JP3453329B2 - Transparent conductive film and method for manufacturing the same - Google Patents

Transparent conductive film and method for manufacturing the same

Info

Publication number
JP3453329B2
JP3453329B2 JP23399699A JP23399699A JP3453329B2 JP 3453329 B2 JP3453329 B2 JP 3453329B2 JP 23399699 A JP23399699 A JP 23399699A JP 23399699 A JP23399699 A JP 23399699A JP 3453329 B2 JP3453329 B2 JP 3453329B2
Authority
JP
Japan
Prior art keywords
group
power generation
semiconductor power
generation layer
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23399699A
Other languages
Japanese (ja)
Other versions
JP2001059157A (en
Inventor
信樹 山下
義道 米倉
章二 森田
暁己 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23399699A priority Critical patent/JP3453329B2/en
Publication of JP2001059157A publication Critical patent/JP2001059157A/en
Application granted granted Critical
Publication of JP3453329B2 publication Critical patent/JP3453329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透明導電膜及びそ
の製造方法、特に太陽電池用の酸化インジウム・酸化錫
複合酸化物(ITO)からなる透明導電膜及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film and a method for manufacturing the same, and more particularly to a transparent conductive film made of indium oxide / tin oxide composite oxide (ITO) for solar cells and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、例えばIV族半導体の一種のアモル
ファス・シリコン(以下a−Siと記す)太陽電池の電
極として透明導電膜が用いられている。図1はそのよう
なa−Si太陽電池の一例を示し、ガラス基板1の上に
表面透明電極として酸化錫(以下SnO2と記す)から
なる透明導電膜2、その一部の上にa−Si層3、その
a−Si層3上に裏面透明電極として酸化インジウム・
酸化錫複合酸化物(以下ITOと記す)からなる透明導
電膜4を積層し、更にその上にアルミニウム電極膜5が
積層され、別に透明導電膜2に集電電極としてのアルミ
ニウム電極6が設けられており、基板1、透明導電膜2
を通じてa−Si層3に入射する光7によって光起電力
を発生する。透明導電膜2は、公知の熱化学的蒸着法に
より形成され、その厚みは約1μmであり、その表面に
は0.1μm以下の凹凸が形成されている。この凹凸は
光起電力の増大つまり発電効率向上に大きく貢献する。
2. Description of the Related Art Conventionally, for example, a transparent conductive film has been used as an electrode of an amorphous silicon (hereinafter referred to as a-Si) solar cell which is a type IV semiconductor. FIG. 1 shows an example of such an a-Si solar cell, in which a transparent conductive film 2 made of tin oxide (hereinafter referred to as SnO 2 ) is used as a surface transparent electrode on a glass substrate 1, and a- Si layer 3 and indium oxide on the a-Si layer 3 as a back transparent electrode
A transparent conductive film 4 made of a tin oxide composite oxide (hereinafter referred to as ITO) is laminated, an aluminum electrode film 5 is further laminated thereon, and an aluminum electrode 6 as a collector electrode is separately provided on the transparent conductive film 2. Substrate 1, transparent conductive film 2
Photoelectromotive force is generated by the light 7 incident on the a-Si layer 3 through. The transparent conductive film 2 is formed by a known thermochemical vapor deposition method, has a thickness of about 1 μm, and has irregularities of 0.1 μm or less on its surface. These irregularities greatly contribute to increase in photovoltaic power, that is, improvement in power generation efficiency.

【0003】この理由の一つは、ガラス基板1の側から
入射した光は透明導電膜2、a−Si層3界面での凹凸
により反射され難くなり、a−Si層3中に有効に取り
込まれるということと、2つ目は透明導電膜4とアルミ
ニウム電極膜界面で反射された光は透明導電膜2、a−
Si層3界面へ戻されるが、その際の入射角が大きくな
るので、全反射され外へ行かない割合が増加することで
ある。ここで、上部の透明導電膜4も下部の透明導電膜
2と同様に、その表面に凹凸を形成すると全反射され外
へ行かない割合が増加し、より発電効率向上につなが
る。
One of the reasons for this is that the light incident from the glass substrate 1 side is less likely to be reflected by the irregularities at the interface between the transparent conductive film 2 and the a-Si layer 3, and is effectively taken into the a-Si layer 3. Secondly, the light reflected at the interface between the transparent conductive film 4 and the aluminum electrode film is the transparent conductive film 2, a−
Although it is returned to the interface of the Si layer 3, the incident angle at that time becomes large, so that the ratio of being totally reflected and not going outside increases. Here, similarly to the lower transparent conductive film 2, if the upper transparent conductive film 4 has irregularities on its surface, the proportion of total reflection that does not go outside increases, which leads to further improvement in power generation efficiency.

【0004】[0004]

【発明が解決しようとする課題】このITOからなる表
面に凹凸を持つ透明導電膜4の製造方法としては真空蒸
着法等があるが、真空蒸着法では表面に凹凸を有する構
造の透明導電膜4は製造可能であるが、350℃以上に
基材を加熱する必要がある。この350℃以上の温度
で、a−Si層3上に透明導電膜4を形成すると、a−
Si層3の結晶化、ドーピングした不純物の拡散により
発電効率が大幅に低下するという問題点があり、a−S
i層3の結晶化、ドーピングした不純物の拡散が起こら
ない約150℃以下での基板温度で表面に凹凸構造を持
ち、尚且つ高透過率を示し、低抵抗のITOからなる透
明導電膜及びその製造方法が求められていた。
There is a vacuum vapor deposition method or the like as a method for manufacturing the transparent conductive film 4 made of ITO and having irregularities on the surface. In the vacuum vapor deposition method, the transparent conductive film 4 having a structure having irregularities on the surface is used. Can be manufactured, but it is necessary to heat the substrate to 350 ° C. or higher. When the transparent conductive film 4 is formed on the a-Si layer 3 at a temperature of 350 ° C. or higher, a-
There is a problem that power generation efficiency is significantly reduced due to crystallization of the Si layer 3 and diffusion of doped impurities.
A transparent conductive film made of ITO having a low resistance and having an uneven structure on the surface at a substrate temperature of about 150 ° C. or lower at which crystallization of the i layer 3 and diffusion of doped impurities do not occur A manufacturing method has been demanded.

【0005】本発明は上記課題を解決するためになされ
たものであって、IV族半導体発電層に熱的損傷を生じる
ことなく、高透過率を示し、低抵抗のITOからなる透
明導電膜及びその製造方法を提供することを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems, and is a transparent conductive film made of ITO having high transmittance and low resistance without causing thermal damage to the IV group semiconductor power generation layer, and It is an object to provide a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】本発明に係る透明導電膜
は、IV族半導体発電層の上に積層される透明導電膜であ
って、前記IV族半導体発電層に熱的損傷を及ぼさない1
50℃以下の温度域で、50〜99.99体積%のアル
ゴンガス、50〜0.01体積%の水蒸気、1体積%以
下の酸素ガスを含有する混合ガスの共存下で酸化インジ
ウム・酸化錫複合酸化物のスパッタ粒子を前記IV族半導
体発電層に作用させて該IV族半導体発電層上に膜厚50
〜1000nmの範囲に成膜され、三角形状の結晶粒が
多数並ぶ凹凸形状の界面を有することを特徴とする。
た、本発明に係る透明導電膜は、IV族半導体発電層の上
に積層される透明導電膜であって、前記IV族半導体発電
層に熱的損傷を及ぼさない150℃以下の温度域で、5
0〜99.99体積%の酸素ガス、50〜0.01体積
%の水蒸気を含有する混合ガスの共存下で酸化インジウ
ム・酸化錫複合酸化物の蒸気を前記IV族半導体発電層に
作用させて該IV族半導体発電層上に膜厚50〜1000
nmの範囲に成膜され、半球形状の結晶粒が多数並ぶこ
とにより形成される凹凸形状の界面を有することを特徴
とする。
A transparent conductive film according to the present invention is a transparent conductive film laminated on a group IV semiconductor power generation layer and does not cause thermal damage to the group IV semiconductor power generation layer.
In the temperature range of 50 ° C or lower, 50 to 99.99% by volume of
Gon gas, 50-0.01 vol% steam, 1 vol% or less
Indium oxide in the presence of a mixed gas containing oxygen gas below
The sputtered particles of the um-tin oxide composite oxide are the group IV semiconductors described above.
A film thickness of 50 on the group IV semiconductor power generation layer by acting on the body power generation layer.
Triangular crystal grains are formed in the range of ~ 1000 nm.
It is characterized by having a large number of uneven interfaces . Well
Moreover, the transparent conductive film according to the present invention is formed on the Group IV semiconductor power generation layer.
Which is a transparent conductive film laminated on the
5 in the temperature range of 150 ° C or less that does not cause thermal damage to the layer
0-99.99 volume% oxygen gas, 50-0.01 volume
% In the presence of mixed gas containing 100% steam
The vapor of the complex oxide of tin oxide and tin oxide is applied to the Group IV semiconductor power generation layer.
The thickness of the group IV semiconductor power generation layer is 50 to 1000
The film is formed in the range of nm and many hemispherical crystal grains are lined up.
Characterized by having an uneven interface formed by
And

【0007】スパッタリング法を用いて成膜する場合
は、IV族半導体発電層に熱的損傷を及ぼさない150℃
以下の温度域で、アルゴンガスを50〜99.99体積
%、水蒸気を50〜0.01体積%、酸素ガスを0〜1
体積%それぞれ含有する混合ガスの共存下で酸化インジ
ウム・酸化錫複合酸化物のスパッタ粒子をIV族半導体発
電層に作用させる。水蒸気添加量が0.01体積%未満
では成膜した透明導電膜の表面に凹凸形状が出現しなく
なるので、水蒸気添加量の下限値は0.01体積%とす
る。一方、水蒸気添加量が50体積%を超えると膜の抵
抗率が高くなり(例えば1×10-3Ω・cmを超える抵
抗率)、電気的性能が劣る膜となるので、水蒸気添加量
の上限値は50体積%とする。
When the film is formed by using the sputtering method, 150 ° C. which does not cause thermal damage to the IV group semiconductor power generation layer.
In the following temperature range, argon gas is 50 to 99.99% by volume, water vapor is 50 to 0.01% by volume, and oxygen gas is 0 to 1%.
Indium oxide in the presence of mixed gas containing each volume%
Sputtered particles of um-tin oxide composite oxide were generated from group IV semiconductors.
It acts on the electric layer. If the amount of water vapor added is less than 0.01% by volume, no unevenness will appear on the surface of the formed transparent conductive film, so the lower limit of the amount of water vapor added is 0.01% by volume. On the other hand, when the amount of water vapor added exceeds 50% by volume, the resistivity of the film increases (for example, the resistivity exceeds 1 × 10 −3 Ω · cm), resulting in a film with poor electrical performance. The value is 50% by volume.

【0008】真空蒸着法を用いて成膜する場合は、IV族
半導体発電層に熱的損傷を及ぼさない150℃以下の温
度域で、酸素ガスを50〜99.99体積%、水蒸気を
50〜0.01体積%それぞれ含有する混合ガスの共存
下で酸化インジウム・酸化錫複合酸化物の蒸気をIV族半
導体発電層に作用させる。水蒸気添加量の数値限定理由
は上記と同様である。
When the film is formed by the vacuum vapor deposition method, the group IV
Temperature below 150 ° C that does not cause thermal damage to the semiconductor power generation layer
In degrees zone, an oxygen gas 50 to 99.99% by volume, the coexistence of a gas mixture containing, respectively water vapor 50 to 0.01 vol%
Under the indium oxide-tin oxide composite oxide vapor group IV and half
It acts on the conductor power generation layer . The reason for limiting the numerical value of the amount of added steam is the same as above.

【0009】スパッタ法を用いて成膜した透明導電膜は
図3の(a)に示す三角形状の結晶粒が多数並ぶことに
より形成される凹凸形状の界面を有する。一方、真空蒸
着法を用いて成膜した透明導電膜は図6の(a)に示す
半球形状の結晶粒が多数並ぶことにより形成される凹凸
形状の界面を有する。
The transparent conductive film formed by the sputtering method has a large number of triangular crystal grains arranged as shown in FIG. 3 (a).
It has an uneven interface. Meanwhile, vacuum steaming
The transparent conductive film formed by the deposition method has unevenness formed by arranging a large number of hemispherical crystal grains shown in FIG.
It has a shaped interface.

【0010】透明導電膜の膜厚は50〜1000nmの
範囲とする。
The film thickness of the transparent conductive film is in the range of 50 to 1000 nm .

【0011】本発明に係る透明導電膜の製造方法は、IV
族半導体発電層の上に積層される透明導電膜の製造方法
において、(a)IV族半導体発電層を有する基板を真空
容器内に搬入する工程と、(b)IV族半導体発電層に熱
的損傷を及ぼさない150℃以下の温度域に基板を温度
調整する工程と、(c)前記真空容器内に50〜99.
99体積%のアルゴンガスと50〜0.01体積%の水
蒸気と1体積%以下の酸素ガスとを含有する混合ガスを
導入し、膜材料となる酸化インジウム・酸化錫複合酸化
物ターゲットと前記基板との間に高周波を印可して放電
を生じさせ、前記混合ガスの共存下でターゲット表面か
ら酸化インジウム・酸化錫複合酸化物のスパッタ粒子を
飛び出させ、該スパッタ粒子を前記IV族半導体発電層の
上に堆積させ、三角形状の結晶粒が多数並ぶ凹凸形状の
界面を有する酸化インジウム・酸化錫複合酸化物の膜を
膜厚50〜1000nmの範囲に積層形成する工程と、
を具備することを特徴とする。また、本発明に係る透明
導電膜の製造方法は、IV族半導体発電層の上に積層され
る透明導電膜の製造方法において、(a)IV族半導体発
電層を有する基板を真空容器内に搬入する工程と、
(b)IV族半導体発電層に熱的損傷を及ぼさない150
℃以下の温度域に基板を温度調整する工程と、(c)前
記真空容器内に50〜0.01体積%の水蒸気と50〜
99.99体積%の酸素ガスとを含有する混合ガスを導
入し、膜材料となる酸化インジウム・酸化錫複合酸化物
を蒸発源で加熱し、蒸発させて蒸気を生成し、前記蒸発
源と基板とで挟まれた領域に放電を生じさせ、前記混合
ガスの共存下で前記酸化インジウム・酸化錫複合酸化物
蒸気、水蒸気、酸素ガスをプラズマ化し、該プラズマ中
の活性種を前記IV族半導体発電層の上に堆積させ、半球
形状の結晶粒が多数並ぶ凹凸形状の界面を有する酸化イ
ンジウム・酸化錫複合酸化物の膜を膜厚50〜1000
nmの範囲に積層形成する工程と、を具備することを特
徴とする。
The method for producing a transparent conductive film according to the present invention is
In a method for producing a transparent conductive film laminated on a group IV semiconductor power generation layer, (a) a step of loading a substrate having a group IV semiconductor power generation layer into a vacuum container; A step of adjusting the temperature of the substrate to a temperature range of 150 ° C. or lower that does not cause damage; (c) 50 to 99.
99% by volume argon gas and 50-0.01% by volume water
A mixed gas containing steam and 1% by volume or less of oxygen gas
Introduced and used as film material Indium oxide / tin oxide composite oxide
Discharge by applying high frequency between the target and the substrate
Generated in the target surface in the presence of the mixed gas.
From indium oxide / tin oxide composite oxide sputtered particles
The sputtered particles are ejected and deposited on the Group IV semiconductor power generation layer to form a concavo-convex shape in which a large number of triangular crystal grains are arranged .
Indium oxide / tin oxide composite oxide film with interface
A step of forming a laminate in a film thickness range of 50 to 1000 nm ,
It is characterized by including. In addition, the transparent according to the present invention
The method of manufacturing the conductive film is such that the conductive film is laminated on the group IV semiconductor power generation layer.
In the method of manufacturing a transparent conductive film according to
A step of loading a substrate having an electric layer into a vacuum container,
(B) Does not cause thermal damage to the group IV semiconductor power generation layer 150
A step of adjusting the temperature of the substrate to a temperature range of ℃ or less, before (c)
In a vacuum container, 50 to 0.01% by volume of water vapor and 50 to
A mixed gas containing 99.99% by volume of oxygen gas is introduced.
Indium oxide / tin oxide composite oxide used as film material
Is heated with an evaporation source to evaporate to generate steam,
A discharge is generated in the area sandwiched between the source and the substrate, and the mixture
Indium oxide / tin oxide composite oxide in the presence of gas
Steam, water vapor, oxygen gas is turned into plasma, and in the plasma
Of active species of the above-mentioned group IV semiconductor power generation layer on the hemisphere
Oxide having an uneven interface with a large number of crystal grains
A film of indium-tin oxide composite oxide with a film thickness of 50 to 1000
and a step of forming a laminate in the range of nm.
To collect.

【0012】[0012]

【0013】スパッタ法および真空蒸着法のいずれであ
っても、水蒸気添加量が0.01体積%未満では成膜し
た透明導電膜の界面に凹凸形状が出現しなくなるので、
水蒸気添加量の下限値は0.01体積%とする。一方、
水蒸気添加量が50体積%を超えると膜の抵抗率が1×
10-3Ω・cmを超えてしまい電気的性能が劣る膜とな
るので、水蒸気添加量の上限値は50体積%とする。
Either a sputtering method or a vacuum evaporation method
However , if the amount of water vapor added is less than 0.01% by volume, the uneven shape will not appear at the interface of the formed transparent conductive film.
The lower limit of the amount of steam added is 0.01% by volume. on the other hand,
If the amount of steam added exceeds 50% by volume, the resistivity of the film will be 1 ×.
The upper limit of the amount of water vapor added is set to 50% by volume because the film exceeds 10 -3 Ω · cm and has poor electrical performance.

【0014】[0014]

【発明の実施の形態】以下、添付の図面を参照しながら
本発明の種々の好ましい実施の形態について説明する。
Various preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】(第1の実施形態)図2は本発明の第1の
実施形態に係る透明導電膜の製造に用いた装置を示す概
略構成図である。この第1実施形態ではスパッタリング
装置10を用いてITO透明導電膜をガラス基板上に成
膜する。スパッタリング装置10は、図示されない真空
排気装置によって真空排気される真空容器11を備えて
いる。スパッタ源12はITOから構成されるターゲッ
ト13、磁場発生用磁石14、水冷機能を備えたターゲ
ットホルダ電極15、シールド16、真空シール機能を
備えた絶縁体17から構成されている。ターゲットホル
ダ電極15には整合器18を介して高周波電源19が接
続されている。
(First Embodiment) FIG. 2 is a schematic structural view showing an apparatus used for manufacturing a transparent conductive film according to the first embodiment of the present invention. In the first embodiment, the ITO transparent conductive film is formed on the glass substrate by using the sputtering device 10. The sputtering apparatus 10 includes a vacuum container 11 that is evacuated by a vacuum exhaust device (not shown). The sputter source 12 is composed of a target 13 made of ITO, a magnetic field generating magnet 14, a target holder electrode 15 having a water cooling function, a shield 16, and an insulator 17 having a vacuum sealing function. A high frequency power source 19 is connected to the target holder electrode 15 via a matching unit 18.

【0016】ターゲット13の対向部にはヒーター21
を備えた基板ホルダ電極22が設置され、その下面部に
基板20が取り付け保持されるようになっている。ま
た、ターゲット13近傍には図示しないガス流量制御装
置に連通するガス供給管25のガス導入口25aが配置
されている。
A heater 21 is provided on the opposite side of the target 13.
The substrate holder electrode 22 having the above is installed, and the substrate 20 is attached and held on the lower surface thereof. A gas inlet 25a of a gas supply pipe 25 communicating with a gas flow rate control device (not shown) is arranged near the target 13.

【0017】上記の構成装置において、先ず、無アルカ
リガラス等の基板20を有機溶剤(例えばアセトン)で
超音波洗浄を施した後、真空容器11内の基板ホルダ電
極22に取り付け、2×10-6Torr以下に予備排気
する。また、ヒータ21により基板20を約150℃に
加熱する。
In the above-described apparatus, first, the substrate 20 made of non-alkali glass or the like is ultrasonically cleaned with an organic solvent (for example, acetone) and then attached to the substrate holder electrode 22 in the vacuum container 11 and 2 × 10 −. Pre-exhaust below 6 Torr. Further, the substrate 21 is heated to about 150 ° C. by the heater 21.

【0018】さらに、真空容器11内にガス導入口25
aを介してプロセスガスを導入する。このプロセスガス
は、90体積%のアルゴンガス(Ar)に10体積%の
水蒸気(H2O)を添加したものである。真空ポンプに
よる排気量とガス供給装置によるガス導入量とを制御
し、真空容器11の内圧を5×10-3Torrに調整す
る。
Further, a gas inlet 25 is provided in the vacuum container 11.
The process gas is introduced via a. This process gas is obtained by adding 10 volume% of steam (H 2 O) to 90 volume% of argon gas (Ar). The amount of gas exhausted by the vacuum pump and the amount of gas introduced by the gas supply device are controlled to adjust the internal pressure of the vacuum container 11 to 5 × 10 −3 Torr.

【0019】次に、整合器18を介して、高周波電源1
9より高周波電力をターゲットホルダ電極15に印加す
ると、両電極15,22間に放電が発生し、放電により
生成されたアルゴンイオンがターゲット13の表面に衝
突し、これからスパッタ粒子が基板20に向かって飛び
出す。これによりITOスパッタ粒子が基板20上に堆
積し、ITO膜24が形成される。得られたITO膜2
4は、膜厚が50〜1000nm(0.05〜1μm)
の範囲にあり、その抵抗率は5×10-4Ω・cmであっ
た。この抵抗率の値は従来法で成膜されたものと実質的
に同等である。
Next, the high frequency power source 1 is passed through the matching device 18.
9. When high frequency power is applied to the target holder electrode 15 from 9, a discharge is generated between the electrodes 15 and 22, the argon ions generated by the discharge collide with the surface of the target 13, and the sputtered particles are directed toward the substrate 20. Jump out. Thereby, the ITO sputtered particles are deposited on the substrate 20 and the ITO film 24 is formed. The obtained ITO film 2
No. 4 has a film thickness of 50 to 1000 nm (0.05 to 1 μm)
And the resistivity was 5 × 10 −4 Ω · cm. This resistivity value is substantially the same as that formed by the conventional method.

【0020】図3の(a)は上述したようにして形成し
た本発明の第1実施形態に係る透明導電膜を走査型電子
顕微鏡(SEM)により観察し撮影した顕微鏡写真であ
る。このように三角形状の結晶粒が多数形成され、透明
導電膜の表面は凹凸形状を呈していることが判明した。
これに対して、図3の(b)はガス導入口25aより水
蒸気無しのアルゴンガス100体積%のみを導入(他の
条件は同じ)して形成した透明導電膜をSEMにより観
察し撮影した顕微鏡写真である。このように従来の膜の
表面は平滑であり凹凸形状は呈していない。両者の比較
から、プロセスガスに水蒸気を添加して成膜すると、透
明導電膜の表面が凹凸形状となり、ここで入射光が全反
射されて外へ行かない割合が増加するので、結果として
発電効率が向上することが判明した。
FIG. 3A is a photomicrograph of the transparent conductive film according to the first embodiment of the present invention formed as described above, observed and photographed with a scanning electron microscope (SEM). Thus, it was found that a large number of triangular crystal grains were formed and the surface of the transparent conductive film had an uneven shape.
On the other hand, FIG. 3B is a microscope in which a transparent conductive film formed by introducing only 100% by volume of argon gas without water vapor through the gas introduction port 25a (other conditions are the same) was observed and photographed by SEM. It is a photograph. As described above, the surface of the conventional film is smooth and does not have an uneven shape. From a comparison of the two, when water vapor is added to the process gas to form a film, the surface of the transparent conductive film becomes uneven, and the proportion of incident light that is totally reflected and does not go outside increases. Was found to improve.

【0021】この場合に、水蒸気添加量が0.01体積
%未満では成膜した透明導電膜の表面に凹凸形状が出現
しなくなるので、水蒸気添加量の下限値は0.01体積
%とする。一方、水蒸気添加量が50体積%を超えると
膜の抵抗率が1×10-3Ω・cmを超えてしまい電気的
性能が劣る膜となるので、水蒸気添加量の上限値は50
体積%とする。
In this case, if the amount of water vapor added is less than 0.01% by volume, no irregularities will appear on the surface of the formed transparent conductive film, so the lower limit of the amount of water vapor added is 0.01% by volume. On the other hand, if the amount of added water vapor exceeds 50% by volume, the resistivity of the film will exceed 1 × 10 −3 Ω · cm, resulting in a film with poor electrical performance. Therefore, the upper limit of the amount of added water vapor is 50.
Volume%

【0022】なお、水蒸気の添加と同時にさらに酸素を
添加すると透過率が一層向上する。しかし、酸素を1体
積%以上添加すると、膜の抵抗率が低下するので好まし
くない。
The transmittance is further improved by adding oxygen at the same time as adding water vapor. However, if oxygen is added in an amount of 1% by volume or more, the resistivity of the film decreases, which is not preferable.

【0023】図4は上記の第1実施形態による透明導電
膜と従来の透明導電膜を備える太陽電池の短絡電流の比
較を示すグラフである。太陽電池の構成は図1に示す通
りとした。比較例として水蒸気を添加しない透明導電膜
を用いた太陽電池の短絡電流を1とすると、本研究で作
製した透明導電膜を用いた太陽電池の短絡電流Iscは
1.50と大幅に増加しており、大きな光電変換効率を
有していることが判明した。
FIG. 4 is a graph showing a comparison of short-circuit currents of the solar cell including the transparent conductive film according to the first embodiment and the conventional transparent conductive film. The structure of the solar cell was as shown in FIG. As a comparative example, assuming that the short-circuit current of the solar cell using the transparent conductive film to which water vapor is not added is 1, the short-circuit current Isc of the solar cell using the transparent conductive film manufactured in this study is significantly increased to 1.50. Therefore, it was found that it has a large photoelectric conversion efficiency.

【0024】(第2の実施形態)図5は本発明の第2の
実施形態に係る透明導電膜の製造に用いた装置を示す概
略構成図である。この第2実施形態では真空蒸着装置3
0を用いてITO透明導電膜をガラス基板上に成膜す
る。真空蒸着装置30は、図示されない真空排気装置に
よって真空排気される真空容器31を備えている。蒸発
源32には、ITOから構成される蒸発材料33が設置
されている。ここで、蒸発源32は電子ビーム加熱方
式、抵抗加熱方式、レーザ加熱方式など何れの加熱方式
のものであってもよい。真空容器31の側壁を貫通して
ガス供給管38が導入され、ガス導入口38aが真空容
器31内で開口している。このガス供給管38はプロセ
スガス供給源を備えるガス流量制御装置(図示せず)に
連通している。
(Second Embodiment) FIG. 5 is a schematic structural view showing an apparatus used for manufacturing a transparent conductive film according to a second embodiment of the present invention. In the second embodiment, the vacuum vapor deposition device 3
0 is used to form an ITO transparent conductive film on a glass substrate. The vacuum vapor deposition device 30 includes a vacuum container 31 that is evacuated by a vacuum exhaust device (not shown). An evaporation material 33 made of ITO is installed in the evaporation source 32. Here, the evaporation source 32 may be of any heating method such as an electron beam heating method, a resistance heating method, or a laser heating method. The gas supply pipe 38 is introduced through the side wall of the vacuum container 31, and the gas introduction port 38 a is opened in the vacuum container 31. The gas supply pipe 38 communicates with a gas flow rate control device (not shown) including a process gas supply source.

【0025】蒸発源32の上方には放電生成用の高周波
コイル34が、真空シール機能を備えた絶縁体35を通
じて固定されている。高周波コイル34には整合器36
を介して高周波電源37が接続されている。さらに、高
周波コイル34の上方には、ヒータ40を備えた基板ホ
ルダ電極39が設けられている。基板ホルダ電極39の
下面部には基板41が取り付け保持されている。
A high frequency coil 34 for generating a discharge is fixed above the evaporation source 32 through an insulator 35 having a vacuum sealing function. The high frequency coil 34 has a matching device 36
A high frequency power supply 37 is connected via. Further, a substrate holder electrode 39 having a heater 40 is provided above the high frequency coil 34. A substrate 41 is attached and held on the lower surface of the substrate holder electrode 39.

【0026】上記の構成装置において、まず、無アルカ
リガラス等の基板41を有機溶剤(例えばアセトン)で
超音波洗浄を施した後に、基板ホルダ電極39に取り付
け、2×10-6Torr以下に予備排気する。ヒータ4
0により基板41を約150℃に加熱する。
In the above-mentioned apparatus, first, the substrate 41 made of non-alkali glass or the like is ultrasonically cleaned with an organic solvent (for example, acetone) and then attached to the substrate holder electrode 39 so that the substrate 41 is preliminarily kept at 2 × 10 −6 Torr or less. Exhaust. Heater 4
The substrate 41 is heated to about 150 ° C. by 0.

【0027】さらに、真空容器31内にガス導入口38
aを介してプロセスガスを導入する。このプロセスガス
は、90体積%の酸素ガス(O2)に、10体積%の水
蒸気(H2O)を添加したものである。真空ポンプによ
る排気量とガス供給装置によるガス導入量とを制御し、
真空容器31の内圧を8×10-4Torrに調整する。
Further, a gas inlet 38 is provided in the vacuum container 31.
The process gas is introduced via a. This process gas is obtained by adding 10 volume% of steam (H 2 O) to 90 volume% of oxygen gas (O 2 ). By controlling the exhaust amount by the vacuum pump and the gas introduction amount by the gas supply device,
The internal pressure of the vacuum container 31 is adjusted to 8 × 10 −4 Torr.

【0028】次に、蒸発源32によりITOから構成さ
れる蒸発材料33を加熱し、蒸発させ、それと同時に整
合器36を介して、高周波電源37より高周波をコイル
34に印加し、放電プラズマ43を生成させ、成膜成分
を基板41上に堆積させる。これにより透明導電膜とし
てのITO膜42が基板41上に形成される。得られた
ITO膜42は、膜厚が50〜1000nm(0.05
〜1μm)の範囲にあり、その抵抗率は6×10-4Ω・
cmであった。この抵抗率の値は従来法で成膜されたも
のと実質的に同等である。
Next, the evaporation material 33 composed of ITO is heated and evaporated by the evaporation source 32, and at the same time, a high frequency power is applied from the high frequency power supply 37 to the coil 34 through the matching device 36 to generate the discharge plasma 43. The film-forming components are generated and deposited on the substrate 41. Thereby, the ITO film 42 as a transparent conductive film is formed on the substrate 41. The obtained ITO film 42 has a film thickness of 50 to 1000 nm (0.05
~ 1 μm) and its resistivity is 6 × 10 -4 Ω ・
It was cm. This resistivity value is substantially the same as that formed by the conventional method.

【0029】第6図(a)は上述したようにして形成し
た本発明の第2実施形態に係る透明導電膜を走査型電子
顕微鏡(SEM)により観察し撮影した顕微鏡写真であ
る。このように半球形状の結晶粒が多数形成され、透明
導電膜の表面は凹凸形状を呈していることが判明した。
これに対して、図6の(b)はガス導入口38aより水
蒸気無しの酸素ガス100体積%のみを導入(他の条件
は同じ)して形成した透明導電膜をSEMにより観察し
撮影した顕微鏡写真である。このように従来の膜の表面
は平滑であり凹凸形状は呈していない。両者の比較か
ら、プロセスガスに水蒸気を添加して成膜すると、透明
導電膜の表面が凹凸形状となり、ここで入射光が全反射
されて外へ行かない割合が増加するので、結果として発
電効率が向上することが判明した。
FIG. 6 (a) is a photomicrograph of the transparent conductive film according to the second embodiment of the present invention formed as described above, observed and photographed with a scanning electron microscope (SEM). As described above, it was found that a large number of hemispherical crystal grains were formed and the surface of the transparent conductive film had an uneven shape.
On the other hand, FIG. 6B is a microscope in which the transparent conductive film formed by introducing only 100% by volume of oxygen gas without water vapor through the gas introduction port 38a (other conditions are the same) was observed and photographed by SEM. It is a photograph. As described above, the surface of the conventional film is smooth and does not have an uneven shape. From a comparison of the two, when water vapor is added to the process gas to form a film, the surface of the transparent conductive film becomes uneven, and the proportion of incident light that is totally reflected and does not go outside increases. Was found to improve.

【0030】この場合に、水蒸気添加量が0.01体積
%未満では成膜した透明導電膜の表面に凹凸形状が出現
しなくなるので、水蒸気添加量の下限値は0.01体積
%とする。一方、水蒸気添加量が50体積%を超えると
膜の抵抗率が1×10-3Ω・cmを超えてしまい電気的
性能が劣る膜となるので、水蒸気添加量の上限値は50
体積%とする。
In this case, if the amount of water vapor added is less than 0.01% by volume, no irregularities will appear on the surface of the formed transparent conductive film, so the lower limit of the amount of water vapor added is 0.01% by volume. On the other hand, if the amount of added water vapor exceeds 50% by volume, the resistivity of the film will exceed 1 × 10 −3 Ω · cm, resulting in a film with poor electrical performance. Therefore, the upper limit of the amount of added water vapor is 50.
Volume%

【0031】図7は上記の第2実施形態による透明導電
膜と従来の透明導電膜を備える太陽電池の短絡電流の比
較を示すグラフである。太陽電池の構成は図1に示す通
りとした。比較例として水蒸気を添加しない透明導電膜
を用いた太陽電池の短絡電流を1とすると、本研究で作
製した透明導電膜を用いた太陽電池の短絡電流Iscは
1.45と大幅に増加しており、大きな光電変換効率を
有していることが判明した。
FIG. 7 is a graph showing a comparison of short-circuit currents of the solar cell including the transparent conductive film according to the second embodiment and the conventional transparent conductive film. The structure of the solar cell was as shown in FIG. As a comparative example, assuming that the short-circuit current of the solar cell using the transparent conductive film to which water vapor is not added is 1, the short-circuit current Isc of the solar cell using the transparent conductive film produced in this study is significantly increased to 1.45. Therefore, it was found that it has a large photoelectric conversion efficiency.

【0032】[0032]

【発明の効果】上述したように本発明によれば、スパッ
タ法および真空蒸着法のいずれを用いても150℃以下
の基板温度で界面に凹凸構造をもつ透明導電膜を形成す
ることができ、IV族半導体発電層に熱的損傷を生じるこ
となく、得られた透明導電膜は高透過率を示し、かつ低
抵抗である。このような本発明の透明導電膜を用いた太
陽電池は大きな短絡電流Iscが得られ、光電変換効率が
著しく向上する。
As described above, according to the present invention, the spatter is
It is possible to form a transparent conductive film having a concavo-convex structure at the interface at a substrate temperature of 150 ° C. or less by using either the vacuum deposition method or the vacuum deposition method, and to obtain the group IV semiconductor power generation layer without causing thermal damage. The obtained transparent conductive film has high transmittance and low resistance. A large short circuit current Isc is obtained in the solar cell using such a transparent conductive film of the present invention, and the photoelectric conversion efficiency is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】IV族半導体太陽電池の構造の一例を示す断面
図。
FIG. 1 is a cross-sectional view showing an example of the structure of a group IV semiconductor solar cell.

【図2】本発明の第1の実施形態に係る透明導電膜の製
造に用いられるスパッタリング装置を示す概略構成図。
FIG. 2 is a schematic configuration diagram showing a sputtering apparatus used for manufacturing the transparent conductive film according to the first embodiment of the present invention.

【図3】(a)は本発明の第1の実施形態に係る透明導
電膜を示す顕微鏡写真、(b)は従来の透明導電膜を示
す顕微鏡写真である。
3A is a micrograph showing a transparent conductive film according to the first embodiment of the present invention, and FIG. 3B is a micrograph showing a conventional transparent conductive film.

【図4】第1実施形態の透明導電膜を備える太陽電池と
従来の透明導電膜を備える太陽電池とにつき短絡電流を
比較して示すグラフ。
FIG. 4 is a graph showing a comparison of short-circuit currents of a solar cell including the transparent conductive film of the first embodiment and a solar cell including a conventional transparent conductive film.

【図5】本発明の第2の実施形態に係る透明導電膜の製
造に用いられる真空蒸着装置を示す概略構成図。
FIG. 5 is a schematic configuration diagram showing a vacuum vapor deposition apparatus used for manufacturing a transparent conductive film according to a second embodiment of the present invention.

【図6】(a)は本発明の第2の実施形態に係る透明導
電膜を示す顕微鏡写真、(b)は従来の透明導電膜を示
す顕微鏡写真である。
6A is a micrograph showing a transparent conductive film according to a second embodiment of the present invention, and FIG. 6B is a micrograph showing a conventional transparent conductive film.

【図7】第2実施形態の透明導電膜を備える太陽電池と
従来の透明導電膜を備える太陽電池とにつき短絡電流を
比較して示すグラフ。
FIG. 7 is a graph showing a comparison between short-circuit currents of a solar cell including the transparent conductive film of the second embodiment and a solar cell including a conventional transparent conductive film.

【符号の説明】[Explanation of symbols]

1…基板、2…SnO2透明導電膜、3…IV族半導体発
電層(a−Si層)、4…ITO透明導電膜、5…アル
ミニウム電極膜、6…アルミニウム電極(集電電極)、
10…スパッタリング装置、11…真空容器、12…ス
パッタ源、13…ターゲット、14…磁石、15…ター
ゲットホルダ電極、16…シールド、17…絶縁体、1
8…整合器、19…高周波電源、20…基板、21…ヒ
ータ、22…基板ホルダ電極、23…絶縁体、24…I
TO透明導電膜、25…ガス供給管、25a…ガス導入
口、26…排気口、30…真空蒸着装置、31…真空容
器、32…蒸発源、33…蒸発材料、34…高周波コイ
ル、35…絶縁体、36…整合器、37…高周波電源、
38…ガス供給管、38a…ガス導入口、39…基板ホ
ルダ電極、40…ヒータ、41…基板、42…ITO透
明導電膜、43…プラズマ、46…排気口。
1 ... substrate, 2 ... SnO 2 transparent conductive film, 3 ... IV group semiconductor power layer (a-Si layer), 4 ... ITO transparent conductive film, 5 ... aluminum electrode film, 6 ... aluminum electrode (collecting electrode),
10 ... Sputtering apparatus, 11 ... Vacuum container, 12 ... Sputter source, 13 ... Target, 14 ... Magnet, 15 ... Target holder electrode, 16 ... Shield, 17 ... Insulator, 1
8 ... Matching device, 19 ... High frequency power supply, 20 ... Substrate, 21 ... Heater, 22 ... Substrate holder electrode, 23 ... Insulator, 24 ... I
TO transparent conductive film, 25 ... Gas supply pipe, 25a ... Gas introduction port, 26 ... Exhaust port, 30 ... Vacuum deposition apparatus, 31 ... Vacuum container, 32 ... Evaporation source, 33 ... Evaporation material, 34 ... High frequency coil, 35 ... Insulator, 36 ... Matching device, 37 ... High frequency power supply,
38 ... Gas supply pipe, 38a ... Gas introduction port, 39 ... Substrate holder electrode, 40 ... Heater, 41 ... Substrate, 42 ... ITO transparent conductive film, 43 ... Plasma, 46 ... Exhaust port.

フロントページの続き (72)発明者 高野 暁己 長崎県長崎市深堀町五丁目717番1号 三菱重工業株式会社長崎研究所内 (56)参考文献 特開 昭56−9906(JP,A) 特開 昭56−9905(JP,A) 特開 平4−242017(JP,A) 金原 あきら編,薄膜<その機能と応 用>,日本,財団法人 日本規格協会, 1991年 4月20日,第1版,p.104− 106 (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 H01B 5/14 H01B 13/00 H01L 31/04 Front page continuation (72) Inventor Akemi Takano 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Laboratory (56) Reference JP-A-56-9906 (JP, A) JP-A-SHO 56-9905 (JP, A) Japanese Patent Laid-Open No. 4-242017 (JP, A) Akira Kanehara, Thin film <The function and application>, Japan, Japan Standards Association, April 20, 1991, 1st edition , P. 104- 106 (58) Fields investigated (Int.Cl. 7 , DB name) C23C 14/00-14/58 H01B 5/14 H01B 13/00 H01L 31/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 IV族半導体発電層の上に積層される透明
導電膜であって、前記IV族半導体発電層に熱的損傷を及
ぼさない150℃以下の温度域で、50〜99.99体
積%のアルゴンガス、50〜0.01体積%の水蒸気、
1体積%以下の酸素ガスを含有する混合ガスの共存下で
酸化インジウム・酸化錫複合酸化物のスパッタ粒子を前
記IV族半導体発電層に作用させて該IV族半導体発電層上
に膜厚50〜1000nmの範囲に成膜され、三角形状
の結晶粒が多数並ぶ凹凸形状の界面を有することを特徴
とする透明導電膜。
1. A transparent conductive film laminated on a group IV semiconductor power generation layer, which is 50 to 99.99 in a temperature range of 150 ° C. or lower that does not cause thermal damage to the group IV semiconductor power generation layer.
% Argon gas, 50-0.01 volume% steam,
In the presence of a mixed gas containing 1% by volume or less of oxygen gas
In front of sputtered particles of indium oxide / tin oxide composite oxide
On the group IV semiconductor power generation layer by acting on the group IV semiconductor power generation layer
Film with a thickness of 50 to 1000 nm is formed in a triangular shape
1. A transparent conductive film having an uneven interface in which a large number of crystal grains are lined up .
【請求項2】 IV族半導体発電層の上に積層される透明
導電膜であって、前記IV族半導体発電層に熱的損傷を及
ぼさない150℃以下の温度域で、50〜99.99体
積%の酸素ガス、50〜0.01体積%の水蒸気を含有
する混合ガスの共存下で酸化インジウム・酸化錫複合酸
化物の蒸気を前記IV族半導体発電層に作用させて該IV族
半導体発電層上に膜厚50〜1000nmの範囲に成膜
され、半球形状の結晶粒が多数並ぶことにより形成され
る凹凸形状の界面を有することを特徴とする透明導電
膜。
2. A transparent layer formed on a Group IV semiconductor power generation layer.
A conductive film that causes thermal damage to the Group IV semiconductor power generation layer.
50-99.99 bodies in the temperature range of 150 ° C or less
% Product oxygen gas, 50-0.01 volume% water vapor
Indium oxide / tin oxide composite acid in the presence of mixed gas
Of the group IV semiconductor power generation layer by reacting the vapor of the compound with the group IV semiconductor power generation layer.
Film formation on the semiconductor power generation layer in a film thickness range of 50 to 1000 nm
Formed by arranging a large number of hemispherical crystal grains
Transparent conductive material having an uneven interface
film.
【請求項3】 IV族半導体発電層の上に積層される透明
導電膜の製造方法において、 (a)IV族半導体発電層を有する基板を真空容器内に搬
入する工程と、 (b)IV族半導体発電層に熱的損傷を及ぼさない150
℃以下の温度域に基板を温度調整する工程と、 (c)前記真空容器内に50〜99.99体積%のアル
ゴンガスと50〜0.01体積%の水蒸気と1体積%以
下の酸素ガスとを含有する混合ガスを導入し、膜材料と
なる酸化インジウム・酸化錫複合酸化物ターゲットと前
記基板との間に高周波を印可して放電を生じさせ、前記
混合ガスの共存下でターゲット表面から酸化インジウム
・酸化錫複合酸化物のスパッタ粒子を飛び出させ、該ス
パッタ粒子を前記IV族半導体発電層の上に堆積させ、三
角形状の結晶粒が多数並ぶ凹凸形状の界面を有する酸化
インジウム・酸化錫複合酸化物の膜を膜厚50〜100
0nmの範囲に積層形成する工程と、 を具備することを特徴とする透明導電膜の製造方法。
3. A transparent layer formed on a Group IV semiconductor power generation layer.
In the method of manufacturing a conductive film, (a) a substrate having a group IV semiconductor power generation layer is carried into a vacuum container.
A step of entering, 150 which does not adversely thermal damage (b) IV group semiconductor power layer
A step of adjusting the temperature of the substrate to a temperature range of ℃ or less, and (c) 50 to 99.99 volume% of Al in the vacuum container.
Gon gas, 50-0.01 vol% steam and 1 vol% or less
Introduce a mixed gas containing oxygen gas below and
Indium oxide / tin oxide composite oxide target and before
A high frequency is applied to the substrate to generate a discharge,
Indium oxide from the target surface in the presence of mixed gas
・ Sputter particles of tin oxide composite oxide
Depositing putter particles on the group IV semiconductor power generation layer,
Oxidation having a rough interface with a large number of square crystal grains
Indium-tin oxide composite oxide film with a thickness of 50-100
A method of manufacturing a transparent conductive film, comprising a step of forming a laminate in a range of 0 nm .
【請求項4】 IV族半導体発電層の上に積層される透明
導電膜の製造方法において、 (a)IV族半導体発電層を有する基板を真空容器内に搬
入する工程と、 (b)IV族半導体発電層に熱的損傷を及ぼさない150
℃以下の温度域に基板を温度調整する工程と、 (c)前記真空容器内に50〜0.01体積%の水蒸気
と50〜99.99体積%の酸素ガスとを含有する混合
ガスを導入し、膜材料となる酸化インジウム・酸化錫複
合酸化物を蒸発源で加熱し、蒸発させて蒸気を生成し、
前記蒸発源と基板とで挟まれた領域に放電を生じさせ、
前記混合ガスの共存下で前記酸化インジウム・酸化錫複
合酸化物蒸気、水蒸気、酸素ガスをプラズマ化し、該プ
ラズマ中の活性種を前記IV族半導体発電層の上に堆積さ
せ、半球形状の結晶粒が多数並ぶ凹凸形状の界面を有す
る酸化インジウム・酸化錫複合酸化物の膜を膜厚50〜
1000nmの範囲に積層形成する工程と、 を具備することを特徴とする透明電極膜の製造方法。
4. A transparent layer formed on a Group IV semiconductor power generation layer.
In the method of manufacturing a conductive film, (a) a substrate having a group IV semiconductor power generation layer is carried into a vacuum container.
A step of entering, 150 which does not adversely thermal damage (b) IV group semiconductor power layer
A step of adjusting the temperature of the substrate to a temperature range of ℃ or less, and (c) 50 to 0.01% by volume of water vapor in the vacuum container.
And 50 to 99.99% by volume oxygen gas
A gas is introduced to mix indium oxide and tin oxide, which are film materials.
Heating the compound oxide with an evaporation source to evaporate to produce steam,
A discharge is generated in a region sandwiched between the evaporation source and the substrate,
In the presence of the mixed gas, the indium oxide / tin oxide composite
Compound oxide vapor, water vapor, and oxygen gas are turned into plasma and
Active species in plasma were deposited on the Group IV semiconductor power generation layer.
Have a rough interface with many hemispherical crystal grains.
Film of indium oxide / tin oxide composite oxide
And a step of forming a layer in a range of 1000 nm .
JP23399699A 1999-08-20 1999-08-20 Transparent conductive film and method for manufacturing the same Expired - Fee Related JP3453329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23399699A JP3453329B2 (en) 1999-08-20 1999-08-20 Transparent conductive film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23399699A JP3453329B2 (en) 1999-08-20 1999-08-20 Transparent conductive film and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001059157A JP2001059157A (en) 2001-03-06
JP3453329B2 true JP3453329B2 (en) 2003-10-06

Family

ID=16963927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23399699A Expired - Fee Related JP3453329B2 (en) 1999-08-20 1999-08-20 Transparent conductive film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3453329B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100127611A1 (en) * 2007-05-22 2010-05-27 Masaaki Imura Transparent electrode
JP2011187640A (en) * 2010-03-08 2011-09-22 Sumitomo Heavy Ind Ltd Deposition substrate, method for manufacturing the deposition substrate, and deposition device
JP5866815B2 (en) * 2011-06-21 2016-02-24 株式会社アルバック Deposition method
CN103451605A (en) * 2013-09-12 2013-12-18 昆山奥德鲁自动化技术有限公司 ITO (Indium Tin Oxides) coarsening type evaporation method
JP2019183209A (en) * 2018-04-05 2019-10-24 株式会社アルバック Sputtering device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金原 あきら編,薄膜<その機能と応用>,日本,財団法人 日本規格協会,1991年 4月20日,第1版,p.104−106

Also Published As

Publication number Publication date
JP2001059157A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
US5977477A (en) Photovoltaic device
JP5621764B2 (en) Transparent conductive film, transparent conductive film laminate, manufacturing method thereof, and silicon-based thin film solar cell
JPH07297421A (en) Manufacture of thin film semiconductor solar battery
WO2010084758A1 (en) Method for manufacturing solar cell, and solar cell
JP3697190B2 (en) Solar cell
WO2012093702A1 (en) Transparent electroconductive film laminate and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
CN101497992A (en) Method for preparing pile face zinc oxide transparent conductive film coating glass by plasma bombardment
JP3453329B2 (en) Transparent conductive film and method for manufacturing the same
JP2002363744A (en) Multi-layered film manufacturing apparatus, and manufacturing method thereof
JP2003105533A (en) Method of producing transparent electroconductive film and transparent electroconductive film
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
US20100193352A1 (en) Method for manufacturing solar cell
JP2001189114A (en) Manufacturing method of transparent electrode
JP2001176334A (en) Transparent conductive film and its manufacturing method
JP4170507B2 (en) Method for producing transparent conductive film
JP4397451B2 (en) Transparent conductive thin film and method for producing the same
JP3437422B2 (en) Method for forming indium oxide thin film, substrate for semiconductor device using the indium oxide thin film, and photovoltaic device
JPH08153882A (en) Production of thin film solar cell
JP3746607B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP2841213B2 (en) Method for manufacturing solar cell substrate
JPS634356B2 (en)
JPS6226869A (en) Manufacture of photovoltaic device
CN115224199A (en) Perovskite solar cell and preparation method thereof
JPS63121653A (en) Formation of transparent conductive film
JP2933452B2 (en) Solar cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees