図において、1はシリコン基板、2は埋込
層、6はシリコンエピタキシャル層、4は酸化シリコン
膜、5はコレクタ取出し用拡−散層、6はベース拡散層
、7はエミッタ拡散層8は多結晶シリコン層、9は酸化
シリコン膜、10はベース電極、11はエミッタ電極、
12はコレクタ電極である。
FIG. 1 is a cross-sectional view showing the main structure of a conventional bipolar integrated circuit. In the figure, 1 is a silicon substrate, 2 is a buried layer, 6 is a silicon epitaxial layer, 4 is a silicon oxide film, 5 is a diffusion layer for taking out the collector, 6 is a base diffusion layer, 7 is an emitter diffusion layer 8 is a multilayer a crystalline silicon layer, 9 a silicon oxide film, 10 a base electrode, 11 an emitter electrode,
12 is a collector electrode.

上記構造は公知のものであるから、その製造方法の説明
は省略するが、ベースの引出しに多結晶シリコン層8を
用いているため、■ベースの引出し抵抗が高い、■ベー
スとエミッタをセルファラインで形成するのに複雑な工
程を必要とする等の欠点があった。
Since the above structure is well known, a description of its manufacturing method will be omitted. However, since the polycrystalline silicon layer 8 is used for drawing out the base, ■ the drawing resistance of the base is high; and ■ the base and emitter are connected to a self-aligned line. It has drawbacks such as requiring a complicated process to form it.

本発明はこれら従来技術の欠点を解消するためになされ
たもので、ベースの引出しに金属シリサイド層を用いて
その抵抗の低減をはかり、かつシリサイドの成長を用い
てベースとエミッタをセルファラインで簡単な工程によ
り形成し、特性の優れた半導体集積回路を提供するもの
である。本発明の他の目的は、トランジスタのベース電
極をアイソレーション領域上に形成することによって、
能動領域の面積を減らしトランジスタを高性能化する半
導体集積回路及びその製造方法を提供することである。
The present invention was made in order to eliminate these drawbacks of the conventional technology, and aims to reduce the resistance by using a metal silicide layer in the lead-out of the base, and by using silicide growth to easily connect the base and emitter with a self-alignment line. The present invention provides a semiconductor integrated circuit with excellent characteristics. Another object of the present invention is to form a base electrode of a transistor on an isolation region.
An object of the present invention is to provide a semiconductor integrated circuit that reduces the area of an active region and improves the performance of a transistor, and a method for manufacturing the same.

V下、本発明を実施例によって詳細に説明する。Below, the present invention will be explained in detail by way of examples.

第2図(a)〜(f)は本発明の半導体集積回路の第1
の実施例を製造工程順に示した断面図であり同図(f)
が本発明に係る半導体集積回路の構造を示すものである
FIGS. 2(a) to 2(f) show the first part of the semiconductor integrated circuit of the present invention.
FIG.
1 shows the structure of a semiconductor integrated circuit according to the present invention.

図の順番(a)〜(f)に対応させ製造工程を説明する
。々お、図において前出のものと同一符号のものは同一
または均等部分を示すものとする。
The manufacturing process will be explained in accordance with the order (a) to (f) in the figures. In the figures, the same reference numerals as those mentioned above indicate the same or equivalent parts.

(a):  シリコン基板1の表面に埋込層(コレクタ
埋込層)2を設け、その上にシリコンエピタキシャル層
3(層の厚さは例えば1.5μm)を形成した。その表
面を熱酸化して酸化シリコン膜4を形成した。次に、コ
レクタ取り出し用の拡散層5を形成し、その後、イオン
打込み法によってベース拡散層6を形成し、表面にCV
D法によって窒化シリコン膜(絶縁膜)13(膜の厚さ
は例えば1000X)を形成した。なお、上記窒化シリ
コン膜の代りKP8G膜を形成してもよい。
(a): A buried layer (collector buried layer) 2 was provided on the surface of a silicon substrate 1, and a silicon epitaxial layer 3 (layer thickness: 1.5 μm, for example) was formed thereon. The surface was thermally oxidized to form a silicon oxide film 4. Next, a diffusion layer 5 for taking out the collector is formed, and then a base diffusion layer 6 is formed by ion implantation, and a CV
A silicon nitride film (insulating film) 13 (film thickness: 1000×, for example) was formed by the D method. Note that a KP8G film may be formed instead of the silicon nitride film.

(b)二次に、通常のホトエツチング技術を用いてエミ
ッタを形成する領域14の周囲の窒化シリコン膜16と
酸化シリコン膜4をエツチングし、ベースコンタクト用
の孔15を形成した。
(b) Second, the silicon nitride film 16 and silicon oxide film 4 around the region 14 where the emitter is to be formed were etched using a normal photoetching technique to form a hole 15 for a base contact.

(C):  次に、モリブデン膜16(膜の厚さは例え
ば3000A)を蒸着、スパッタ等により全面に形成し
、その後、窒素雰囲気中で400〜1000℃の熱処理
を行なう。この熱処理によってベースコンタクト孔15
上のモリブデン膜とシリコンとを反応させ、モリブデン
シリサイド膜17を形成した。このとき、モリブデンシ
リサイド膜17はひさし18を形成するように、モリブ
デン膜16の横方向にも成長させた。このモリブデンシ
リサイドのひさしの量は、上記窒素雰囲気中での熱処理
の温度と時間によって制御され、例えば800℃、60
分で約0.5μm、900℃、30分で約1μmとなる
。素子形成にはひさし18の長さが0.5〜1.5μm
の範囲で所望の値になるように上記熱処理条件を設定す
る。
(C): Next, a molybdenum film 16 (the thickness of the film is, for example, 3000 Å) is formed on the entire surface by vapor deposition, sputtering, etc., and then heat treatment is performed at 400 to 1000° C. in a nitrogen atmosphere. By this heat treatment, the base contact hole 15
The upper molybdenum film and silicon were reacted to form a molybdenum silicide film 17. At this time, the molybdenum silicide film 17 was also grown in the lateral direction of the molybdenum film 16 so as to form the eaves 18. The amount of molybdenum silicide eaves is controlled by the temperature and time of the heat treatment in the nitrogen atmosphere, for example, 800°C, 60°C.
It becomes about 0.5 μm in minutes, and about 1 μm in 30 minutes at 900°C. For element formation, the length of the eaves 18 is 0.5 to 1.5 μm.
The above heat treatment conditions are set so that the desired value is obtained within the range of .

(d):  次に、モリブデン膜16をリン酸によって
除去し、その後、酸素雰囲気中で600〜1100℃、
約1時間程度の熱処理を行ない、モリブデンシリサイド
膜17上に酸化シリコン膜19を形戒する。このとき酸
化7リコン膜19の厚さく例えば4000A)は酸化シ
リコン膜4よりも厚く形成する必要がある。
(d): Next, the molybdenum film 16 is removed with phosphoric acid, and then heated at 600 to 1100°C in an oxygen atmosphere.
A heat treatment is performed for about one hour to form a silicon oxide film 19 on the molybdenum silicide film 17. At this time, the thickness of the silicon oxide film 19 (for example, 4000 Å) needs to be thicker than the silicon oxide film 4.

(e):  次に、エミッタ(エミッタ拡散層7)を形
成する領域14以外の窒化シリコン膜13の表面をレジ
ストで覆い、エミッタ領域上の窒化シリコン膜13をエ
ツチング除去する。このとき酸化シリコン膜19がマス
クドナルので、ベースコンタクト用の孔15から所定の
距離(モリブデンシリサイドのひさし18と酸化シリコ
ン膜19の厚さによって決まる)にエミッタの孔が自己
整合的に形成される。さらに、酸化シリコン膜をエツチ
ングしてエミッタを形成する部分のシリコン表面を出し
、イオン打込み法あるいは熱拡散法によってエミッタ拡
散層7を形成する。
(e): Next, the surface of the silicon nitride film 13 other than the region 14 where the emitter (emitter diffusion layer 7) is to be formed is covered with a resist, and the silicon nitride film 13 on the emitter region is removed by etching. At this time, since the silicon oxide film 19 is a mask donal, an emitter hole is formed at a predetermined distance from the base contact hole 15 (determined by the thickness of the molybdenum silicide eaves 18 and the silicon oxide film 19) in a self-aligned manner. Furthermore, the silicon oxide film is etched to expose the silicon surface of a portion where an emitter will be formed, and an emitter diffusion layer 7 is formed by ion implantation or thermal diffusion.

(f)=次に、ホトエツチング技術を用いてコレクタ取
り出し用の拡散層5の上にコレクタコンタクト孔を開け
、さらに酸化シリコン膜19にベースコンタクト孔を開
けて、電極形成を行ない、ベース電極10.エミッタ電
極11.コレクタ電極12を設けてトランジスタが完成
する。
(f)=Next, a collector contact hole is made on the diffusion layer 5 for extracting the collector using a photoetching technique, and a base contact hole is further made on the silicon oxide film 19 to form an electrode, and the base electrode 10. Emitter electrode 11. A collector electrode 12 is provided to complete the transistor.

このようにして製作した本発明のバイポーラトランジス
タは、ベースコンタクトとエミッタの間隔を小さく(1
1zm以下も可能)でき、しかもシリサイド層(モリブ
デンシリサイド膜17)の電気抵抗が低いので、ベース
の外部抵抗(rbb/)が従来構造の1/3〜115に
低減され、高周波特性が著しく向上した。
The bipolar transistor of the present invention manufactured in this way has a small distance between the base contact and the emitter (1
1zm or less), and because the electrical resistance of the silicide layer (molybdenum silicide film 17) is low, the external resistance of the base (rbb/) is reduced to 1/3 to 115 of that of the conventional structure, and the high frequency characteristics are significantly improved. .

本実施例ではシリサイド用の電極材料としてモリブデン
膜を使用しているが、本発明にタングステン等の遷移金
属材料を用いることも勿論可能である。
Although a molybdenum film is used as the silicide electrode material in this embodiment, it is of course possible to use a transition metal material such as tungsten in the present invention.

第5図(・1)〜(e)は本発明の半導体集積回路の第
2の実施例を製造工程順に示した断面図であり同図(e
)が本発明に係る半導体集積回路の構造を示すものであ
る。
Figures 5(-1) to (e) are cross-sectional views showing the second embodiment of the semiconductor integrated circuit of the present invention in the order of manufacturing steps;
) shows the structure of the semiconductor integrated circuit according to the present invention.

本実施例のバイポーラトランジスタは、ベース電極をア
イソレーション領域上に形成することによって、第1の
実施例(第2図)で述べたトランジスタをさらに高性能
、高集積化するものである。
The bipolar transistor of this embodiment has a base electrode formed on an isolation region, thereby achieving higher performance and higher integration than the transistor described in the first embodiment (FIG. 2).

図の順番に対応させて製造工程を説明する。なお、第1
の実施例で説明した工程に準じる工程は説明を簡略にす
る。
The manufacturing process will be explained in accordance with the order of the figures. In addition, the first
The explanation of steps similar to those explained in the embodiment will be simplified.

(a):p形のシリコン基板1の表面に、n形のコレク
タ埋込層2を設け、その上にシリコンエピタキシャル層
6を形成し、その表面を熱酸化して酸化シリコン膜4を
形成し、さらにその上にCVD法によって窒化シリ弓ン
膜13を形成する。そして、通常のホトエツチング法食
用いて窒化シリコン膜13ト酸化ンリコン膜4のパター
ンニングを行ない、アイソレーンヨン用のパターンを形
成する。
(a): An n-type collector buried layer 2 is provided on the surface of a p-type silicon substrate 1, a silicon epitaxial layer 6 is formed thereon, and a silicon oxide film 4 is formed by thermally oxidizing the surface. Furthermore, a silicon nitride film 13 is formed thereon by the CVD method. Then, the silicon nitride film 13 and the silicon oxide film 4 are patterned using a normal photoetching method to form a pattern for an iso-rayon.

(b):  次に、露出したエピタキシャル層3をエツ
チングして、およそエピタキシャル層6の厚さの1/2
の深さの溝を形成する。そして、溝の底面にチャネル発
生防止のためにボロンをイオン打込み法で導入し、アニ
ールを行なった後、窒化シリコン膜16をマスクにして
選択酸化を行なってアイソレーンヨン用の酸化シリコン
層20を形成する。表面のパターンを除去し酸化シリコ
ン膜4を形成しなおして新たに酸化シリコン膜4を設け
た後、コレクタ取り出し用の拡散層(CN拡散層)5を
形成し、さらにボロンのイオン打込みを行ないベース拡
散層6を形成する。
(b): Next, the exposed epitaxial layer 3 is etched to approximately 1/2 the thickness of the epitaxial layer 6.
form a groove with a depth of Then, boron is introduced into the bottom of the trench by ion implantation to prevent channel generation, and after annealing, selective oxidation is performed using the silicon nitride film 16 as a mask to form a silicon oxide layer 20 for isolating. Form. After removing the surface pattern and forming a new silicon oxide film 4, a diffusion layer (CN diffusion layer) 5 for extracting the collector is formed, and boron ions are implanted to form the base. A diffusion layer 6 is formed.

(C):  次に、CV D法によって全面に窒化シリ
コン膜21を形成し、さらにその上に多結晶シリコン層
22を形成する。そして、ベース電極を取り出す領域の
みに多結晶シリコン層22を残して他の部分はエツチン
グ除去する。次に、エミッタ(エミッタ拡散層7)を形
成する領域14の周囲のベースコンタクトを取る領域(
ベースコンタク11L15)の窒化7’Jコン膜21と
酸化シリコン膜4′ヲホトエノチング法で除去す・る。
(C): Next, a silicon nitride film 21 is formed on the entire surface by CVD method, and a polycrystalline silicon layer 22 is further formed thereon. Then, the polycrystalline silicon layer 22 is left only in the area where the base electrode is taken out, and the other parts are removed by etching. Next, a region (
The nitride 7'J contact film 21 and the silicon oxide film 4' of the base contact 11L15) are removed by photoetching.

(d)二  次に、モリブデン膜を全面に形成した後窒
素′雰囲気中で熱処理を行ない、ベースコンタクト孔上
のモリブデン膜と7リコ/とを反応させると同時に、多
結晶シリコン層22とモリブデン膜を反応させて、モリ
ブデンシリサイド膜17を形成する。次に、残ったモリ
ブデン膜を除去し2*後、酸素清囲気中で熱処理を行な
い、モリブデンどすサイド膜17上に酸化シリコン膜1
9を形成する。
(d) Second, after forming a molybdenum film on the entire surface, heat treatment is performed in a nitrogen atmosphere to cause the molybdenum film on the base contact hole to react with 7lico/, and at the same time, the polycrystalline silicon layer 22 and the molybdenum film are reacted. A molybdenum silicide film 17 is formed by the reaction. Next, after removing the remaining molybdenum film 2*, heat treatment is performed in an oxygen atmosphere to form a silicon oxide film 1 on the molybdenum dot side film 17.
form 9.

(e):  次に、第1の実施例の場合と同様にしてエ
ミッタ拡散層7を形成し、さらにベース電極用コンタク
ト孔とコレクタ電極用コンタクト孔今形成した後、Al
l系材材料電極形成を行ない、ベース電極io、エミッ
タ電極11.コレクタ電極12を設けてトランジスタが
完成する。
(e): Next, an emitter diffusion layer 7 is formed in the same manner as in the first embodiment, and a contact hole for a base electrode and a contact hole for a collector electrode are formed.
The base electrode io, the emitter electrode 11. A collector electrode 12 is provided to complete the transistor.

このようにして製作した本発明のバイポーラトランジス
タは、ベースとエミッタ間の距離が狭いという特長の他
に、ベース領域(ベース拡散層6)の面積が小さくなる
特長がある。これは、ベース電極10をアイソレーショ
ン領域(酸化7937層2−0)上に形成しているため
、エミッタ周辺のベースコンタクト孔を小さく出来ろこ
とによるもので、ベース領域の面積が小さくなったため
にトランジスタのベース−コレクター接合容量(CT。
The bipolar transistor of the present invention manufactured in this way has the advantage that the distance between the base and the emitter is narrow, and the area of the base region (base diffusion layer 6) is small. This is because the base electrode 10 is formed on the isolation region (oxidized 7937 layer 2-0), so the base contact hole around the emitter can be made smaller, and the area of the base region is smaller. Base-collector junction capacitance (CT) of a transistor.

)が小さくなり、トランジスタの高周波特性が著しく向
上した。
) became smaller, and the high-frequency characteristics of the transistor were significantly improved.

以上説明したように、本発明の半導体集積回路はベース
の引出しに金属シリサイド膜を用いていシリコンに比べ
て115〜/1o)、他、種々の利点を有し、ま、た、
その製造方法においてはシリサイドの成長を用いてベー
スとエミッタを自己整合的に形成しているので、工程が
゛簡単になる利点を有している。
As explained above, the semiconductor integrated circuit of the present invention uses a metal silicide film for the lead-out of the base, and has various advantages compared to silicon (115~/1o), and
Since the manufacturing method uses silicide growth to form the base and emitter in a self-aligned manner, it has the advantage of simplifying the process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバイポーラ集積回路の要部構成を示す断
面図、第2図(a)〜(f)および第6図(8)〜(e
)はそれぞれ本発明の半導体集積回路の実施例を製造工
程順に示した断面図である。 1・・・シリコン基板   2・・埋込層6・・シリコ
ンエピタキシャル層 4.4’、9.19・・・酸化シリコン膜5・・・コレ
クタ増り出し用拡散層 6・・・ベース拡散層   7・・・エミッタ拡散層8
.22・・・多結晶シリコン層 10・・・ベース電極   11・・・エミッタ電極1
2・・・コレクタ電極 13.21・・・窒化ンリコン膜 16・・・モリブデン膜 17・・・モリブデンシリサイド膜 18・・・ひさし     20・・・酸化シリコン層
代理人弁理士 中村純之助 IP1図 1−2図 卆2図
FIG. 1 is a sectional view showing the main part configuration of a conventional bipolar integrated circuit, FIGS. 2(a) to (f), and FIGS. 6(8) to (e).
) are cross-sectional views showing embodiments of the semiconductor integrated circuit of the present invention in the order of manufacturing steps. 1...Silicon substrate 2...Buried layer 6...Silicon epitaxial layer 4.4', 9.19...Silicon oxide film 5...Diffusion layer for collector extension 6...Base diffusion layer 7... Emitter diffusion layer 8
.. 22... Polycrystalline silicon layer 10... Base electrode 11... Emitter electrode 1
2...Collector electrode 13.21...Nilicon nitride film 16...Molybdenum film 17...Molybdenum silicide film 18...Eaves 20...Silicon oxide layer Patent attorney Junnosuke Nakamura IP1 Figure 1- Figure 2 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  エミッタ拡散層の周辺でエミッタ拡散層より
1.5μm以下の所定の距離を隔てだ場所から金属シリ
サイド膜を用いてベース電極を取り出し、ベース電極と
エミッタ電極の絶縁を上記金属シリサイド膜の酸化膜で
行なうことを特徴とするバイポーラ型半導体集積回路。
(1) Take out the base electrode using a metal silicide film from a place around the emitter diffusion layer at a predetermined distance of 1.5 μm or less from the emitter diffusion layer, and insulate the base electrode and emitter electrode from the metal silicide film. A bipolar semiconductor integrated circuit characterized by being formed using an oxide film.
(2)下記の各工程を含むバイポーラ型半導体集積回路
の製造方法。 ■ シリコン基板表面を酸化シリコン膜で覆い、続いて
窒化シリコン膜又dPsQ膜の絶縁膜で覆う工程を有す
る第1の工程。 ■ エミッタ領域の周囲の上記絶縁膜および酸化シリコ
ン膜を除去、開孔する工程。 ■ 上記絶縁膜上および開孔部を含む基板」全面に遷移
金属膜を形成する工程。 O熱処理により上記遷移金属膜とシリコン基板を反応さ
せ、上記開孔上および上記開孔周辺部に金属シリサイド
膜を形成する工程。 ■ 上記金属シリサイド膜を酸化して表面に酸化シリコ
ン膜を形成する工程。 ■ 上記■の工程で形成した酸化シリコン膜をマスクに
してエミッタ領域上の上記絶縁膜および酸化シリコン膜
を除去しエミッタ孔を形成する工程。 (ろ)前記第1の工程は、シリコン基板表面を酸化シリ
コン膜で覆い、続いて窒化シリコン膜又はP S G膜
の絶縁膜で覆う工程、上記絶縁膜上に多結晶シリコン層
を形成し、電極を取り出す領域のみに上記多結晶シリコ
ン層を残す工程からなることを特徴とする特許請求の範
囲第2項記載のバイ−ポーラ型半導体集積回路の製造方
法。
(2) A method for manufacturing a bipolar semiconductor integrated circuit including the following steps. (2) A first step that includes a step of covering the silicon substrate surface with a silicon oxide film and then with an insulating film such as a silicon nitride film or a dPsQ film. ■ A step of removing the above insulating film and silicon oxide film around the emitter region and opening holes. ■ A step of forming a transition metal film on the above insulating film and on the entire surface of the substrate including the openings. A step of causing the transition metal film and the silicon substrate to react by O heat treatment to form a metal silicide film on and around the opening. ■ A step of oxidizing the metal silicide film to form a silicon oxide film on the surface. (2) Using the silicon oxide film formed in step (2) above as a mask, the insulating film and silicon oxide film on the emitter region are removed to form an emitter hole. (b) The first step is a step of covering the silicon substrate surface with a silicon oxide film, and then covering it with an insulating film such as a silicon nitride film or a PSG film, and forming a polycrystalline silicon layer on the insulating film; 3. The method of manufacturing a bipolar semiconductor integrated circuit according to claim 2, further comprising the step of leaving the polycrystalline silicon layer only in the region where the electrodes are taken out.
JP2435182A 1982-02-19 1982-02-19 Semiconductor integrated circuit and preparation thereof Pending JPS58142573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2435182A JPS58142573A (en) 1982-02-19 1982-02-19 Semiconductor integrated circuit and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2435182A JPS58142573A (en) 1982-02-19 1982-02-19 Semiconductor integrated circuit and preparation thereof

Publications (1)

Publication Number Publication Date
JPS58142573A true JPS58142573A (en) 1983-08-24

Family

ID=12135769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2435182A Pending JPS58142573A (en) 1982-02-19 1982-02-19 Semiconductor integrated circuit and preparation thereof

Country Status (1)

Country Link
JP (1) JPS58142573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169971A (en) * 1982-03-30 1983-10-06 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS5961179A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Manufacture of bipolar semiconductor device
WO1986001338A1 (en) * 1984-08-10 1986-02-27 Hitachi, Ltd. Method of producing semiconductor devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169971A (en) * 1982-03-30 1983-10-06 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH0247853B2 (en) * 1982-03-30 1990-10-23 Fujitsu Ltd
JPS5961179A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Manufacture of bipolar semiconductor device
WO1986001338A1 (en) * 1984-08-10 1986-02-27 Hitachi, Ltd. Method of producing semiconductor devices
US4729965A (en) * 1984-08-10 1988-03-08 Hitachi, Ltd. Method of forming extrinsic base by diffusion from polysilicon/silicide source and emitter by lithography

Similar Documents

Publication Publication Date Title
US4590666A (en) Method for producing a bipolar transistor having a reduced base region
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPS63199463A (en) Manufacture of bipolar transistor
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
JPH0241170B2 (en)
JP2001060592A (en) Manufacture of semiconductor device
JP2592414B2 (en) Method of manufacturing bipolar transistor structure
JPS58142573A (en) Semiconductor integrated circuit and preparation thereof
JPH0581051B2 (en)
JPS5940571A (en) Semiconductor device
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JPS5969966A (en) Semiconductor integrated circuit and manufacture thereof
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JPH0778833A (en) Bipolar transistor and its manufacture
JPH0239093B2 (en)
JP3189722B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2709714B2 (en) Semiconductor device and manufacturing method thereof
JP2575204B2 (en) Manufacturing method of bipolar semiconductor integrated circuit device
JPH01112770A (en) Manufacture of semiconductor device
JPS629226B2 (en)
JPS60140757A (en) Manufacture of semiconductor device
JPH11289082A (en) Semiconductor device and its manufacture
JPS63119264A (en) Semiconductor device
JPH0571191B2 (en)
JPS58164241A (en) Manufacture of semiconductor device