JPS6226869A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS6226869A
JPS6226869A JP60166408A JP16640885A JPS6226869A JP S6226869 A JPS6226869 A JP S6226869A JP 60166408 A JP60166408 A JP 60166408A JP 16640885 A JP16640885 A JP 16640885A JP S6226869 A JPS6226869 A JP S6226869A
Authority
JP
Japan
Prior art keywords
substrate
amorphous semiconductor
semiconductor layer
transparent electrode
reactive gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60166408A
Other languages
Japanese (ja)
Inventor
Hiroaki Kubo
裕明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60166408A priority Critical patent/JPS6226869A/en
Publication of JPS6226869A publication Critical patent/JPS6226869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To eliminate the adverse effects caused by heat and to deposit a transparent electrode layer having a high quality, by holding a lower electrode and a substrate having an amorphous semiconductor layer adhered thereon within a reaction chamber in which a vacuum can be held while insulating the lower electrode from the substrate, by introducing a reactive gas containing oxygen, by evaporating a material and by applying a high frequency voltage. CONSTITUTION:A reaction chamber 1 is evacuated to 10<-6>Torr or less. A reactive gas containing oxygen is introduced in the chamber 1 through a supply valve 3 so that the gas pressure is held around 10<-4>Torr. Particles evaporated from an evaporation source 4 and the reactive gas are converted into plasma by the discharge from a high-frequency voltage applied to a high-frequency coil 5, so that a discharge region is provided around the high-frequency coil 5. A lower electrode 23 and a susceptor 6 for holding a substrate 22 having an amorphous semiconductor layer 24 adhered thereon are provided so as to face the evaporation source 4 with the high-frequency coil 5 interposed therebetween and are fixed in the reaction chamber by means of an insulating support 7. The evaporated particles positively combine with the oxygen contained in the reactive gas converted into plasma in the discharge region within the high-frequency coil 5 and the compound is separated out and deposited on the amorphous semiconductor layer 24 of the substrate 22 insulated completely.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は太陽電池や光センサー等に使用される光起電力
装置の製造方法に関する。特に基板−下部電極一非晶質
半導体層一透明電極を順次被着した構造を有する光起電
力装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a photovoltaic device used for solar cells, optical sensors, and the like. In particular, the present invention relates to a method of manufacturing a photovoltaic device having a structure in which a substrate, a lower electrode, an amorphous semiconductor layer, and a transparent electrode are sequentially deposited.

(発明の背景) 光起電力装置は光の照射によって作用するために、非晶
質半導体層を挟む電極の一方が遇明体でなければならな
い。
(Background of the Invention) Since a photovoltaic device operates by irradiation with light, one of the electrodes that sandwich the amorphous semiconductor layer must be a light object.

製造方法によって、透明電極層の形成は非晶質半導体層
を被着形成する前に行う場合、即ちガラス基板上に、透
明電極層−非晶質半導体層−」二部(金属)電極の順で
被着形成する場合と、非晶質半導体層を被着形成した後
に行う場合部ぢ、下部(金属)電極−非晶質半導体層−
透明電極の順で被着形成する場合とがある。
Depending on the manufacturing method, the formation of the transparent electrode layer may be performed before depositing the amorphous semiconductor layer, i.e., the formation of the transparent electrode layer - the amorphous semiconductor layer - the two-part (metal) electrode on the glass substrate. The lower (metal) electrode - amorphous semiconductor layer -
In some cases, the transparent electrode is deposited in this order.

本発明は後者の非晶質半導体層を被着形成した後に透明
電極層を被着形成する光起電力装置の製造方法に関し、
非晶質半導体層への悪影響を皆無とし、かつ特性が安定
し、成膜速度を向上させる透明電極層の被着方法につい
て案出されたものである。
The present invention relates to a method for manufacturing a photovoltaic device in which a transparent electrode layer is deposited after the latter amorphous semiconductor layer is deposited.
A method for depositing a transparent electrode layer has been devised that has no adverse effect on the amorphous semiconductor layer, has stable characteristics, and improves the film formation rate.

(従来技術及びその問題点) 従来、太陽電池や光センサーなどの光起電力装置は光の
透過率を高めるために入射側の透明体の厚みを減らすべ
く、第5図に示す構造を有する光起電力装置を使用して
きた。
(Prior art and its problems) Conventionally, photovoltaic devices such as solar cells and optical sensors have the structure shown in FIG. I have been using an electromotive force device.

第5図は光起電力装置の構造図である。22は表面が平
滑なセラミックなどの基板である。23は基板22上に
被着形成したアルミニウム、クロム等の下部電極であり
、さらに下部電極23上には、P−i−N接合、N−1
−P接合、または一定の不純物をドープすることによっ
て任意の接合を施した非晶質半導体層24が被着形成さ
れる。さらにこの非晶質半導体層24上に透明電極層2
5が形成される。
FIG. 5 is a structural diagram of a photovoltaic device. 22 is a substrate made of ceramic or the like with a smooth surface. 23 is a lower electrode made of aluminum, chromium, etc. deposited on the substrate 22, and on the lower electrode 23, a P-i-N junction, an N-1
An amorphous semiconductor layer 24 having a -P junction or an arbitrary junction formed by doping with a certain impurity is deposited. Furthermore, a transparent electrode layer 2 is provided on this amorphous semiconductor layer 24.
5 is formed.

以上の様な構造をした光起電力装置20に透明電極層2
5側より光が照射されると、非晶質半導体層24中に電
子及び正孔が発生して光起電力が生したり、導電率が変
化したりする。この構造の利点は光の照射が数百人の膜
厚の透明電極層25側からなので、非晶質半4体層24
まで到達する光量が非常に多く、膜厚の増減によって一
定波長に対する光の吸収量が容易に制御できる。光起電
力装置20の製造方法で特に非晶質半導体層24上に透
明電極層25を被着形成するための手法としては、真空
蒸着法、スパンタリング法、気相蒸着法、スプレー法等
により、被膜材料として酸化インジウム錫などの金属酸
化物が多く使用されてきた。
A transparent electrode layer 2 is added to the photovoltaic device 20 having the above structure.
When light is irradiated from the 5 side, electrons and holes are generated in the amorphous semiconductor layer 24 to generate a photovoltaic force or change the conductivity. The advantage of this structure is that the light is irradiated from the side of the transparent electrode layer 25, which has a thickness of several hundred layers, so the amorphous semi-quadram layer 24
The amount of light that reaches up to 500 nm is extremely large, and the amount of light absorbed for a given wavelength can be easily controlled by increasing or decreasing the film thickness. In the method for manufacturing the photovoltaic device 20, methods for depositing and forming the transparent electrode layer 25 on the amorphous semiconductor layer 24 include vacuum evaporation, sputtering, vapor deposition, spraying, etc. , metal oxides such as indium tin oxide have often been used as coating materials.

例えば酸化インジウム錫は透過率が高く、かつ電気的に
は高い導電性を有し、光起電力装置20の透明電極層2
5としては優れた材料である。
For example, indium tin oxide has high transmittance and high electrical conductivity, and the transparent electrode layer 2 of the photovoltaic device 20
5, it is an excellent material.

一方、透明電極層25を被着形成する上述の方法の場合
、通常成膜中に基板を200°C以上に加熱して行わな
ければ透過率などの光学的にも、導電率等の電気的にも
優れた膜が得られないという問題があった。
On the other hand, in the case of the above-mentioned method of depositing and forming the transparent electrode layer 25, unless the substrate is heated to 200°C or higher during film formation, optical properties such as transmittance and electrical properties such as conductivity are However, there was a problem that an excellent film could not be obtained.

しかしながら、非晶質半導体層24上に透明電極層25
を被着する際、基板22(既に非晶質半導体層24が被
着済)を200℃以上に加熱すると非晶質半導体層24
に悪影響を及ぼすという問題を派生する。
However, the transparent electrode layer 25 on the amorphous semiconductor layer 24
When the substrate 22 (on which the amorphous semiconductor layer 24 has already been deposited) is heated to 200° C. or higher, the amorphous semiconductor layer 24
This may lead to the problem of having a negative impact on

即ち、下部電極23に含まれる金属が非晶質半導体1’
i24に熱拡散を起こし非晶質半導体層24内のP−i
−N接合などを崩してしまい光起電力が十分に得られな
くなるからである。
That is, the metal contained in the lower electrode 23 is the amorphous semiconductor 1'.
P-i in the amorphous semiconductor layer 24 causes thermal diffusion to i24.
This is because the -N junction etc. will be destroyed and a sufficient photovoltaic force will not be obtained.

この様に従来は非晶質半導体層に悪影響を及ぼさずして
特性的に優れた透明電極層を形成する光起電力装置の製
造方法という点では満足できるものではなかった。
As described above, conventional methods for manufacturing a photovoltaic device that form a transparent electrode layer with excellent characteristics without adversely affecting the amorphous semiconductor layer have not been satisfactory.

(本発明の目的) 本発明の目的は上述の非晶質半導体層上に透明電極層を
被着する際、非晶質半導体層に熱による悪影響を防止し
、かつ光学的にも電気的にも優れた透明電極層を得る光
起電力装置の製造方法を提供することにある。
(Objective of the present invention) The object of the present invention is to prevent the adverse effects of heat on the amorphous semiconductor layer when depositing a transparent electrode layer on the amorphous semiconductor layer, and to prevent the amorphous semiconductor layer from being adversely affected by heat, and to provide optical and electrical performance. Another object of the present invention is to provide a method for manufacturing a photovoltaic device that provides an excellent transparent electrode layer.

(問題を解決する具体的手段) 上述の問題を解決するための具体的な手段は、基板の主
面上に下部電極、非晶質半導体層及び透明電極層を順次
被着形成してなる光起電力装置の製造方法において、真
空保持可能な反応室内に下部電極及び非晶質半導体層が
被着された基板を絶縁して保持するとともに反応室内に
酸素を含む反応性ガスを導入して、この雰囲気中でイン
ジウム等の金属材料或いは金属酸化物材料の透明電極材
料の蒸発源から、透明電極材料を蒸発させるとともに、
蒸発源近傍に高周波電圧を印加することによりプラズマ
化させた蒸発粒子および前記反応性ガスまたはそれらの
化合物を基板の非晶質半導体層上に透明電極層として被
着形成することを特徴とするものである。
(Specific means for solving the problem) A specific means for solving the above-mentioned problem is a light-emitting device formed by sequentially depositing a lower electrode, an amorphous semiconductor layer, and a transparent electrode layer on the main surface of a substrate. In a method for manufacturing an electromotive force device, a lower electrode and a substrate on which an amorphous semiconductor layer is deposited are insulated and held in a reaction chamber that can be maintained in a vacuum, and a reactive gas containing oxygen is introduced into the reaction chamber, In this atmosphere, the transparent electrode material is evaporated from the evaporation source of a metal material such as indium or a metal oxide material, and
The method is characterized in that evaporated particles turned into plasma by applying a high frequency voltage near the evaporation source and the reactive gas or their compound are deposited as a transparent electrode layer on the amorphous semiconductor layer of the substrate. It is.

(実施例) 以下、本発明の光起電力装置の製造方法に用いる製造装
置の実施例を模式的に示す概略図である第1図に従って
具体的に説明する。
(Example) Hereinafter, an example of a manufacturing apparatus used in the method of manufacturing a photovoltaic device of the present invention will be specifically described with reference to FIG. 1, which is a schematic diagram schematically showing an example.

真空保持可能な反応室1は排気バルブ2を介してロータ
リーポンプなどの排気系(図示せず)に接続され、反応
室1内は10− ’Torr以下に真空排気される。さ
らに反応室1は反応性ガス供給バルブ3を介してガス系
(図示せず)に接続され、酸素を含む反応性ガスを導入
し、10− ’Torr程度のガス圧に保たれる。蒸発
源4は酸化インジウム等の金属酸化物材料或いはインジ
ウム等の金属材料の蒸発材料(透明電極の材料)からな
り、この蒸発源4の近傍上部には高周波コイル5が設け
られる。
A reaction chamber 1 capable of maintaining a vacuum is connected to an exhaust system (not shown) such as a rotary pump via an exhaust valve 2, and the inside of the reaction chamber 1 is evacuated to a pressure of 10-' Torr or less. Furthermore, the reaction chamber 1 is connected to a gas system (not shown) via a reactive gas supply valve 3, a reactive gas containing oxygen is introduced, and the gas pressure is maintained at about 10-'Torr. The evaporation source 4 is made of a metal oxide material such as indium oxide or an evaporation material (transparent electrode material) of a metal material such as indium, and a high frequency coil 5 is provided near and above the evaporation source 4 .

すなわち、該蒸発源4から蒸発した蒸発粒子が反応性ガ
スとともに高周波コイル5に印加された高周波電圧の放
電により、プラズマ化され高周波コイル5を中心に放電
領域を形成する。高周波コイル5は13.56 Mll
□の高周波電源11に接続されている。
That is, the evaporated particles evaporated from the evaporation source 4 are turned into plasma by the discharge of the high frequency voltage applied to the high frequency coil 5 together with the reactive gas, and form a discharge region around the high frequency coil 5. High frequency coil 5 is 13.56 Mll
It is connected to the high frequency power supply 11 indicated by □.

高周波コイル5を挟んで蒸発源4に対向する位置に下部
電極23及び非晶質半導体層24が被着された基板22
を保持するサセプタ6が設けられ、該サセプタ6はセラ
ミック等の絶縁支持体7によって反応室1内に固定され
ている。即ち基板22は全くバイアス電圧等は印加され
ない構造となっている。
A substrate 22 on which a lower electrode 23 and an amorphous semiconductor layer 24 are deposited at a position facing the evaporation source 4 with the high frequency coil 5 in between.
A susceptor 6 is provided for holding the susceptor 6, and the susceptor 6 is fixed within the reaction chamber 1 by an insulating support 7 made of ceramic or the like. That is, the substrate 22 has a structure in which no bias voltage or the like is applied at all.

蒸発源4は電子ビーム、抵抗加熱等の加熱手段により酸
化インジウムなどの蒸発源4が加熱蒸発される。
The evaporation source 4 is heated to evaporate indium oxide or the like using a heating means such as an electron beam or resistance heating.

第1図の実施例ではフィラメント9から放射された電子
ビームが蒸発源4を加熱する電子ビーム加熱方法が用い
られている。尚、10は基板22を加熱するヒーターで
あり、基板温度は200℃以下に抑えられる。
In the embodiment shown in FIG. 1, an electron beam heating method is used in which an electron beam emitted from a filament 9 heats the evaporation source 4. Note that 10 is a heater that heats the substrate 22, and the substrate temperature is suppressed to 200° C. or less.

以上の構成及び作用をする透明電極層被着装置を用いて
、基板22の非晶質半導体層24上に透明電極層25を
被着する。
The transparent electrode layer 25 is deposited on the amorphous semiconductor layer 24 of the substrate 22 using the transparent electrode layer depositing apparatus having the above structure and operation.

蒸発源4から蒸発した粒子が高周波コイル5中の放電領
域でプラズマ化した反応性ガスの酸素と積極的に化合し
、完全に絶縁された基板22の非晶質半導体層24上に
析出され、被着される。
Particles evaporated from the evaporation source 4 actively combine with oxygen, a reactive gas that has become plasma in the discharge region of the high-frequency coil 5, and are deposited on the amorphous semiconductor layer 24 of the completely insulated substrate 22. be coated.

尚、反応室内に専大される反応性ガスとしては酸素ガス
単独の他に、酸素ガスにアルゴン等の不活性ガスを加え
た混合ガスを用いてもよい。
In addition to oxygen gas alone, a mixed gas of oxygen gas and an inert gas such as argon may be used as the reactive gas exclusively contained in the reaction chamber.

実験1゜ 本発明者は上述の装置を用いて以下の反応条件の下で基
板22の非晶質半導体層24上に透明電極層25を被着
した。蒸発#4は酸化インジウム錫である。
Experiment 1 The inventor deposited a transparent electrode layer 25 on the amorphous semiconductor layer 24 of the substrate 22 under the following reaction conditions using the above-mentioned apparatus. Evaporation #4 is indium tin oxide.

基板温度        155℃ Ar流13          55CCMO□流it
          15 SCCM高周波電源の出力
    200イ 電子ビ一ム加速度電圧  4.5KV 基板面積         30cal結果、透明電極
層25は約4.0人/SECという高成膜速度で被着で
き、かつ第2図に示す如く高い透過率が得られた。この
時のシート抵抗は9oΩ/口〜120Ω/口であり、膜
厚のばらつきが±5%以内におさまった。
Substrate temperature 155℃ Ar flow 13 55CCMO□ flow it
15 SCCM high frequency power supply output 200 electron beam Acceleration voltage 4.5 KV Substrate area 30 cal As a result, the transparent electrode layer 25 could be deposited at a high deposition rate of about 4.0 people/SEC, and as shown in FIG. A very high transmittance was obtained. The sheet resistance at this time was 90Ω/hole to 120Ω/hole, and the variation in film thickness was within ±5%.

尚、第2図において横軸は照射される光の波長を示し縦
軸は光の波長に対する透過率を示す。
In FIG. 2, the horizontal axis indicates the wavelength of the irradiated light, and the vertical axis indicates the transmittance with respect to the wavelength of the light.

波長550nm以上の光に関しては80%以上の透過率
が得られた。
A transmittance of 80% or more was obtained for light with a wavelength of 550 nm or more.

実験2゜ 本発明者は上述の装置を用いて以下の反応条件の下で基
板22の非晶質半導体層24上に透明電極層25を被着
した。蒸発#4は酸化インジウム錫である。
Experiment 2 The inventor deposited a transparent electrode layer 25 on the amorphous semiconductor layer 24 of the substrate 22 under the following reaction conditions using the above-mentioned apparatus. Evaporation #4 is indium tin oxide.

基板温度        200℃ Ar流ffi           55CCMO□流
ffi          50 SCCM高周波電源
の出力    200 W 電子ビーム加速度電圧  4.5KV 基板面積         30col結果、透明電極
層25は約20人/SECという極めて早い成膜速度で
被着され、かつ波長550r+mで透過率が83%以上
の良質のものが得られた。
Substrate temperature 200°C Ar flow ffi 55 CCMO□ flow ffi 50 SCCM high frequency power supply output 200 W Electron beam acceleration voltage 4.5 KV Substrate area 30 col As a result, the transparent electrode layer 25 was deposited at an extremely fast film formation rate of about 20 people/SEC. A high-quality product with a transmittance of 83% or more at a wavelength of 550 r+m was obtained.

比較実験 上述の装置で高周波コイル5に高周波電圧を印加せず、
以下の反応条件の下で基板22の非晶質半導体層24上
に透明電極層25゛ を被着形成した。
Comparative experiment With the above-mentioned device, no high-frequency voltage was applied to the high-frequency coil 5,
A transparent electrode layer 25' was formed on the amorphous semiconductor layer 24 of the substrate 22 under the following reaction conditions.

基板温度        200°C Ar流M                     
 5  SCCM02流量         155C
CM電子ビーム加速度電圧  4.5KV 基板面積         30cに 結果、透明電極N25゛ は1.5人/SECという成
膜成度で被着され、その透過率は酸素を含む反応性ガス
供給口12に近いところに形成された透明電極層25′
 と離れたところに形成された透明電極層25゛では1
0%前後のばらつきが生じ、膜厚の分布も梃めてばらつ
いた。さらに透明電極層25゛ のシ一ト抵抗は47Ω
/口から370Ω/口までと安定しない。
Substrate temperature 200°C Ar flow M
5 SCCM02 flow rate 155C
As a result, a transparent electrode N25 was deposited on a CM electron beam acceleration voltage of 4.5 KV and a substrate area of 30 cm at a film formation rate of 1.5 people/SEC, and its transmittance was close to that of the reactive gas supply port 12 containing oxygen. The transparent electrode layer 25' formed there
The transparent electrode layer 25゜ formed at a distance of 1
A variation of around 0% occurred, and the film thickness distribution was also distorted and varied. Furthermore, the sheet resistance of the transparent electrode layer 25゛ is 47Ω.
/mouth to 370Ω/mouth and unstable.

上記実験の結果以下のことが判明した。As a result of the above experiment, the following was found.

実験1と比較実験より、 ■透明電極層25の透過率を向上させるには酸素を含む
反応性ガスのプラズマ化を充分行い、蒸発材料と充分反
応させることが重要である。
From Experiment 1 and the comparative experiment, (1) In order to improve the transmittance of the transparent electrode layer 25, it is important to sufficiently transform the reactive gas containing oxygen into plasma and cause it to react sufficiently with the evaporation material.

■シート抵抗及び膜厚が均一な透明電極層25を得るに
は、被着する基板全体に相当する広い範囲に放電領域を
形成し、反応性ガスのプラズマ化を促進させることが重
要である。
(2) In order to obtain a transparent electrode layer 25 with uniform sheet resistance and film thickness, it is important to form a discharge region in a wide range corresponding to the entire substrate to which it is deposited, and to promote plasma conversion of the reactive gas.

また実験1と実験2より ■透明電極層25の成膜速度を向上させるためには非晶
質半導体層24に熱によるダメージを与えない基板温度
で、蒸発材料に見合った反応性ガスの量を導入し積極的
にプラズマ化を行い蒸発材料と反応させることが重要で
ある。
Also, from Experiments 1 and 2, in order to improve the deposition rate of the transparent electrode layer 25, the amount of reactive gas commensurate with the amount of evaporation material should be maintained at a substrate temperature that does not cause heat damage to the amorphous semiconductor layer 24. It is important to introduce it and actively turn it into plasma to react with the evaporation material.

尚、高周波電源の出力と透過率の関係について実験1と
同条件で高周波電源の出力を可変し、650nmの光の
波長下で測定した結果を第3図に示す。
Regarding the relationship between the output of the high frequency power source and the transmittance, the output of the high frequency power source was varied under the same conditions as in Experiment 1, and the results were measured under a light wavelength of 650 nm. The results are shown in FIG.

第3図の横軸は高周波電源11の出力を示し、縦軸は透
明電極層25の透過率を示す。
The horizontal axis in FIG. 3 shows the output of the high frequency power source 11, and the vertical axis shows the transmittance of the transparent electrode layer 25.

次に本発明の光起電力装置の製造方法で重要な事項は装
置の説明で前述したように基板22を絶縁保持し、全く
バイアスを印加しない状態で非晶質半導体層24上に透
明電極層25を被着形成することにある。これは基板2
2が反応室1の内壁と導通しアースされていたり、DC
バイアスが印加されているとプラズマ化した反応性ガス
の電子や計イオン等が激しく非晶質半導体N24に衝突
しダメージを与えることを防止するためである。
Next, an important point in the method for manufacturing a photovoltaic device of the present invention is that, as described above in the description of the device, the substrate 22 is held insulated, and a transparent electrode layer is formed on the amorphous semiconductor layer 24 without applying any bias. 25 is deposited and formed. This is board 2
2 is electrically connected to the inner wall of reaction chamber 1 and grounded, or DC
This is to prevent electrons, ions, etc. of the reactive gas turned into plasma from violently colliding with the amorphous semiconductor N24 and causing damage when a bias is applied.

本発明者は実験1と同一反応条件の下で基板22にDC
バイアスを一15V〜+15Vの範囲で印加し透明電極
N25を基板22の非晶質半導体N24上に被着した。
The present inventor applied DC to the substrate 22 under the same reaction conditions as in Experiment 1.
A bias was applied in the range of -15 V to +15 V, and the transparent electrode N25 was deposited on the amorphous semiconductor N24 of the substrate 22.

第4図は横軸にDCバイアスを示し、縦軸に被着された
透明電極層25の透過率を示す。尚、このデータは波長
650n+++の先の照射で測定したものである。
In FIG. 4, the horizontal axis shows the DC bias, and the vertical axis shows the transmittance of the deposited transparent electrode layer 25. Note that this data was measured with previous irradiation at a wavelength of 650n+++.

結果、基板にマイナスのバイアスを印加した場合、透過
率が極めて低く、良質の透明電極層は得られない。また
プラスのバイアスを印加した場合、マイナス程の透過率
の低下はないが透過率80%以上得ることは困難で、光
起電力装置の透明電極層として決して満足されるものは
得られない。
As a result, when a negative bias is applied to the substrate, the transmittance is extremely low and a high-quality transparent electrode layer cannot be obtained. Further, when a positive bias is applied, although the transmittance does not decrease as much as a negative bias, it is difficult to obtain a transmittance of 80% or more, and it is never possible to obtain a transparent electrode layer for a photovoltaic device.

尚、本発明は上述の実施例に限定されることはなく、蒸
発源として、酸化インジウムの他に酸化錫、酸化インジ
ウムなどの金属酸化物、或いは錫、インジウム等の金属
材料でも構わない。
Note that the present invention is not limited to the above-described embodiments, and the evaporation source may be a metal oxide such as tin oxide or indium oxide, or a metal material such as tin or indium in addition to indium oxide.

(効果) 以上の様に、本発明の光起電力装置の製造方法で非晶質
半導体層上に透明電極層を被着する際、真空保持可能な
反応室内に下部電極及び非晶質半導体層が被着された基
板を絶縁して保持するとともに、反応室内に酸素を含む
反応性ガスを導入してこの雰囲気中で金属材料及び金属
酸化物材料を蒸発させるとともに、蒸発源近傍に高周波
電圧を印加して非晶質半導体層上に透明電極層を被着す
るため、 非晶質半導体層に熱による悪影響を及ぼさない基板温度
で、透過率が優れ、シート抵抗及び膜厚が均一な極めて
良質な透明電極層を非晶質半導体層上に被着でき、その
成膜速度を非常に向上させることができる光起電力装置
の製造方法である。
(Effects) As described above, when depositing a transparent electrode layer on an amorphous semiconductor layer in the method for manufacturing a photovoltaic device of the present invention, the lower electrode and the amorphous semiconductor layer are placed in a reaction chamber that can be maintained in vacuum. At the same time, a reactive gas containing oxygen is introduced into the reaction chamber to evaporate the metal material and metal oxide material in this atmosphere, and a high frequency voltage is applied near the evaporation source. Because the transparent electrode layer is deposited on the amorphous semiconductor layer by applying an electric current, the substrate temperature is such that heat does not adversely affect the amorphous semiconductor layer, and extremely high quality with excellent transmittance and uniform sheet resistance and film thickness is achieved This is a method for manufacturing a photovoltaic device that can deposit a transparent electrode layer on an amorphous semiconductor layer and greatly improve the deposition rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光起電力装置の製造方法に用いる製造
装置の実施例を模式的に示す概略図である。 第2図乃至第3図は本発明の光起電力装置の製造方法で
得られた透明電極層の各種データをグラフ化したもので
あり、第2図は光の波長に対する透過率の変化を示す。 第3図は高周波電源の出力に対する透過率の変化を示す
。 第4図は本発明の光起電力装置の製造方法によって得た
透明電極層と基板にDCバイアスを印加して製造して得
た透明電極層との透過率の変化を示す。 第5図は光起電力装置の断面構造図である。 4・・・蒸発源 5・・・高周波コイル 6・・・サセプタ 7・・・絶縁支持体 10・・・ヒーター 11・・・高周波電源
FIG. 1 is a schematic diagram schematically showing an embodiment of a manufacturing apparatus used in the method for manufacturing a photovoltaic device of the present invention. Figures 2 and 3 are graphs of various data of the transparent electrode layer obtained by the method for manufacturing a photovoltaic device of the present invention, and Figure 2 shows changes in transmittance with respect to wavelength of light. . FIG. 3 shows the change in transmittance with respect to the output of the high frequency power source. FIG. 4 shows the change in transmittance between the transparent electrode layer obtained by the method for producing a photovoltaic device of the present invention and the transparent electrode layer produced by applying a DC bias to the substrate. FIG. 5 is a cross-sectional structural diagram of the photovoltaic device. 4... Evaporation source 5... High frequency coil 6... Susceptor 7... Insulating support 10... Heater 11... High frequency power supply

Claims (1)

【特許請求の範囲】 基板の主面上に下部電極、非晶質半導体層及び透明電極
層を順次被着形成してなる光起電力装置の製造方法にお
いて 真空保持可能な反応室内に下部電極及び非晶質半導体層
を被着した基板を絶縁保持し酸素を含む反応ガス雰囲気
中で透明電極材料の蒸発源から透明電極材料を蒸発させ
るとともに、蒸発源近傍に高周波電圧を印加することに
より、プラズマ化した蒸発粒子および前記反応ガスまた
はそれらの化合物を前記基板の非晶質半導体層上に透明
電極層として被着形成することを特徴とする光起電力装
置の製造方法。
[Claims] In a method for manufacturing a photovoltaic device in which a lower electrode, an amorphous semiconductor layer, and a transparent electrode layer are sequentially deposited on the main surface of a substrate, the lower electrode and The substrate covered with the amorphous semiconductor layer is held insulated and the transparent electrode material is evaporated from the evaporation source of the transparent electrode material in an oxygen-containing reactive gas atmosphere, and plasma is generated by applying a high frequency voltage near the evaporation source. 1. A method for manufacturing a photovoltaic device, comprising depositing the evaporated particles and the reactive gas or a compound thereof on the amorphous semiconductor layer of the substrate as a transparent electrode layer.
JP60166408A 1985-07-26 1985-07-26 Manufacture of photovoltaic device Pending JPS6226869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60166408A JPS6226869A (en) 1985-07-26 1985-07-26 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60166408A JPS6226869A (en) 1985-07-26 1985-07-26 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS6226869A true JPS6226869A (en) 1987-02-04

Family

ID=15830865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60166408A Pending JPS6226869A (en) 1985-07-26 1985-07-26 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6226869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947774A (en) * 1996-09-13 1999-09-07 Yazaki Corporation Press-connecting connector
CN1072104C (en) * 1995-12-31 2001-10-03 株式会社新兴塞尔比克 Moldless molding method using no mold and apparatus therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842280A (en) * 1981-09-07 1983-03-11 Sumitomo Electric Ind Ltd Manufacture of photovoltaic element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842280A (en) * 1981-09-07 1983-03-11 Sumitomo Electric Ind Ltd Manufacture of photovoltaic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072104C (en) * 1995-12-31 2001-10-03 株式会社新兴塞尔比克 Moldless molding method using no mold and apparatus therefor
US5947774A (en) * 1996-09-13 1999-09-07 Yazaki Corporation Press-connecting connector

Similar Documents

Publication Publication Date Title
US4585537A (en) Process for producing continuous insulated metallic substrate
US4511756A (en) Amorphous silicon solar cells and a method of producing the same
JPH0475314B2 (en)
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
JPH01306565A (en) Formation of deposited film
US20040083969A1 (en) Film forming apparatus, substrate for forming oxide thin film, and production method thereof
JP2003105533A (en) Method of producing transparent electroconductive film and transparent electroconductive film
JP2001135149A (en) Zinc oxide-based transparent electrode
JP2001176334A (en) Transparent conductive film and its manufacturing method
JPS6226869A (en) Manufacture of photovoltaic device
JP3453329B2 (en) Transparent conductive film and method for manufacturing the same
JPS6147645A (en) Formation of thin film
JPH08153882A (en) Production of thin film solar cell
JPS6350463A (en) Method and apparatus for ion plating
JP2890032B2 (en) Silicon thin film deposition method
KR20190053452A (en) Manufacturing method of absorb layer for perovskite solar cell and sputtering apparatus for perovskite thin film
JPH0249386B2 (en) PURAZUMACVD SOCHI
JP3136764B2 (en) Method for producing chalcopyrite thin film
JP2000022181A (en) Transparent electrode substrate for optoelectric conversion element and its machining method
JPH06450Y2 (en) Coil movable ion plating device
JPH0243357A (en) Production of thin superconducting film
JPH04287314A (en) Hydrogenated amorphous silicon laminated body and its manufacture
JP2002069616A (en) Production method for thin film of anatase-type titanium oxide
JPH03227576A (en) Manufacture of thin film solar cell