JPS5814503B2 - Nisanca vanadium - Google Patents

Nisanca vanadium

Info

Publication number
JPS5814503B2
JPS5814503B2 JP50036597A JP3659775A JPS5814503B2 JP S5814503 B2 JPS5814503 B2 JP S5814503B2 JP 50036597 A JP50036597 A JP 50036597A JP 3659775 A JP3659775 A JP 3659775A JP S5814503 B2 JPS5814503 B2 JP S5814503B2
Authority
JP
Japan
Prior art keywords
vanadium
torr
thin film
substrate
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50036597A
Other languages
Japanese (ja)
Other versions
JPS51111484A (en
Inventor
篠原紘一
清水康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50036597A priority Critical patent/JPS5814503B2/en
Publication of JPS51111484A publication Critical patent/JPS51111484A/en
Publication of JPS5814503B2 publication Critical patent/JPS5814503B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、二酸化バナジウム(V02)薄膜の製造力法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for manufacturing vanadium dioxide (V02) thin films.

■0の単結晶は、68℃で半導性の電気抵抗(R8(Ω
一cm))から金属性の電気抵抗(Rm(Ω一Cm))
を有するような変化を示す。
■ A single crystal with a temperature of 0 is semiconducting electrical resistance (R8 (Ω)
1cm)) to metallic electrical resistance (Rm (Ω1Cm))
It shows changes such as having .

一般に変化倍率(Rs/Rm)は10−3〜10−4?
報告されており、この現象を用いて、熱容量の小さい■
0薄膜スイッチ等が提案されている。
Generally, the change ratio (Rs/Rm) is 10-3 to 10-4?
It has been reported that this phenomenon can be used to reduce the heat capacity of
0 thin film switches and the like have been proposed.

この製法は、IXIO−5Torr程度の真空中で、基
板を100℃程度に加熱してバナジウムMを直接蒸着後
、500℃、2時間、酸素雰囲気で加熱酸化処理して、
VO2薄膜を得る方法が一般的である。
This manufacturing method involves heating the substrate to about 100°C in a vacuum of about IXIO-5 Torr, directly depositing vanadium M, and then heating and oxidizing it in an oxygen atmosphere at 500°C for 2 hours.
A common method is to obtain a VO2 thin film.

しかし、この力法では、シート抵抗が104Ωcmぼか
ら2×102Ω一cm程度の変化しか得られず、大きな
変化倍率を得るには、ほぼ前記した方法を慎重に繰り返
す必要があり、この力法は酸素圧、加熱処理温度の設定
に充分注意しないと103〜104の変化倍率は得られ
ない。
However, this force method can only obtain a change in sheet resistance from about 104Ωcm to about 2×102Ω1cm, and in order to obtain a large change factor, it is necessary to carefully repeat the method described above. A change ratio of 103 to 104 cannot be obtained unless sufficient care is taken in setting the oxygen pressure and heat treatment temperature.

この方法でも実用的に得られる値は、高々103であり
、この変化倍率が小さい程、抵抗変化倍率にヒステリン
ス現象が顕著に起こる欠点があった。
Even with this method, the value that can be practically obtained is at most 103, and the smaller this change magnification is, the more conspicuous a hysterinism phenomenon occurs in the resistance change magnification.

本発明は、加熱酸化処理なしで、安定に104の変化倍
率が得られるvO2薄膜の製造方法の提供を目的とし、
具体的には、真空中で酸素プラズマを形成し、このプラ
ズマに、■またはv205等の酸化物を加熱蒸発させ、
この蒸気を酸素プラズマに露呈させ、目的のVO2薄膜
を基板上に得る方法に関する。
The present invention aims to provide a method for producing a vO2 thin film that can stably obtain a change factor of 104 without heat oxidation treatment,
Specifically, oxygen plasma is formed in a vacuum, and an oxide such as ■ or v205 is heated and evaporated into this plasma.
The present invention relates to a method of exposing this vapor to oxygen plasma to obtain a desired VO2 thin film on a substrate.

第1図で代表的な製造装置を説明する。A typical manufacturing apparatus will be explained with reference to FIG.

真空容器1内に、基板2と蒸着物質3を対向して配設す
る。
A substrate 2 and a vapor deposition substance 3 are placed facing each other in a vacuum container 1.

加熱蒸発はタングステンボード4を電源5により抵抗加
熱する方法を示してあるが、電子ビーム加熱でもよいし
、他の方法でも一向に差し支えない。
For thermal evaporation, a method of resistively heating the tungsten board 4 using a power source 5 is shown, but electron beam heating or other methods may also be used.

蒸着物質3はV金属、またはVの酸化物いずれでも良い
が、■金属を出発物質とする力が制御し易い。
The vapor deposition material 3 may be either a V metal or an oxide of V, but (2) the force using the metal as a starting material is easy to control.

基板2と蒸着物質3との中間に、酸素プラズマを形成す
る。
Oxygen plasma is formed between the substrate 2 and the deposition material 3.

この例では、高周波グロー放電により、プラズマを発生
させる例を示している。
This example shows an example in which plasma is generated by high-frequency glow discharge.

抵抗の変化倍率の大きい薄膜を作るには、輝度の高い白
色発光が観測される、すなわち酸素原子のエネルギー遷
移による線スペクトルが観測される状態にしてやる力が
よい。
In order to create a thin film with a large resistance change factor, it is best to create a state in which high-brightness white light emission can be observed, that is, a line spectrum due to the energy transition of oxygen atoms can be observed.

高周波電極6に、例えば13.56MHzの高周波電力
を、高周波電源7より供給することにより、高周波グロ
ー放電が発生する。
By supplying high frequency power of, for example, 13.56 MHz to the high frequency electrode 6 from the high frequency power supply 7, a high frequency glow discharge is generated.

真空容器1内はポンプ8によりあらかじめ1×10−5
Torr〜1×10−6Torr程度に排気したのち、
調節弁9により調節して、反応ガス10を導入して、所
定の圧力にて、高周波グロー放電を起す。
The inside of the vacuum container 1 is 1×10-5 in advance by the pump 8.
After exhausting to about Torr ~ 1 x 10-6 Torr,
A reaction gas 10 is introduced under the control of a control valve 9, and a high-frequency glow discharge is generated at a predetermined pressure.

反応ガス10は、酸素100係でもよいし、Ar等の不
活性ガスと酸素の混合でもよいが、酸素100%の力が
良い結果が得られる。
The reaction gas 10 may be 100% oxygen or a mixture of oxygen and an inert gas such as Ar, but good results can be obtained with 100% oxygen.

基板2には、電源11により目際に応じて正または負の
直流電圧が印加できるが、この設定値は、VO2の性能
には大きな影響力はもたないが、基板と薄膜の密着性に
は重要な役割を果す。
A positive or negative DC voltage can be applied to the substrate 2 by the power supply 11 depending on the situation, but this setting value does not have a large influence on the performance of VO2, but it does affect the adhesion between the substrate and the thin film. plays an important role.

12は絶縁導入端子である。12 is an insulation introduction terminal.

第2図に投入高周波電力と抵抗変化倍率の関係を示して
あるが、酸素の圧力PO2がIXIO−2Torrにな
ると平均自由行程の関係から膜の生成速度が極めて遅く
なるし、5X10−5Torrより高真空になると、プ
ラズマの発生、維持が技術的に困難になり、真空度の範
囲は、8X10−3Torr〜5×10−5Torrが
実用範囲であり、圧力をパラメータにして、高周波電力
を増すに従って、抵抗変化倍率が増加する。
Figure 2 shows the relationship between the input high-frequency power and the resistance change magnification. When the oxygen pressure PO2 reaches IXIO-2 Torr, the film formation rate becomes extremely slow due to the mean free path relationship, and when the oxygen pressure PO2 reaches IXIO-2 Torr, the film formation rate becomes extremely slow. When it becomes a vacuum, it becomes technically difficult to generate and maintain plasma, and the practical range of the degree of vacuum is 8 x 10-3 Torr to 5 x 10-5 Torr. Resistance change magnification increases.

これは、■203〜V205のいろいろな相の含まれ力
に差がでて、VO2により近ずいていくことを示すもの
である。
This shows that there are differences in the power contained in the various phases of (1)203 to V205, and that they become closer to VO2.

そして図より投入高周波電力は400W以上である力が
よいことかわかる。
From the figure, it can be seen that the input high frequency power should be 400W or more.

なお、第2図は、第1図の装置であらかじめ真空容器1
内を10−6Torrまで排気した後、酸素(100%
)を導入し、それぞれの圧力を1×10−2Torrt
8X10−3Torrt8X10−4Torr,の3点
を選び、高周波電力をそれぞれ調節して電子ビーム加熱
蒸発源によりV金属より出発して酸化膜を形成した時の
データである。
In addition, in Figure 2, the vacuum vessel 1 is prepared in advance using the apparatus shown in Figure 1.
After exhausting the inside to 10-6 Torr, oxygen (100%
) and set the respective pressure to 1 x 10-2 Torrt.
This is data when three points of 8X10-3 Torr and 8X10-4 Torr were selected, and the high frequency power was adjusted respectively to form an oxide film starting from V metal using an electron beam heating evaporation source.

また第3図は、■金属を出発物質とし、投入高周波電力
500W時の、02・Ar分圧比と抵抗変化倍率の関係
を示している。
Furthermore, FIG. 3 shows the relationship between the 02.Ar partial pressure ratio and the resistance change magnification when metal is used as the starting material and the input high frequency power is 500 W.

酸素濃度が増加するにしたがって抵抗変化倍率が上昇し
ていることがわかる。
It can be seen that the resistance change factor increases as the oxygen concentration increases.

また第4図は、v205を出発物質とし、投入高周波電
力と抵抗変化倍率の関係を示している。
Further, FIG. 4 shows the relationship between input high frequency power and resistance change magnification using v205 as a starting material.

これら第3図、第4図のデータより出発物質かV金属ま
たはVの酸化物であっても同等の抵抗変化倍率が得られ
ることがわかる。
From the data in FIGS. 3 and 4, it can be seen that the same resistance change ratio can be obtained even if the starting material is a V metal or a V oxide.

なお、基板は加熱しても良いが、必ずしもVO2膜製造
の必要条件ではなく、本発明によれば、常温で充分であ
る。
Although the substrate may be heated, it is not necessarily a necessary condition for producing a VO2 film, and according to the present invention, room temperature is sufficient.

以上のような本発明の製造力法によって平均104〜5
X10’の抵抗変化倍率を有するVO2薄膜を得ること
ができ、その薄膜はほとんどヒステリシス現象をあらわ
さず、利用価値の高いものである。
By the manufacturing power method of the present invention as described above, an average of 104 to 5
A VO2 thin film having a resistance change magnification of X10' can be obtained, and the thin film exhibits almost no hysteresis phenomenon and is of high utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による製造力法を実焔するために1吏用
した装置の電気回路も付与した概略断面正面図、第2図
は同装置における投入高周波電力に対する抵抗変化倍率
特性図、第3図は同酸素濃度率に対する抵抗変化倍率特
性図、第4図は他の条件における投入高周波電力に対す
る抵抗変化倍率特性図である。 1……真空容器、2……基板、3……蒸着物質、6……
高周波電極、7……高周波電源。
Fig. 1 is a schematic cross-sectional front view of a device used to produce a flame using the manufacturing force method according to the present invention, including an electric circuit. FIG. 3 is a resistance change magnification characteristic diagram for the same oxygen concentration rate, and FIG. 4 is a resistance change magnification characteristic diagram for input high frequency power under other conditions. 1... Vacuum container, 2... Substrate, 3... Vapor deposition substance, 6...
High frequency electrode, 7... High frequency power source.

Claims (1)

【特許請求の範囲】[Claims] 1 真空容器内に基板とバナジウムまたはバナジウムの
酸化物からなる蒸発源とを対向して配設し、両者間の空
間に8X10−3Torr〜5X10−5Torrの圧
力範囲でかつ高周波電力400W以上で酸素プラズマを
発生させ、前記酸素プラズマに前記蒸発源よりの物質蒸
気を露呈して前記基板上に二酸化バナジウム薄膜を得る
ことを特徴とする二酸化バナジウム薄膜の製造方法。
1 A substrate and an evaporation source made of vanadium or vanadium oxide are placed facing each other in a vacuum container, and oxygen plasma is applied to the space between them at a pressure range of 8X10-3 Torr to 5X10-5 Torr and a high frequency power of 400 W or more. A method for producing a vanadium dioxide thin film, comprising: generating a vanadium dioxide thin film, and exposing material vapor from the evaporation source to the oxygen plasma to obtain a vanadium dioxide thin film on the substrate.
JP50036597A 1975-03-28 1975-03-28 Nisanca vanadium Expired JPS5814503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50036597A JPS5814503B2 (en) 1975-03-28 1975-03-28 Nisanca vanadium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50036597A JPS5814503B2 (en) 1975-03-28 1975-03-28 Nisanca vanadium

Publications (2)

Publication Number Publication Date
JPS51111484A JPS51111484A (en) 1976-10-01
JPS5814503B2 true JPS5814503B2 (en) 1983-03-19

Family

ID=12474184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50036597A Expired JPS5814503B2 (en) 1975-03-28 1975-03-28 Nisanca vanadium

Country Status (1)

Country Link
JP (1) JPS5814503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336439A (en) * 1976-09-16 1978-04-04 Mitsubishi Electric Corp Information processor
KR20030019772A (en) * 2001-08-31 2003-03-07 (주)니즈 Manufacturing method of non-cooling type vanadium dioxide thin film thermal sensor
JP5136976B2 (en) 2007-09-12 2013-02-06 独立行政法人産業技術総合研究所 Vanadium oxide thin film pattern and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113733A (en) * 1973-03-05 1974-10-30
JPS5022780A (en) * 1973-07-03 1975-03-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113733A (en) * 1973-03-05 1974-10-30
JPS5022780A (en) * 1973-07-03 1975-03-11

Also Published As

Publication number Publication date
JPS51111484A (en) 1976-10-01

Similar Documents

Publication Publication Date Title
JP3837451B2 (en) Method for producing carbon nanotube
JPS5814503B2 (en) Nisanca vanadium
US3239368A (en) Method of preparing thin films on substrates by an electrical discharge
US4214018A (en) Method for making adherent pinhole free aluminum films on pyroelectric and/or piezoelectric substrates
JPH03122266A (en) Production of thin nitride film
JPH03101033A (en) Manufacture of thin film
JPH04219301A (en) Production of oxide superconductor thin film
JPS62291081A (en) Metal-insulator-metal type element
JPH01219162A (en) Production of thin oxide film and apparatus therefor
JP2004137101A (en) Method of producing titanium oxide film
JPH0723532B2 (en) Method for forming transparent conductive film
JPH03232959A (en) Production of thin film
JPH0542764B2 (en)
JP4994661B2 (en) Proton conductive membrane, method for producing the same, hydrogen permeable structure, and fuel cell
JPH02157123A (en) Production of thin barium titanate film
JP2905512B2 (en) Thin film forming equipment
JPS6226869A (en) Manufacture of photovoltaic device
JPS5830105A (en) Method of producing nitrided zircomium thin film resistor
JPS61190066A (en) Formation of thin in2o3 film
JPS628409A (en) Formation of transparent conducting metal oxide film
JPH04223333A (en) Manufacture of thin film transistor
JPS5813006B2 (en) Sankabutsuhandoutaihakumakuno Seizouhouhou
JPS62185316A (en) Formation of electrode
JPH02255507A (en) Production of high-temperature superconducting thin film
JPH0243357A (en) Production of thin superconducting film