WO2012093702A1 - Transparent electroconductive film laminate and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same - Google Patents

Transparent electroconductive film laminate and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2012093702A1
WO2012093702A1 PCT/JP2012/050124 JP2012050124W WO2012093702A1 WO 2012093702 A1 WO2012093702 A1 WO 2012093702A1 JP 2012050124 W JP2012050124 W JP 2012050124W WO 2012093702 A1 WO2012093702 A1 WO 2012093702A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
film
zinc oxide
less
Prior art date
Application number
PCT/JP2012/050124
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 能之
健太郎 曽我部
山野辺 康徳
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2012093702A1 publication Critical patent/WO2012093702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention is useful for producing a high-efficiency silicon-based thin film solar cell, and is a transparent conductive film laminate excellent in hydrogen reduction resistance and excellent in light confinement effect, a method for producing the same, and a thin film solar cell and the same It relates to a manufacturing method.
  • This application claims priority on the basis of Japanese Patent Application No. 2011-000777 filed on January 5, 2011 in Japan, and is incorporated herein by reference. Is done.
  • Transparent conductive films with high conductivity and high transmittance in the visible light region are used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, and in addition, heat ray reflection for automobile windows and buildings. It is also used as a transparent heating element for various types of antifogging, such as a film, an antistatic film, and a frozen showcase.
  • tin oxide (SnO 2 ) -based, zinc oxide (ZnO) -based, and indium oxide (In 2 O 3 ) -based thin films are known.
  • tin oxide those containing antimony as a dopant (ATO) and those containing fluorine as a dopant (FTO) are used.
  • ATO antimony as a dopant
  • FTO fluorine as a dopant
  • zinc oxide system those containing aluminum as a dopant (AZO) and those containing gallium as a dopant (GZO) are used.
  • the transparent conductive film most industrially used is an indium oxide type, and indium oxide containing tin as a dopant is referred to as an ITO (Indium-Tin-Oxide) film. Since it is obtained, it has been used widely.
  • ITO Indium-Tin-Oxide
  • a thin-film solar cell generally includes a transparent conductive film, one or more semiconductor thin-film photoelectric conversion units, and a back electrode, which are sequentially stacked on a light-transmitting substrate. Since silicon materials are abundant in resources, silicon-based thin-film solar cells using silicon-based thin films for photoelectric conversion units (light absorption layers) are quickly put into practical use, and research and development are expanding actively. Has been.
  • silicon-based thin film solar cells are further diversified.
  • fine crystalline silicon is mixed in amorphous silicon.
  • a microcrystalline thin film solar cell using the microcrystalline thin film and a crystalline thin film solar cell using a crystalline thin film made of crystalline silicon have been developed, and a hybrid thin film solar cell in which these are laminated has been put into practical use.
  • Such a photoelectric conversion unit or thin film solar cell has an amorphous photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductive semiconductor layers contained therein are amorphous, crystalline, or microcrystalline.
  • Those having a high quality are referred to as amorphous units or amorphous thin-film solar cells, and those having a crystalline photoelectric conversion layer are referred to as crystalline units or crystalline thin-film solar cells, and the photoelectric conversion layer is microcrystalline.
  • microcrystalline units or microcrystalline thin-film solar cells are called microcrystalline units or microcrystalline thin-film solar cells.
  • the transparent conductive film is used for the surface transparent electrode of the thin film solar cell, and in order to effectively confine the light incident from the translucent substrate side in the photoelectric conversion unit, the surface thereof is usually fine. Many irregularities are formed.
  • Haze rate is an index representing the degree of unevenness of this transparent conductive film. This is equivalent to the light that is transmitted when the light from a specific light source is incident on a transparent substrate with a transparent conductive film divided by the scattered component whose optical path is bent and divided by all components. Measured using a C light source containing Generally, the haze ratio increases as the height difference between the projections and depressions increases, or as the distance between the projections and depressions of the projections and projections increases, and the light incident into the photoelectric conversion unit is effectively confined. The effect is excellent.
  • the transparent conductive film If the haze ratio can be increased and sufficient light confinement can be performed, a high short-circuit current density (Jsc) can be realized, and a thin film solar cell with high conversion efficiency can be manufactured.
  • a metal oxide material mainly composed of tin oxide produced by a thermal CVD method is known as a transparent conductive film having a high haze ratio, and is generally used as a transparent electrode of a thin film solar cell.
  • the photoelectric conversion unit formed on the surface of the transparent conductive film is generally manufactured using a high-frequency plasma CVD method, and as a source gas used at this time, a silicon-containing gas such as SiH 4 or Si 2 H 6 , or those A mixture of the above gas and H 2 is used. Further, as a dopant gas for forming a p-type or n-type layer in the photoelectric conversion unit, B 2 H 6, PH 3 or the like is preferably used.
  • the substrate temperature is 100 ° C. or more and 250 ° C. or less (however, the amorphous p-type silicon carbide layer 3p is 180 ° C. or less), the pressure is 30 Pa or more and 1500 Pa or less, and the high frequency power density is 0.01 W / cm 2 or more and 0.5 W / cm 2 or less is preferably used.
  • the photoelectric conversion unit when manufacturing the photoelectric conversion unit, if the formation temperature is increased, the reduction of the metal oxide is promoted by the existing hydrogen, and in the case of the transparent conductive film mainly composed of tin oxide, the hydrogen reduction is performed. There is a loss of transparency. If such a transparent conductive film with poor transparency is used, a thin film solar cell with high conversion efficiency cannot be realized.
  • the transparent conductive film mainly composed of indium oxide also loses transparency due to this hydrogen reduction.
  • the transparency is impaired as the film is blackened by hydrogen reduction, so that it is very difficult to use it as a surface electrode of a thin film solar cell.
  • Non Patent Literature 1 discloses a reduction resistance on a transparent conductive film made of tin oxide having a high degree of unevenness formed by a thermal CVD method. A method of forming a thin zinc oxide film having a good thickness by sputtering is proposed. Since zinc oxide has a strong bond between zinc and oxygen and is excellent in resistance to hydrogen reduction, the transparency of the transparent conductive film can be kept high by adopting the above structure.
  • the transparent conductive film having the above-described structure it is necessary to form a film by combining two kinds of methods. Moreover, about the method of manufacturing all the laminated films of a tin oxide type transparent conductive film and a zinc oxide type transparent conductive film by sputtering method, a highly transparent tin oxide type transparent conductive film cannot be manufactured by sputtering method, etc. It is said that it is impossible to realize for the reason.
  • Non-Patent Document 2 proposes a method of obtaining a transparent conductive film having a surface roughness and having a high haze ratio, mainly composed of zinc oxide, by a sputtering method.
  • This method uses a zinc oxide sintered body target to which 2 wt% of Al 2 O 3 is added and performs sputtering film formation at a high gas pressure of 3 Pa to 12 Pa and a substrate temperature of 200 ° C. to 400 ° C. ing.
  • the film is formed by applying a power of DC 80 W to a 6 inch ⁇ target, and the input power density to the target is as extremely low as 0.442 W / cm 2 . For this reason, the film formation rate is as extremely low as 14 nm / min or more and 35 nm / min or less and industrially impractical.
  • Non-Patent Document 3 after obtaining a transparent conductive film with zinc oxide as a main component and produced by a conventional sputtering method and having small surface irregularities, the surface of the film is etched with acid to make the surface irregular.
  • a method for producing a transparent conductive film having a high haze ratio is disclosed.
  • this method after a film is manufactured by a sputtering method which is a vacuum process in a dry process, it is dried by performing acid etching in the air, and a semiconductor layer must be formed again by a CVD process in the dry process. There are problems such as complicated processes and high manufacturing costs.
  • the present applicant has proposed a sputter target in which gallium oxide is mixed with zinc oxide as a main component and abnormal discharge is reduced by adding a third element (Ti, Ge, Al, Mg, In, Sn).
  • a third element Ti, Ge, Al, Mg, In, Sn.
  • the GZO sintered body containing gallium as a dopant is composed of a ZnO phase in which at least one selected from the group consisting of Ga, Ti, Ge, Al, Mg, In, and Sn is dissolved in an amount of 2 wt% or more. It is a main constituent phase, and the other constituent phases are a ZnO phase in which at least one of the above is not dissolved, and an intermediate compound phase represented by ZnGa 2 O 4 (spinel phase).
  • the present applicant optimizes the content of aluminum and gallium in an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium as additive elements.
  • an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium as additive elements By optimally controlling the type and composition of the crystalline phase produced during firing, especially the composition of the spinel crystalline phase, particles are unlikely to form even when film formation is continued for a long time with a sputtering device, even under high DC power input.
  • a target oxide sintered body that does not cause any abnormal discharge has been proposed (see Patent Document 3).
  • the present invention is useful for producing a high-efficiency silicon-based thin film solar cell, and is a transparent conductive film laminate excellent in hydrogen reduction resistance and excellent in light confinement effect, and its production It is an object of the present invention to provide a method, and a thin film solar cell and a method for manufacturing the same.
  • an indium oxide-based transparent conductive film having low hydrogen reduction resistance is formed by forming a dense crystalline zinc oxide-based transparent conductive film (II) having c-axis orientation on the transparent conductive film (I) as a base.
  • II dense crystalline zinc oxide-based transparent conductive film
  • III zinc oxide-based transparent conductive film
  • the present inventors have found that the structure is excellent, and have completed the present invention.
  • the c-axis inclination angle of the hexagonal crystal is formed on the indium oxide-based transparent conductive film (I) formed on the light-transmitting substrate by sputtering.
  • the transparent conductive film laminate according to the present invention includes an indium oxide-based transparent conductive film (I) formed on a translucent substrate and a hexagonal crystal formed on the indium oxide-based transparent conductive film (I).
  • a zinc oxide-based transparent conductive film (III) having a film thickness of 400 nm or more and 1600 nm or less formed thereon, a surface roughness (Ra) of 35.0 nm or more, and a surface resistance of 25 ⁇ / ⁇ or less. It is characterized by being.
  • the manufacturing method of the thin film solar cell which concerns on this invention is a manufacturing method of the thin film solar cell which forms a transparent conductive film laminated body, a photoelectric converting layer unit, and a back surface electrode layer in order on a translucent board
  • the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface by sputtering.
  • the film thickness is 10 nm or more and 200 nm or less, and a film thickness is formed by sputtering on the zinc oxide-based transparent conductive film (II) and the zinc oxide-based transparent conductive film (II).
  • a transparent conductive film laminate is formed.
  • the thin film solar cell according to the present invention is the thin film solar cell in which a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate.
  • Zinc oxide-based transparent conductive film (II) having a thickness of 10 ° or less and a film thickness of 10 nm or more and 200 nm or less with respect to the direction perpendicular to the translucent substrate surface, and a film formed on the zinc oxide-based transparent conductive film (II)
  • a zinc oxide-based transparent conductive film (III) having a thickness of 400 nm or more and 1600 nm or less, having a surface roughness (Ra) of 35.0 nm or more and a surface resistance of 25 ⁇ / ⁇ or less.
  • the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface, and the film thickness is 10 nm or more and 200 nm.
  • the surface roughness (Ra) is 35.0 nm or more, A film having a surface resistance of 25 ⁇ / ⁇ or less can be obtained, a transparent conductive film laminate having excellent hydrogen reduction resistance and excellent light confinement effect can be provided.
  • this transparent conductive film laminated body can be manufactured only by the sputtering method, it is not only excellent in conductivity etc. for a surface transparent electrode of a thin film solar cell, but also by a conventional transparent conductive film by a thermal CVD method. As a result, the cost can be reduced. Therefore, since a highly efficient silicon-based thin film solar cell can be provided at a low cost by a simple process, it is extremely useful industrially.
  • FIG. 1 is a graph showing the relationship between the contents of aluminum and gallium in a zinc oxide-based transparent conductive film.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of a thin film solar cell using an amorphous silicon thin film as a photoelectric conversion unit.
  • FIG. 3 is a cross-sectional view showing a configuration example of a hybrid thin film solar cell in which an amorphous silicon thin film and a crystalline silicon thin film are stacked as a photoelectric conversion unit.
  • FIG. 4 is a surface SEM photograph of the transparent conductive thin film obtained by the production method of the present invention.
  • FIG. 5 is a cross-sectional SEM photograph of the transparent conductive thin film obtained by the production method of the present invention.
  • Transparent conductive film laminate 1-1 Indium oxide-based transparent conductive film (I) 1-2.
  • Properties of transparent conductive film laminate 2.
  • Formation of zinc oxide-based transparent conductive film (III) Thin film solar cell and manufacturing method thereof
  • the transparent conductive film laminate according to the present embodiment is based on an indium oxide-based transparent conductive film (I) formed on a light-transmitting substrate, and the indium oxide-based transparent conductive film is protected thereon. It has a three-layer laminated structure in which a zinc oxide-based transparent conductive film (II) and then a zinc oxide-based transparent conductive film (III) excellent in unevenness are sequentially formed. By adopting this laminated structure, it is possible to protect the indium oxide-based transparent conductive film (I) which is excellent in conductivity but inferior in hydrogen reduction resistance, and therefore has excellent hydrogen reduction resistance and transparency of the transparent conductive film. In addition, the conductivity can be kept high.
  • such a transparent conductive film laminated body has a high haze ratio, is excellent in so-called light confinement effect, has low resistance, and is very useful as a surface electrode material for thin film solar cells. Furthermore, the transparent conductive film laminate according to the present embodiment can be manufactured only by the sputtering method and has high productivity.
  • the indium oxide-based transparent conductive film (I) is a crystal film containing indium oxide as a main component and one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce, or Ga.
  • a crystal film in which an additive element of Sn, Ti, W, Mo, Zr, Ce, or Ga is contained in indium oxide is useful because of its excellent conductivity.
  • an element of Ti, W, Mo, Zr, Ce, or Ga when included, a film with high mobility can be obtained. Therefore, since the resistance is reduced without increasing the carrier concentration, a low resistance film having a high transmittance in the visible region to the near infrared region can be realized.
  • the content ratio is preferably 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio.
  • the content rate is 5.5 atomic% or less in Ti / (In + Ti) atomic ratio.
  • W it is preferable that the content rate is 4.3 atomic% or less in W / (In + W) atomic ratio.
  • the content rate is 6.5 atomic% or less by Zr / (In + Zr) atomic ratio.
  • the content rate when it contains Mo, it is preferable that the content rate is 6.7 atomic% or less by Mo / (In + Mo) atomic number ratio. Moreover, when it contains Ce, it is preferable that the content rate is 6.5 atomic% or less by Ce / (In + Ce) atomic ratio. Moreover, when it contains Ga, it is preferable that the content rate is 6.5 atomic% or less by Ga / (In + Ga) atomic ratio. If the content exceeds this range, the resistance becomes high, which is not useful.
  • an ITO film containing tin as a dopant and an ITiO film containing titanium as a dopant are preferably used in the present embodiment.
  • the film thickness of the indium oxide-based transparent conductive film (I) is not particularly limited, but is preferably 50 nm or more and 600 nm or less, more preferably 300 nm or more and 500 nm or less.
  • the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface.
  • the crystal grains become large, voids are formed between the grains, and the underlying indium oxide-based transparent conductive film (I) is exposed.
  • the c-axis tilt angle is 10 ° or less, the crystal grains are small, and it is possible to prevent the underlying indium oxide-based transparent conductive film (I) from being exposed by voids formed between the grains. .
  • the film thickness of the zinc oxide-based transparent conductive film (II) is 10 nm or more and 200 nm or less. When the film thickness is less than 10 nm, it is difficult to completely cover the indium oxide-based transparent conductive film (I). When the film thickness exceeds 200 nm, the transparency and productivity are lowered.
  • the zinc oxide-based transparent conductive film (II) may contain any additive element as long as zinc oxide is a main component (90% or more by weight), and may contain no additive element. Since this zinc oxide-based transparent conductive film (II) mainly protects the indium oxide-based transparent conductive film (I), its composition is not greatly limited, but an additive element that contributes to the conductivity of the oxide film As for it, it is preferable that 1 or more types of additional metal elements chosen from aluminum or gallium are included.
  • the main component is zinc oxide, and one or more additive metal elements selected from aluminum or gallium are included, and the aluminum content and the gallium content are within the range represented by the following formula (1). It is preferable that it exists in.
  • the film thickness of the zinc oxide-based transparent conductive film (III) is 400 nm or more and 1600 nm or less. When the film thickness is less than 400 nm, it is difficult to obtain sufficient surface roughness (Ra) and haze ratio, and when the film thickness exceeds 1600 nm, the permeability and productivity are lowered.
  • the film thickness of the zinc oxide-based transparent conductive film (III) is more preferably 700 nm or more and 1400 nm or less.
  • zinc oxide-based transparent conductive film (III) it is preferable to use zinc oxide containing one or more additive metal elements selected from aluminum or gallium as an additive element contributing to the conductivity of the oxide film.
  • zinc oxide is the main component, and one or more additive metal elements selected from aluminum or gallium are included.
  • the content of is preferably in the range represented by the following formula (2).
  • the silicon-based material formed thereon Aluminum and gallium easily diffuse into the thin film, making it difficult to realize a silicon-based thin film solar cell with excellent characteristics. Also, in terms of productivity, when the aluminum and gallium contents in the film are larger than the range defined by the formula (2), a transparent conductive film with large surface irregularities and a high haze ratio is produced at high speed by the sputtering method. It becomes difficult to do. On the other hand, when it is less than the range defined by the formula (2), the conductivity becomes insufficient.
  • the zinc oxide-based transparent conductive films (II) and (III) include other elements (for example, indium, titanium, germanium, silicon, tungsten, molybdenum, iridium, ruthenium, zinc, aluminum, gallium and oxygen). Rhenium, cerium, magnesium, silicon, fluorine, etc.) may be contained within a range not impairing the object of the present invention.
  • the zinc oxide-based transparent conductive films (II) and (III) are within the range represented by the above formula (2). Thereby, the same sputtering target can be used for film-forming of a zinc oxide type transparent conductive film (II) and a zinc oxide type transparent conductive film (III), and productivity can be improved.
  • the film thickness is not particularly limited and depends on the composition of the material, but the indium oxide-based transparent conductive film (I ) Is from 50 nm to 500 nm, particularly preferably from 100 nm to 300 nm, and the zinc oxide-based transparent conductive film (III) is from 400 nm to 1600 nm, particularly preferably from 700 nm to 1400 nm.
  • the thickness of the zinc oxide-based transparent conductive film (II) is preferably a film pressure that can completely cover the surface of the indium oxide-based transparent conductive film (I), but the productivity and the transmittance are deteriorated. 200 nm or less is preferable.
  • the above film thickness is satisfied, and the total film thickness as the transparent conductive film laminate of the present invention is preferably 450 nm to 2300 nm, particularly preferably 800 nm to 1700 nm.
  • the surface roughness (Ra) of the transparent conductive film laminate is 35.0 nm or more.
  • the surface roughness (Ra) is less than 35.0 nm, a zinc oxide-based transparent conductive film (III) having a high haze ratio cannot be obtained, and when the silicon-based thin film solar cell is produced, the light confinement effect is inferior. High conversion efficiency cannot be realized.
  • the surface roughness (Ra) is preferably as large as possible at 35.0 nm or more.
  • the surface roughness (Ra) of the zinc oxide-based transparent conductive film (III) exceeds 70 nm, it affects the growth of the silicon-based thin film formed on the zinc oxide-based transparent conductive film (III), and the zinc oxide-based transparent conductive film (III) This is not preferable because a gap is generated at the interface between the transparent conductive film (III) and the silicon-based thin film, the contact property is deteriorated, and the solar cell characteristics are deteriorated.
  • the surface resistance of the transparent conductive film laminate is 25 ⁇ / ⁇ or less.
  • the surface resistance can be 25 ⁇ / ⁇ or less.
  • the surface resistance of the transparent conductive film laminate according to the present embodiment is preferably 20 ⁇ / ⁇ or less, more preferably 13 ⁇ / ⁇ or less, still more preferably 10 ⁇ / ⁇ or less, and most preferably 8 ⁇ / ⁇ or less.
  • a solar cell of at least 5 cm ⁇ can be realized, but if it is 20 ⁇ / ⁇ or less, a solar cell of at least 8 cm ⁇ can be realized, and if it is 13 ⁇ / ⁇ or less, at least If the 15 cm ⁇ cell is 10 ⁇ / ⁇ or less, at least 17 cm ⁇ cell can be realized, and if it is 8 ⁇ / ⁇ or less, at least 20 cm ⁇ cell can be realized without considering the influence of power loss at the surface electrode.
  • Solar cells with a small cell area need to be connected by metal wiring, which not only reduces the amount of power generated per unit area of a single module made by connecting cells due to factors such as increased cell spacing. This is not preferable because of problems such as an increase in manufacturing cost per cell area.
  • the haze ratio of the transparent conductive film laminate is preferably 8% or more, more preferably 12% or more, still more preferably 16% or more, and most preferably 20% or more.
  • a haze ratio of 12% or more is indispensable in order to achieve a conversion efficiency of 10% or more.
  • it is effective to use a surface electrode having a haze ratio of 16% or more.
  • it is effective to use a surface electrode having a haze ratio of 20% or more in order to realize a conversion efficiency of 15% or more in the same evaluation.
  • a surface electrode having a haze ratio of 20% or more is particularly useful.
  • the above-described zinc oxide-based transparent conductive films (II) and (III) are stacked in addition to the indium oxide-based transparent conductive film (I) inserted in the base. By doing so, a high haze rate can be realized.
  • the transparent conductive film laminate according to the present embodiment protects the indium oxide-based transparent conductive film by the zinc oxide-based transparent conductive film (II) as described above, it is excellent in resistance to hydrogen reduction. Specifically, a decrease in transmittance due to heat treatment in a hydrogen atmosphere at 500 ° C. can be suppressed to 10% or less.
  • the c-axis tilt angle of the hexagonal crystal is increased by sputtering on the indium oxide-based transparent conductive film (I) formed on the light-transmitting substrate.
  • a zinc oxide-based transparent conductive film (II) having a thickness of 10 ° or less and a film thickness of 10 nm or more and 200 nm or less with respect to the direction perpendicular to the translucent substrate surface was formed, and on the zinc oxide-based transparent conductive film (II), A zinc oxide-based transparent conductive film (III) having a film thickness of 400 nm or more and 1600 nm or less is formed by a sputtering method.
  • Indium Oxide-Based Transparent Conductive Film (I) For the formation of the indium oxide-based transparent conductive film (I), an oxide firing mainly composed of indium oxide containing one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce, or Ga is used. A ligation target is used. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
  • Sn is contained, and the content ratio is 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio, or Ti is contained, and the content ratio is Ti / Those having an atomic ratio of (In + Ti) of 5.5 atomic% or less are preferably used.
  • the indium oxide-based transparent conductive film (I) is formed by a first method in which an amorphous film is formed without heating the substrate and then crystallized by heat treatment, and a crystal is formed by heating the substrate.
  • a second method of forming a material film can be used.
  • the first method after forming an amorphous film under the conditions of a substrate temperature of 100 ° C. or less and a sputtering gas pressure of 0.1 or more and less than 1.0 Pa, heat treatment is subsequently performed to 200 ° C. or more and 600 ° C. or less, The amorphous film is crystallized to form an indium oxide-based transparent conductive film.
  • the indium oxide-based transparent conductive film is formed as a crystal film under conditions of a substrate temperature of 200 ° C. or more and 600 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa.
  • the first method in which an amorphous film is formed without heating the substrate and then crystallized by heat treatment. This is because the first method can obtain a film having a larger surface roughness (Ra) and haze ratio than the second method in which the substrate is heated to form the crystalline film.
  • Ra surface roughness
  • the oxide sintered compact target used for film formation of the zinc oxide-based transparent conductive film (II) may contain any additive element as long as it contains lead oxide as a main component (90% or more by weight). An additive element may not be contained. Since the zinc oxide-based transparent conductive film (II) mainly plays a role in protecting the indium oxide-based transparent conductive film (I), the composition of the oxide sintered compact target is not greatly limited. It is preferable that the additive element contributing to the property contains one or more additive metal elements selected from aluminum or gallium. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
  • the oxide firing in which the contents of aluminum and gallium are within the range represented by the above formula (1) is preferable to use a ligation target.
  • the conductivity of the zinc oxide-based transparent conductive film (II) will be sufficient, but the oxidation
  • the oxide sintered compact target used for forming the zinc-based transparent conductive film (II) the same target as that for forming the zinc oxide-based transparent conductive film (III) can be used. This makes it possible to replace the oxide sintered compact target in the film formation of the zinc oxide-based transparent conductive film (II) and the film formation of the zinc oxide-based transparent conductive film (III), and to contaminate the chamber due to the different target composition. Can be prevented, and productivity can be improved.
  • This zinc oxide sintered compact target containing one or more additive metal elements selected from aluminum or gallium is prepared by adding and mixing gallium oxide powder and aluminum oxide powder to zinc oxide powder as a raw material powder, The slurry obtained by blending the raw material powder with the aqueous medium can be pulverized and mixed, then the pulverized / mixture is formed, and then the formed body is fired.
  • the detailed manufacturing method is described in Patent Document 3.
  • the zinc oxide-based transparent conductive film (II) is formed by forming an amorphous film without heating the substrate, and then heat-treating the crystal.
  • a first method for forming a crystalline film and a second method for forming a crystalline film by heating the substrate can be used.
  • an amorphous material is used in which the DC input power density to the sputtering target is 1.66 W / cm 2 or more under the condition that the sputtering gas pressure is 0.1 Pa or more and less than 1.0 Pa and the substrate temperature is 100 ° C. or less. After forming as a film, it heat-processes at 200 degreeC or more and 600 degrees C or less, and crystallizes zinc oxide type transparent conductive film (II).
  • the DC input power density to the sputtering target is 1.66 W / cm 2 or more under the condition that the substrate temperature is 200 ° C. or more and 600 ° C. or less when the sputtering gas pressure is 0.1 Pa or more and less than 1.0 Pa.
  • a zinc oxide-based transparent conductive film (II) is formed.
  • neither the first method nor the second method significantly affects the characteristics of the transparent conductive film laminate, but from the viewpoint of productivity, the heat treatment after film formation.
  • the 2nd method which does not need to provide a process is preferable.
  • the zinc oxide-based transparent conductive film (II) is formed under the condition that the sputtering gas pressure is 0.1 Pa or more and less than 1.0 Pa as described above.
  • the sputtering gas pressure is less than 0.1 Pa, it is difficult to form a crystal film.
  • the sputtering gas pressure is 1.0 Pa or more, a zinc oxide-based transparent conductive film (II) in which the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface is formed. Difficult to do.
  • the mixing ratio (molar ratio) of the mixed gas of argon (Ar) and hydrogen (H 2 ) used as the sputtering gas species is H 2 / (Ar + H 2 )> 0.43
  • the adhesion of the transparent conductive film to the substrate Or the transparent conductive film becomes too rough and the conductivity deteriorates, making it practically difficult to use as an electrode of a solar cell.
  • transparency loss due to hydrogen reduction occurs in the indium oxide-based transparent conductive film (I), which is the underlayer, and it becomes very difficult to use as a surface electrode of a thin film solar cell.
  • the zinc oxide-based transparent conductive film (III) is crystallized by forming an amorphous film without heating the substrate and then heat-treating it.
  • a first method for forming a crystalline film and a second method for forming a crystalline film by heating the substrate can be used.
  • an amorphous material is used in which the direct current input power density to the sputtering target is 1.66 W / cm 2 or more under the condition that the sputtering gas pressure is 1.0 Pa or more and 15.0 Pa or less and the substrate temperature is 100 ° C. or less. After forming as a film, it heat-processes at 200 degreeC or more and 600 degrees C or less, and crystallizes zinc oxide type transparent conductive film (III).
  • the DC input power density to the sputtering target is 1.66 W / cm 2 or more under the conditions that the sputtering gas pressure is 1.0 Pa or more and 15.0 Pa or less and the substrate temperature is 200 ° C. or more and 600 ° C. or less.
  • a zinc oxide-based transparent conductive film (III) is formed.
  • the first method or the second method does not greatly affect the characteristics of the transparent conductive film laminate, but from the viewpoint of productivity, the heat treatment step after film formation is performed.
  • the second method which does not need to be provided is preferable.
  • the sputtering gas pressure is 1.0 Pa or more and 15.0 Pa or less.
  • the sputtering gas pressure is less than 1.0 Pa, it is difficult to obtain a film having large surface irregularities, and a film having an Ra value of 35.0 nm or more cannot be obtained.
  • the film formation rate is slow, which is not preferable.
  • the sputtering gas pressure is 15. It is necessary to make it 0 Pa or less.
  • hydrogen gas is supplied as H 2 / (Ar + H 2 ) ⁇ 0 in the same manner as when the zinc oxide-based transparent conductive film (II) is formed.
  • .43 may be introduced at a mixing ratio (molar ratio) to dissociate excess oxygen in the film, thereby improving conductivity and transmittance.
  • the substrate temperature at the time of film-forming of zinc oxide type transparent conductive film (III) shall be 200 to 600 degreeC similarly to the time of film-forming of zinc oxide type transparent conductive film (II). It is preferable. Thereby, the crystallinity of the transparent conductive film is improved, the mobility of carrier electrons is increased, and excellent conductivity can be realized.
  • the substrate temperature is less than 200 ° C., the growth of film particles is inferior, so that a film having a large Ra value cannot be obtained.
  • the substrate temperature exceeds 600 ° C. not only does the problem arise such that the amount of electric power required for heating increases and the manufacturing cost increases, but when the glass substrate is used as the substrate, the softening point is exceeded. This is not preferable because problems such as deterioration of the glass also occur.
  • the high-speed film formation here refers to performing sputtering film formation by increasing the input power to the target to 2.76 W / cm 2 or more. Thereby, for example, a film formation speed of 90 nm / min or more can be realized in static facing film formation, and a zinc oxide-based transparent conductive film having a large surface roughness and a high haze ratio can be obtained.
  • the film was formed at a similar input power density of 5.1 nm ⁇ m / min (transfer speed (m / min)).
  • transfer speed (m / min) transfer speed (m / min)
  • rate in this case will not be restrict
  • the surface roughness (Ra) is 35.
  • a transparent conductive film laminate having a surface irregularity having a surface resistance of 0.0 nm or more and a surface resistance of 25 ⁇ / ⁇ or less can be produced.
  • the surface roughness (Ra) and the surface resistance can be realized even with a thin film thickness of 450 nm or more and 1000 nm or less, and the transmittance is improved by reducing the film thickness. .
  • zinc oxide is the main component, one or more selected from aluminum or gallium is included as an additive metal element, and the aluminum content [Al] and the gallium content [Ga] are within a specific range.
  • a certain zinc oxide-based transparent conductive film (III) high-speed film formation is possible only by a sputtering method, surface roughness (Ra) is 35.0 nm or more, surface resistance is 25 ⁇ / ⁇ or less, A transparent conductive film laminate excellent in the light confinement effect can be obtained.
  • the low gas pressure layer (II) can protect all over the indium oxide-based transparent conductive film (I) with low hydrogen reduction resistance, and has excellent hydrogen reduction resistance, light A structure having an excellent confinement effect can be obtained.
  • a transparent conductive film laminated body can be manufactured only by sputtering method, it is not only excellent in electroconductivity etc. for the surface transparent electrode of a thin film solar cell, but the transparent conductive film by the conventional thermal CVD method and In comparison, the cost can be reduced. Therefore, since a highly efficient silicon-based thin film solar cell can be provided at a low cost by a simple process, it is extremely useful industrially.
  • this transparent conductive film laminate is particularly excellent in hydrogen reduction resistance, has a high haze ratio and excellent conductivity, and includes sunlight ranging from visible light to near infrared light having a wavelength of 380 nm to 1200 nm. Can be converted into electrical energy very effectively. Therefore, it is very useful as a surface electrode application of a high efficiency solar cell.
  • a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate.
  • the thin film solar cell according to the present embodiment is a photoelectric conversion element using the above-described transparent conductive film laminate as an electrode.
  • the structure of the solar cell element is not particularly limited, and includes a PN junction type in which a p-type semiconductor and an n-type semiconductor are stacked, a PIN junction type in which an insulating layer (I layer) is interposed between the p-type semiconductor and the n-type semiconductor, and the like. Can be mentioned.
  • Thin film solar cells are roughly classified according to the type of semiconductor. Silicon solar cells using a silicon-based semiconductor thin film such as microcrystalline silicon and / or amorphous silicon as a photoelectric conversion element, CuInSe-based or Cu (In, Ga) Se-based , Ag (In, Ga) Se, CuInS, Cu (In, Ga) S, Ag (In, Ga) S and their solid solutions, GaAs, CdTe, and other compound semiconductor thin films Although it is classified into a compound thin film solar cell used as a photoelectric conversion element, and a dye-sensitized solar cell using an organic dye (also referred to as a Gretzel cell solar cell), the solar cell according to the present embodiment is In any case, high efficiency can be realized by using the above-described transparent conductive film laminate as an electrode.
  • a silicon-based semiconductor thin film such as microcrystalline silicon and / or amorphous silicon
  • CuInSe-based or Cu (In, Ga) Se-based Ag (In, Ga) Se, CuInS,
  • a transparent conductive film is indispensable for an electrode on which sunlight is incident (light receiving unit side, front side), and the transparent conductive film lamination according to the present embodiment
  • the body By using the body, high conversion efficiency characteristics can be exhibited.
  • the p-type and n-type conductive semiconductor layers in the photoelectric conversion unit serve to generate an internal electric field in the photoelectric conversion unit.
  • the value of the open circuit voltage (Voc) which is one of the important characteristics of the thin film solar cell, depends on the magnitude of the internal electric field.
  • the i-type layer is a substantially intrinsic semiconductor layer and occupies most of the thickness of the photoelectric conversion unit. The photoelectric conversion action mainly occurs in this i-type layer. Therefore, the i-type layer is usually called an i-type photoelectric conversion layer or simply a photoelectric conversion layer.
  • the photoelectric conversion layer is not limited to an intrinsic semiconductor layer, and may be a layer doped with a small amount of p-type or n-type as long as loss of light absorbed by a doped impurity (dopant) does not become a problem. .
  • FIG. 2 is a diagram showing an example of the structure of a silicon-based amorphous thin film solar cell.
  • silicon thin film solar cells that use silicon thin films for photoelectric conversion units include microcrystalline thin film solar cells and crystalline thin film solar cells.
  • Laminated hybrid thin film solar cells have also been put into practical use.
  • the photoelectric conversion unit or thin film solar cell when the photoelectric conversion layer which occupies the principal part is amorphous, it is called the amorphous unit or the amorphous thin film solar cell.
  • a crystalline photoelectric conversion layer is called a crystalline unit or a crystalline thin film solar cell.
  • the one having a microcrystalline photoelectric conversion layer is referred to as a microcrystalline unit or a crystalline thin film solar cell.
  • a method for improving the conversion efficiency of such a thin film solar cell there is a method of stacking two or more photoelectric conversion units into a tandem solar cell.
  • a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film solar cell, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed behind the front unit.
  • photoelectric conversion is enabled over the wide wavelength range of incident light, and the conversion efficiency as the whole solar cell can be improved.
  • tandem solar cells those in which an amorphous photoelectric conversion unit and a crystalline or microcrystalline photoelectric conversion unit are stacked are called hybrid thin film solar cells.
  • FIG. 3 is a diagram showing an example of the structure of a hybrid thin film solar cell.
  • the wavelength range of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, but i-type crystalline or microcrystalline silicon is longer than that.
  • Light up to a wavelength of about 1150 nm can be photoelectrically converted.
  • the transparent conductive film 21 which is the above-described indium oxide-based transparent conductive film (I)
  • the transparent conductive film 22 which is the zinc oxide-based transparent conductive film (II)
  • the transparent conductive film laminated body 2 which consists of the transparent conductive film 23 which is a zinc oxide type transparent conductive film (III) is formed.
  • the translucent substrate 1 As the translucent substrate 1, a plate-like member or a sheet-like member made of glass, transparent resin or the like is used.
  • An amorphous photoelectric conversion unit 3 is formed on the transparent conductive film laminate 2.
  • the amorphous photoelectric conversion unit 3 includes an amorphous p-type silicon carbide layer 31, a non-doped amorphous i-type silicon photoelectric conversion layer 32, and an n-type silicon-based interface layer 33.
  • the amorphous p-type silicon carbide layer 31 is formed at a substrate temperature of 180 ° C. or lower in order to prevent a decrease in transmittance due to the reduction of the transparent conductive film stack 2.
  • the crystalline photoelectric conversion unit 4 is formed on the amorphous photoelectric conversion unit 3.
  • the crystalline photoelectric conversion unit 4 includes a crystalline p-type silicon layer 41, a crystalline i-type silicon photoelectric conversion layer 42, and a crystalline n-type silicon layer 43.
  • a high frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 (hereinafter, both units are simply referred to as “photoelectric conversion unit”).
  • the substrate temperature is 100 ° C. or higher and 250 ° C. or lower (however, the amorphous p-type silicon carbide layer 31 is 180 ° C.
  • the pressure is 30 Pa or higher and 1500 Pa or lower
  • the high frequency power density is 0.01 W / cm. 2 or more and 0.5 W / cm 2 or less are preferably used.
  • a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is used.
  • a dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit B 2 H 6 or PH 3 is preferably used.
  • the back electrode 5 is formed on the n-type silicon interface layer 33 shown in FIG. 2 or on the n-type silicon interface layer 43 shown in FIG.
  • the back electrode 5 includes a transparent reflective layer 51 and a back reflective layer 52.
  • the transparent reflective layer 51 is preferably made of a metal oxide such as ZnO or ITO.
  • For the back reflective layer 52 it is preferable to use Ag, Al, or an alloy thereof.
  • the back electrode 5 In forming the back electrode 5, a method such as sputtering or vapor deposition is preferably used.
  • the back electrode 5 has a thickness of usually 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 3 ⁇ m.
  • the solar cell is completed by heating to near atmospheric pressure at an atmospheric temperature equal to or higher than the formation temperature of the amorphous p-type silicon carbide layer 31.
  • the gas used in the heating atmosphere air, nitrogen, a mixture of nitrogen and oxygen, or the like is preferably used.
  • the vicinity of atmospheric pressure generally indicates a range of 0.5 atm or more and 1.5 atm or less.
  • the method for manufacturing a thin-film solar cell according to the present embodiment it is possible to provide a silicon-based thin-film solar cell using the transparent conductive film laminate 2 as an electrode.
  • the indium oxide-based transparent conductive film (I) formed on the light-transmitting substrate is used as a base, and the indium oxide-based transparent conductive film is protected thereon.
  • a transparent conductive film laminate having a three-layer laminated structure in which a zinc oxide-based transparent conductive film (II) and then a zinc oxide-based transparent conductive film (III) excellent in unevenness are successively formed, A low-resistance transparent conductive film for a surface transparent electrode of a thin film solar cell can be obtained. Furthermore, the transparent conductive film laminate can be provided at a lower cost than a transparent conductive film formed by a conventional thermal CVD method.
  • the method for manufacturing a thin-film solar cell according to the present embodiment is extremely useful industrially because a highly efficient silicon-based thin-film solar cell can be provided at a low cost by a simple process.
  • FIG. 3 shows the structure of the hybrid thin film solar cell.
  • the number of photoelectric conversion units is not necessarily two, but an amorphous or crystalline single structure, a stacked solar cell structure having three or more layers. It may be.
  • the film thickness was measured by the following procedure. Before forming a film, apply a part of the substrate with oil-based magic ink, wipe the magic with ethanol after film formation, and form a film-free part. It was determined by measuring with a shape measuring instrument (Alpha-Step IQ manufactured by KLA Tencor).
  • the haze ratio of the film was evaluated with a haze meter (HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd.) based on JIS standard K7136.
  • the surface roughness (Ra) of the film was measured in an area of 5 ⁇ m ⁇ 5 ⁇ m using an atomic force microscope (manufactured by Digital Instruments, NS-III, D5000 system).
  • the hydrogen reduction resistance of the transparent conductive film laminate was evaluated by investigating changes in the transmittance of the transparent conductive film laminate before and after heat treatment in a hydrogen atmosphere at 500 ° C.
  • the transmittance was an average transmittance at a wavelength of 300 to 1200 nm.
  • the orientation of the zinc oxide-based transparent conductive film (II) is evaluated by the pole figure by X-ray diffraction measurement (manufactured by PANalytical, XPPro Pro MPD), and the c-axis in the film crystal is perpendicular to the substrate. It was evaluated how many times it was inclined against.
  • Example 1 GAZO / GAZO / ITO Transparent structure with large surface irregularities in the structure in which two types of zinc oxide-based transparent conductive films (II) and (III) having different characteristics are formed on the tin-containing indium oxide-based transparent conductive film (I) by the following procedure.
  • a conductive film laminate was produced by a sputtering method.
  • Example 1 Preparation of indium oxide-based transparent conductive film (I)
  • an indium oxide-based transparent conductive film (I) serving as a base was formed under the conditions shown in Table 1.
  • the composition of the target manufactured by Sumitomo Metal Mining Co., Ltd.
  • SPS4000 ICP emission spectroscopic analysis
  • Sn / (In + Sn) was 5 .30 atomic% or less.
  • the results are shown in Table 2.
  • the purity of the target was 99.999%, and the size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • This sputtering target is applied to a cathode for a ferromagnetic target of a DC magnetron sputtering apparatus (SPF503K manufactured by Tokki Co., Ltd.) (maximum horizontal magnetic field strength at a position 1 cm away from the target surface is about 80 kA / m (1 kG)).
  • SPF503K DC magnetron sputtering apparatus
  • maximum horizontal magnetic field strength at a position 1 cm away from the target surface is about 80 kA / m (1 kG)
  • a Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposite surface of the sputtering target.
  • the average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%.
  • the distance between the sputtering target and the substrate was 50 mm.
  • Example 1 Preparation of zinc oxide-based transparent conductive film (II)]
  • a zinc oxide-based sintered target made by Sumitomo Metal Mining Co., Ltd.
  • a zinc oxide-based transparent conductive film (II) was formed on the indium oxide-based transparent conductive film (I) under the conditions shown in Table 1, using a zinc oxide-based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing aluminum and gallium as additive elements.
  • a zinc oxide-based transparent conductive film (II) was formed.
  • the composition of the target was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000).
  • Al / (Zn + Al) was 0.30 atomic%
  • Ga / (Zn + Ga) was 0.30 atomic%. It was.
  • Table 2 shows the measurement results. The purity of each target was 99.999%, and the target size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 ⁇ 10 ⁇ 4 Pa or less, Ar gas having a purity of 99.9999 mass% is introduced into the chamber.
  • the gas pressure was 0.3 Pa.
  • sputtering film formation was carried out with the substrate still right above the center of the target, forming a 150 nm-thick zinc oxide transparent conductive film (II) Then, a transparent conductive film laminate was obtained.
  • Example 1 Preparation of zinc oxide-based transparent conductive film (III)
  • the zinc oxide-based transparent conductive film (II) under the conditions shown in Table 1, using a zinc oxide-based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing aluminum and gallium as additive elements, the surface A zinc oxide-based transparent conductive film (III) having large irregularities was formed.
  • the composition of the target was 0.30 atomic% for Al / (Zn + Al) and 0.30 atomic% for Ga / (Zn + Ga), as in the zinc oxide-based transparent conductive film (II) (Table 2).
  • the purity of each target was 99.999%, and the target size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 ⁇ 10 ⁇ 4 Pa or less, Ar gas having a purity of 99.9999 mass% is placed in the chamber.
  • the gas pressure was 4.0 Pa.
  • the film thickness and resistance value of the obtained transparent conductive thin film laminate were measured by the methods (1) and (3). Further, the total light transmittance and parallel line transmittance of the transparent conductive thin film laminate, the total light reflectance and parallel light reflectance, the haze ratio of the film, and the surface roughness Ra of the above (4) and (5) Measured by the method. In addition, as an evaluation of hydrogen reduction resistance of the obtained transparent conductive film laminate, an average transmittance (300 nm to 1200 nm) was measured before and after heat treatment in a hydrogen atmosphere by the method (6). Moreover, about the cross section of the zinc oxide type transparent conductive film (II), c-axis inclination evaluation by X-ray diffraction measurement was performed by the method of said (7).
  • Table 3 shows the characteristic evaluation results of the obtained transparent conductive film laminate.
  • the film thickness of the transparent conductive film laminate was 1150 nm.
  • the surface roughness Ra value measured with an atomic force microscope was as high as 39.1 nm, and the haze ratio was as high as 10.3%.
  • the surface resistance was 12.0 ⁇ / ⁇ , indicating high conductivity.
  • the c-axis tilt angle of the hexagonal crystal of the zinc oxide-based transparent conductive film (II) was 5 ° with respect to the direction perpendicular to the translucent substrate surface.
  • permeability of the obtained transparent conductive film laminated body was 0%, and the fall was not seen at all before and after heat processing in hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
  • FIG. 4 shows a surface SEM photograph of the transparent conductive thin film
  • FIG. 5 shows a cross-sectional SEM photograph of the transparent conductive thin film. From the surface SEM photograph shown in FIG. 4, it can be seen that a rough surface with large crystal grains is obtained. Moreover, it can be seen from the cross-sectional SEM photograph shown in FIG. 5 that the zinc oxide-based transparent conductive film (II) on the indium oxide-based transparent conductive film (I) has small crystal grains and is densely formed.
  • Examples 2 to 5 GAZO / GAZO / ITO]
  • the respective film thicknesses are set as shown in Tables 1 and 2. It changed and produced the transparent conductive film laminated body.
  • Other film forming conditions were the same as in Example 1.
  • the characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 2 to 5.
  • the film thicknesses of the transparent conductive film laminate were 950 nm (Example 2), 2150 nm (Example 3), 1100 nm (Example 4), and 2300 nm (Example 5), respectively.
  • the surface roughness Ra values measured with an atomic force microscope were 35.5 nm (Example 2), 47.1 nm (Example 3), 36.0 nm (Example 4), and 48.5 nm (Example 5), respectively.
  • the surface resistances were 12.6 ⁇ / ⁇ (Example 2), 5.3 ⁇ / ⁇ (Example 3), 11.0 ⁇ / ⁇ (Example 4), 5.1 ⁇ / ⁇ (Example 5), respectively. And showed high conductivity.
  • the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Examples 2 to 5 are 8 ° (Example 2) and 8 respectively with respect to the direction perpendicular to the translucent substrate surface. ° (Example 3), 4 ° (Example 4), and 5 ° (Example 5). Further, the transmittances of the transparent conductive film laminates of Examples 2 to 5 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
  • Example 6 to 9 GAZO / GAZO / ITO
  • a transparent conductive film laminate was prepared by replacing the tin-containing indium oxide-based transparent conductive film (I) used for the base film in Examples 2 to 5 with a titanium-containing indium oxide-based transparent conductive film (ITO). At this time, the underlying indium oxide-based transparent conductive film (I) was produced under the conditions shown in Table 1.
  • the composition of the target used for the preparation of the underlying indium oxide-based transparent conductive film (I) was 0.50 atomic% in terms of Ti / (In + Ti) when quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). It was the following. Table 2 shows the measurement results. Moreover, the purity of the target was 99.999%, and the size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • Film formation is performed by the apparatus used in Example 1, and the type of cathode is the same.
  • a Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposing surface of the target.
  • the average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%.
  • the distance between the sputtering target and the substrate was 50 mm. When the degree of vacuum in the chamber reaches 2 ⁇ 10 ⁇ 4 Pa or less, 6 vol.
  • sputtering film formation was carried out while the substrate was kept still immediately above the center of the target, and an indium oxide-based transparent conductive film having a film thickness of 50 nm and 500 was formed on the substrate. Formed.
  • zinc oxide-based transparent conductive films (II) and (III) are formed on the prepared base film (I) under the same conditions as in Examples 2 to 5 shown in Table 1, and a transparent conductive film stack is formed. Got the body.
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 6 to 9.
  • the compositions of the transparent conductive films (I) to (III) of Examples 6 to 9 were almost the same as the composition of the target.
  • the film thicknesses of the transparent conductive film laminates of Examples 6 to 9 were 950 nm (Example 6), 2150 nm (Example 7), 1100 nm (Example 8), and 2300 nm (Example 9), respectively.
  • the surface roughness Ra values measured with an atomic force microscope were 36.3 nm (Example 6), 49.0 nm (Example 7), 38.1 nm (Example 8), and 49.6 nm (Example 9), respectively.
  • the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Examples 6 to 9 were 10 ° (Example 6) and 8 respectively with respect to the direction perpendicular to the translucent substrate surface. ° (Example 7), 2 ° (Example 8) and 4 ° (Example 9). Further, the transmittances of the transparent conductive film laminates of Examples 6 to 9 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
  • Example 10 to 13 AZO / AZO / ITO
  • the zinc oxide-based transparent conductive films (II) and (III) are formed on the base film under the conditions shown in Table 1, and the transparent conductive film laminate is formed.
  • the characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
  • Example 10 to 13 Production of zinc oxide-based transparent conductive film (II)]
  • the composition of the target used for forming the zinc oxide-based transparent conductive film (II) was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). As a result, Al / (Zn + Al) was 0.30 atomic%. there were. Table 2 shows the measurement results. The purity of each target was 99.999%, and the size of the target was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • the film formation of the zinc oxide-based transparent conductive film (II) is performed by the apparatus used in Example 1, and the type of the cathode is the same.
  • a Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposing surface of the target.
  • the average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%.
  • the distance between the sputtering target and the substrate was 50 mm.
  • the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 ⁇ 10 ⁇ 4 Pa or less, Ar gas having a purity of 99.9999 mass% is introduced into the chamber, and the gas pressure is 0.5 Pa. It was.
  • II zinc-based transparent conductive film
  • Example 10 to 13 Production of zinc oxide-based transparent conductive film (III)
  • a zinc oxide-based transparent conductive film (III) having large surface irregularities is obtained using a zinc oxide-based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing aluminum as an additive element. ) was formed.
  • the composition of the target was 0.30 atomic% in Al / (Zn + Al) as in the case of the zinc oxide-based transparent conductive film (II) (Table 2).
  • the purity of each target is 99.999%, and the size of the target is 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 ⁇ 10 ⁇ 4 Pa or less, Ar gas having a purity of 99.9999 mass% is placed in the chamber.
  • the gas pressure was 4.0 Pa.
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 10 to 13.
  • the film thicknesses of the transparent conductive film laminates of Examples 10 to 13 were 950 nm (Example 10), 2150 nm (Example 11), 1100 nm (Example 12), and 2300 nm (Example 13), respectively.
  • the surface roughness Ra values measured with an atomic force microscope are 35.3 nm (Example 10), 46.3 nm (Example 11), 35.4 nm (Example 12), and 48.5 nm (Example 13), respectively.
  • the surface resistances were 15.3 ⁇ / ⁇ (Example 10), 7.0 ⁇ / ⁇ (Example 11), 11.7 ⁇ / ⁇ (Example 12), 7.0 ⁇ / ⁇ (Example 13), respectively. And showed high conductivity.
  • the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive film (II) of Examples 10 to 13 were 9 ° (Example 10) with respect to the direction perpendicular to the translucent substrate surface, respectively. 7 ° (Example 11), 5 ° (Example 12), and 3 ° (Example 13). Further, the transmittances of the transparent conductive film laminates of Examples 10 to 13 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
  • Examples 14 to 17 AZO / AZO / ITO]
  • the indium oxide-based transparent conductive film (I) the indium oxide-based transparent conductive film (ITO) containing titanium in Examples 6 to 9 is used as a base, and a zinc oxide-based transparent conductive film is formed thereon.
  • transparent conductive films (II) and (III) a zinc oxide-based transparent conductive film (AZO) containing aluminum in Examples 10 to 13 was formed to produce a transparent conductive film laminate.
  • the characteristics evaluation of the produced transparent conductive film laminated body was implemented by the same item and method as Example 1.
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 14 to 17.
  • the film thicknesses of the transparent conductive film laminates of Examples 14 to 17 were 950 nm (Example 14), 2150 nm (Example 15), 1100 nm (Example 16), and 2300 nm (Example 17), respectively.
  • the surface roughness Ra values measured with an atomic force microscope were 36.0 nm (Example 14), 47.0 nm (Example 15), 37.0 nm (Example 16), and 48.4 nm (Example 17), respectively.
  • the surface resistances were 14.9 ⁇ / ⁇ (Example 14), 6.7 ⁇ / ⁇ (Example 15), 11.3 ⁇ / ⁇ (Example 16), and 6.9 ⁇ / ⁇ (Example 17), respectively. And showed high conductivity.
  • the c-axis tilt angles of the hexagonal crystals of the zinc oxide based transparent conductive films (II) of Examples 14 to 17 were 10 ° with respect to the direction perpendicular to the translucent substrate surface (Example 14), They were 10 ° (Example 15), 5 ° (Example 16), and 3 ° (Example 17). Furthermore, the transmittances of the transparent conductive film laminates of Examples 14 to 17 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
  • Examples 18 to 21 GZO / GZO / ITO
  • Tables 1 and 2 as the indium oxide-based transparent conductive film (I), the zinc oxide-based transparent conductive film (II), (III) having the ITO film in Examples 2 to 5 as a base and containing gallium thereon.
  • To form a transparent conductive film laminate The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
  • Example 18 to 21 Production of zinc oxide-based transparent conductive film (II)]
  • the composition of the target used for forming the zinc oxide-based transparent conductive film (II) was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). As a result, Ga / (Zn + Ga) was 0.87 atomic%. there were. Table 2 shows the measurement results. The purity of each target was 99.999%, and the size of the target was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • the film formation of the zinc oxide-based transparent conductive film (II) is performed by the apparatus used in Example 1, and the type of the cathode is the same.
  • a Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposing surface of the target.
  • the average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%.
  • the distance between the sputtering target and the substrate was 50 mm.
  • the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 ⁇ 10 ⁇ 4 Pa or less, Ar gas having a purity of 99.9999 mass% is introduced into the chamber, and the gas pressure is 0.5 Pa. It was.
  • II zinc-based transparent conductive film
  • Example 18 to 21 Production of zinc oxide-based transparent conductive film (III)
  • a zinc oxide-based transparent conductive film (II) using a zinc oxide-based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing gallium as an additive element, a zinc oxide-based transparent with large surface irregularities A conductive film (III) was formed.
  • the composition of the target was 0.87 atomic% in terms of Ga / (Zn + Ga), similar to the zinc oxide-based transparent conductive film (II).
  • the purity of each target was 99.999%, and the size of the target was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 ⁇ 10 ⁇ 4 Pa or less, Ar gas having a purity of 99.9999 mass% is placed in the chamber.
  • the gas pressure was 4.0 Pa.
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 18 to 21.
  • the film thicknesses of the transparent conductive film laminates of Examples 18 to 21 were 950 nm (Example 18), 2150 nm (Example 19), 1100 nm (Example 20), and 2300 nm (Example 21), respectively.
  • the surface roughness Ra values measured with an atomic force microscope were 35.8 nm (Example 18), 47.1 nm (Example 19), 38.0 nm (Example 20), and 49.3 nm (Example 21), respectively.
  • the surface resistances were 12.0 ⁇ / ⁇ (Example 18), 5.7 ⁇ / ⁇ (Example 19), 10.5 ⁇ / ⁇ (Example 20), 5.1 ⁇ / ⁇ (Example 21), respectively. And showed high conductivity.
  • the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Examples 18 to 21 were 8 ° with respect to the direction perpendicular to the translucent substrate surface (Example 18), They were 9 ° (Example 19), 4 ° (Example 20), and 4 ° (Example 21). Furthermore, the transmittances of the transparent conductive film laminates of Examples 18 to 21 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
  • Examples 22 to 25 GZO / GZO / ITO
  • Tables 1 and 2 as the indium oxide-based transparent conductive film (I), an ITiO film containing titanium in Examples 6 to 9 was used as a base, and a zinc oxide-based transparent conductive film (II), ( As III), a GZO film containing gallium in Examples 18 to 21 was formed to produce a transparent conductive film laminate.
  • the characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 22 to 25.
  • the film thicknesses of the transparent conductive film laminates of Examples 22 to 25 were 950 nm (Example 22), 2150 nm (Example 23), 1100 nm (Example 24), and 2300 nm (Example 25), respectively.
  • the surface roughness Ra values measured with an atomic force microscope were 36.9 nm (Example 22), 49.1 nm (Example 23), 38.5 nm (Example 24), and 51.0 nm (Example 25), respectively.
  • the surface resistances were 11.4 ⁇ / ⁇ (Example 22), 5.2 ⁇ / ⁇ (Example 23), 10.2 ⁇ / ⁇ (Example 24), 4.9 ⁇ / ⁇ (Example 25), respectively. And showed high conductivity.
  • the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Examples 22 to 25 were 9 ° (Example 22) with respect to the direction perpendicular to the translucent substrate surface, respectively. 7 ° (Example 23), 3 ° (Example 24), and 3 ° (Example 25). Further, the transmittances of the transparent conductive film laminates of Examples 22 to 25 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
  • Table 3 shows the characteristic evaluation results of the obtained transparent conductive film laminate.
  • the film thickness of the obtained transparent conductive film was 900 nm
  • the surface roughness Ra value measured with an atomic force microscope was as high as 36.0 nm
  • the haze ratio was as high as 8.5%.
  • the transmittance of the obtained transparent conductive film laminate was greatly reduced from 75.2% to 35.7% by performing heat treatment in a hydrogen atmosphere. This is because the zinc oxide-based transparent conductive film (III) on the surface is very rough and the surface of the indium oxide-based transparent conductive film (I), which is the underlying layer, is not completely protected. This is thought to be because the oxygen was dissociated by hydrogen. Accordingly, when the indium oxide-based transparent conductive film (I) is not protected by the zinc oxide-based transparent conductive film (II), only a transparent conductive film laminate having extremely low hydrogen reduction resistance can be obtained, which is not useful. confirmed.
  • Table 3 shows the characteristic evaluation results of the obtained transparent conductive film laminate.
  • the film thickness of the obtained transparent conductive film was 900 nm
  • the surface roughness Ra value measured with an atomic force microscope was as high as 35.0 nm
  • the haze ratio was as high as 8.2%.
  • the transmittance of the obtained transparent conductive film laminate was greatly reduced from 76.5% to 40.3% by performing heat treatment in a hydrogen atmosphere. This is presumably because, as in Comparative Example 1, the surface protection of the zinc oxide-based transparent conductive film (III) was insufficient, and oxygen in the indium oxide-based transparent conductive film was dissociated. Therefore, as in Comparative Example 1, when the indium oxide-based transparent conductive film (I) is not protected by the zinc oxide-based transparent conductive film (II), the hydrogen reduction resistance is very low and useful as an electrode of a solar cell. Not confirmed.
  • Table 3 shows the characteristic evaluation results of the obtained transparent conductive film laminate.
  • the film thickness of the obtained transparent conductive film was 900 nm
  • the surface roughness Ra value measured with an atomic force microscope was as high as 35.5 nm
  • the haze ratio was as high as 8.8%.
  • the transmittance of the obtained transparent conductive film laminate was greatly reduced from 71.3% to 32.1% by performing heat treatment in a hydrogen atmosphere. This is presumably because, as in Comparative Example 1, the surface protection of the zinc oxide-based transparent conductive film (III) was insufficient, and oxygen in the indium oxide-based transparent conductive film was dissociated. Therefore, as in Comparative Example 1, when the indium oxide-based transparent conductive film (I) is not protected by the zinc oxide-based transparent conductive film (II), the hydrogen reduction resistance is very low and useful as an electrode of a solar cell. Not confirmed.
  • the characteristics of the obtained films were 0% in the transmittance change before and after the heat treatment in the hydrogen atmosphere in all the films of Comparative Examples 1 and 2, and no decrease was observed. .
  • the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Comparative Examples 1 and 2 were 8 ° (Comparative Example 4) and 9 respectively with respect to the vertical direction of the translucent substrate surface. ° (Comparative Example 5).
  • the film of Comparative Example 4 had good conductivity, unlike Example 14, the film had a low Ra value and a low haze ratio. Therefore, it was found that the light confinement effect is insufficient, so that it cannot be used as a surface transparent electrode of a highly efficient solar cell. Moreover, although the film
  • Examples 26 to 28, Comparative Examples 6 and 7 GAZO / GAZO / ITO]
  • the gas pressures when forming the zinc oxide-based transparent conductive film (III) were 0.5 Pa (Comparative Example 6), 1.0 Pa (Example 26), 10.5 Pa ( Example 27)
  • a transparent conductive film laminate was produced in the same manner as in Example 6 except that the pressure was changed to 15.0 Pa (Example 28) and 20.0 Pa (Comparative Example 7).
  • the characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
  • the Ra value and the haze ratio increased as the gas pressure during film formation increased.
  • the film of Comparative Example 6 has a low haze ratio and a weak light confinement effect, and cannot be used as a surface transparent electrode of a highly efficient solar cell.
  • the film formation rate at the time of production was very slow and the productivity was poor, and the obtained film had a high haze ratio but a high surface resistance, and the adhesion of the film to the substrate was weak. It is easy to peel off and cannot be used as a device electrode.
  • the transparent conductive film laminates of Examples 26 to 28 not only have low surface resistance, but also have a sufficiently high haze ratio of 8% or more and high film adhesion.
  • the c-axis tilt angle of the hexagonal crystal of the zinc oxide-based transparent conductive film (II) is 8 (Example 26) and 10 ° (Example 27) with respect to the direction perpendicular to the translucent substrate surface, respectively. 8 ° (Example 28).
  • the transmittance change was 0% before and after the heat treatment in a hydrogen atmosphere in all the films, and no reduction was observed. It was confirmed that it can be used as a surface transparent electrode of a battery.
  • Example 29 and 30, Comparative Examples 8 and 9 GAZO / GAZO / ITO
  • the substrate temperatures for forming the zinc oxide-based transparent conductive film (III) were 150 ° C. (Comparative Example 8), 200 ° C. (Example 29), and 550 ° C. (Example 30), respectively. ), 610 ° C. (Comparative Example 9), a transparent conductive film laminate was produced in the same manner as in Example 6.
  • the characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
  • the characteristics of the obtained film were such that the Ra value and the haze ratio increased as the substrate temperature increased, but the surface resistance also increased.
  • the film of Comparative Example 8 is sufficiently low in surface resistance, but has a low haze ratio and a weak light confinement effect, and cannot be used as a surface transparent electrode of a highly efficient solar cell.
  • the film formation rate at the time of production is very slow and the productivity is poor, and the obtained film also has a high haze ratio but a high surface resistance, so it cannot be used as a surface transparent electrode of a solar cell. .
  • the transparent conductive film laminates of Examples 29 and 30 not only have a low surface resistance but also a sufficiently high haze ratio of 8% or more.
  • the c-axis tilt angles of the hexagonal crystal of the zinc oxide-based transparent conductive film (II) are 10 (Example 29) and 9 ° (Example 30) with respect to the direction perpendicular to the translucent substrate surface, respectively. Met.
  • the transmittance change was 0% before and after the heat treatment in a hydrogen atmosphere in all the films, and no reduction was observed. It is useful as a surface transparent electrode of a battery.
  • the indium oxide-based transparent conductive film (I) in Examples 6 to 9 is used as a base, and a hydrogen (H 2 ) gas is provided thereon in a molar ratio of H 2 / (Ar + H 2 ).
  • H 2 hydrogen
  • Zinc oxide-based transparent conductive films (II) and (III) were formed in the same manner as in Examples 6 to 9 except that the film thickness of (III) was changed to 400 nm, to prepare a transparent conductive film laminate.
  • the characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
  • the characteristics of the obtained film tended to increase the Ra value and haze ratio as the H 2 ratio of the film forming gas increased, but also increase the surface resistance.
  • the film of Comparative Example 10 has a high Ra value and a high haze ratio, but cannot be used as an electrode of a solar cell because the surface resistance is too high. Further, the film of Comparative Example 10 also had problems such as extremely weak adhesion to the substrate.
  • the transparent conductive film laminates of Examples 31 to 33 not only have low surface resistance, but also have a sufficiently high haze ratio of 8% or more and high film adhesion.
  • the c-axis tilt angles of the hexagonal crystal of the zinc oxide-based transparent conductive film (II) are 5 (Example 31) and 8 ° (Example 32), respectively, with respect to the direction perpendicular to the translucent substrate surface. 10 ° (Example 33).
  • the transparent conductive film laminates of Examples 31 to 33 did not show any decrease in the transmittance before and after the heat treatment in a hydrogen atmosphere, they are useful as surface transparent electrodes for high-efficiency solar cells.
  • Example 34 Comparative Examples 11 and 12: GAZO / GAZO / ITO
  • the gas pressures when forming the zinc oxide-based transparent conductive film (II) were 0.8 Pa (Example 34), 1.0 Pa (Comparative Example 11), and 2.0 Pa (2.0 Pa, respectively).
  • a transparent conductive film laminate was produced in the same manner as in Example 6 except that Comparative Example 12) was used. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
  • the characteristics of the obtained films were 0% in the transmittance before and after the heat treatment in the hydrogen atmosphere in all the films, and no decrease was observed.
  • the Ra value increased as the gas pressure increased.
  • the transmittance of the transparent conductive film laminate obtained in Example 34 was slightly decreased by 7.6% from 74.3% to 66.7% by performing the heat treatment in a hydrogen atmosphere. It was.
  • the transmittance of the transparent conductive film laminate obtained in Comparative Example 11 was reduced by 10% or more from 73.9% to 61.5%. Moreover, the transmittance
  • Examples 35 and 36 GAZO / GAZO / ITO] As shown in Tables 1 and 2, when forming the indium oxide-based transparent conductive film (I) (Example 35) or forming the zinc oxide-based transparent conductive film (II) (Example 36), A transparent conductive film laminate was produced in the same manner as in Example 6 except that an amorphous film was formed at room temperature without heating the substrate and then heat treatment was performed at 350 ° C. Characteristic evaluation of the obtained film was performed in the same manner as in Example 1.
  • the transparent conductive film laminate of Example 35 had an increased haze ratio compared to the film of Example 6 in which the substrate heating film formation was performed on the indium oxide-based transparent conductive film (I). . Furthermore, the transmittances of the transparent conductive film laminates of Examples 35 and 36 are both 0% before and after heat treatment in a hydrogen atmosphere, excellent in hydrogen reduction resistance, high haze rate and low resistance value. It was confirmed that the transparent conductive film laminated body having it can be obtained at high speed.
  • Example 37 GAZO / GAZO / ITO
  • Tables 1 and 2 a transparent conductive film laminate was produced in the same manner as in Example 6 except that the composition of the zinc oxide-based transparent conductive film (II) was changed. Characteristic evaluation of the obtained film was performed in the same manner as in Example 1.
  • the resistance value of the transparent conductive film laminate of Example 37 was lower than that of the film of Example 6. Further, the transmittance of the transparent conductive film laminate of Example 37 was 0% before and after heat treatment in a hydrogen atmosphere, had excellent hydrogen reduction resistance, and had a high haze ratio and a low resistance value. It was confirmed that the film laminate can be obtained at high speed.

Abstract

Provided are a transparent electroconductive film laminate having excellent resistance to hydrogen reduction and excellent light confinement effect, and a method for manufacturing this laminate, as well as a thin-film solar cell and a method for manufacturing the same. A three-layer laminated structure is provided in which an indium oxide transparent electroconductive film (I) formed on a translucent substrate is used as a foundation on which are formed, in sequence, a zinc oxide transparent electroconductive film (II) for protecting the indium oxide transparent electroconductive film, and a zinc oxide transparent electroconductive film (III) having excellent concavo-convex properties.

Description

透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
 本発明は、高効率のシリコン系薄膜太陽電池を製造する際に有用な、耐水素還元性に優れ、光閉じ込め効果にも優れた透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法に関する。本出願は、日本国において2011年1月5日に出願された日本特許出願番号特願2011-000777を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。 The present invention is useful for producing a high-efficiency silicon-based thin film solar cell, and is a transparent conductive film laminate excellent in hydrogen reduction resistance and excellent in light confinement effect, a method for producing the same, and a thin film solar cell and the same It relates to a manufacturing method. This application claims priority on the basis of Japanese Patent Application No. 2011-000777 filed on January 5, 2011 in Japan, and is incorporated herein by reference. Is done.
 高い導電性と可視光領域での高い透過率とを有する透明導電膜は、太陽電池や液晶表示素子、その他各種受光素子の電極などに利用されており、その他、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースなど各種の防曇用の透明発熱体としても利用されている。 Transparent conductive films with high conductivity and high transmittance in the visible light region are used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, and in addition, heat ray reflection for automobile windows and buildings. It is also used as a transparent heating element for various types of antifogging, such as a film, an antistatic film, and a frozen showcase.
 透明導電膜としては、酸化錫(SnO)系、酸化亜鉛(ZnO)系、酸化インジウム(In)系の薄膜が知られている。酸化錫系には、アンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)が利用されている。酸化亜鉛系には、アルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)が利用されている。 As transparent conductive films, tin oxide (SnO 2 ) -based, zinc oxide (ZnO) -based, and indium oxide (In 2 O 3 ) -based thin films are known. As the tin oxide, those containing antimony as a dopant (ATO) and those containing fluorine as a dopant (FTO) are used. As the zinc oxide system, those containing aluminum as a dopant (AZO) and those containing gallium as a dopant (GZO) are used.
 最も工業的に利用されている透明導電膜は、酸化インジウム系であり、中でも錫をドーパントとして含む酸化インジウムは、ITO(Indium-Tin-Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、これまで幅広く利用されている。 The transparent conductive film most industrially used is an indium oxide type, and indium oxide containing tin as a dopant is referred to as an ITO (Indium-Tin-Oxide) film. Since it is obtained, it has been used widely.
 近年、二酸化炭素の増加などによる地球環境問題と化石燃料の価格高騰という問題がクローズアップされ、比較的低コストで製造しうる薄膜太陽電池が注目されている。薄膜太陽電池は、一般に、透光性基板上に順に積層された透明導電膜、1つ以上の半導体薄膜光電変換ユニット、及び裏面電極を含んでいる。シリコン材料は、資源が豊富なことから、薄膜太陽電池の中でもシリコン系薄膜を光電変換ユニット(光吸収層)に用いたシリコン系薄膜太陽電池がいち早く実用化され、ますます活発に研究開発が展開されている。 In recent years, the global environmental problems due to the increase in carbon dioxide and the problem of rising prices of fossil fuels have been highlighted, and thin film solar cells that can be manufactured at a relatively low cost are attracting attention. A thin-film solar cell generally includes a transparent conductive film, one or more semiconductor thin-film photoelectric conversion units, and a back electrode, which are sequentially stacked on a light-transmitting substrate. Since silicon materials are abundant in resources, silicon-based thin-film solar cells using silicon-based thin films for photoelectric conversion units (light absorption layers) are quickly put into practical use, and research and development are expanding actively. Has been.
 そして、シリコン系薄膜太陽電池の種類もさらに多様化し、従来の光吸収層にアモルファスシリコンなどの非晶質薄膜を用いた非晶質薄膜太陽電池の他に、アモルファスシリコンに微細な結晶シリコンが混在した微晶質薄膜を用いた微結晶質薄膜太陽電池や結晶シリコンからなる結晶質薄膜を用いた結晶質薄膜太陽電池も開発され、これらを積層したハイブリッド薄膜太陽電池も実用化されている。 And the types of silicon-based thin film solar cells are further diversified. In addition to amorphous thin film solar cells using amorphous thin films such as amorphous silicon in the conventional light absorption layer, fine crystalline silicon is mixed in amorphous silicon. A microcrystalline thin film solar cell using the microcrystalline thin film and a crystalline thin film solar cell using a crystalline thin film made of crystalline silicon have been developed, and a hybrid thin film solar cell in which these are laminated has been put into practical use.
 このような光電変換ユニット又は薄膜太陽電池は、それに含まれるp型とn型の導電型半導体層が非晶質か結晶質か微結晶にかかわらず、その主要部を占める光電変換層が非晶質のものは、非晶質ユニット又は非晶質薄膜太陽電池と称され、光電変換層が結晶質のものは、結晶質ユニット又は結晶質薄膜太陽電池と称され、光電変換層が微結晶質のものは、微結晶質ユニット又は微結晶質薄膜太陽電池と称されている。 Such a photoelectric conversion unit or thin film solar cell has an amorphous photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductive semiconductor layers contained therein are amorphous, crystalline, or microcrystalline. Those having a high quality are referred to as amorphous units or amorphous thin-film solar cells, and those having a crystalline photoelectric conversion layer are referred to as crystalline units or crystalline thin-film solar cells, and the photoelectric conversion layer is microcrystalline. Are called microcrystalline units or microcrystalline thin-film solar cells.
 ところで、透明導電膜は、薄膜太陽電池の表面透明電極用として用いられており、透光性基板側から入射された光を有効に光電変換ユニット内に閉じ込めるために、その表面には通常微細な凹凸が多数形成されている。 By the way, the transparent conductive film is used for the surface transparent electrode of the thin film solar cell, and in order to effectively confine the light incident from the translucent substrate side in the photoelectric conversion unit, the surface thereof is usually fine. Many irregularities are formed.
 この透明導電膜の凹凸の度合いを表す指標としてヘイズ率がある。これは特定の光源の光を透明導電膜が付いた透光性基板に入射した際に透過する光のうち、光路が曲げられた散乱成分を全成分で割ったものに相当し、通常可視光を含むC光源を用いて測定される。一般的には凹凸の高低差を大きくするほど、または凹凸の凸部と凸部の間隔が大きくなるほどヘイズ率が高くなり、光電変換ユニット内に入射された光は有効に閉じ込められ、いわゆる光閉じ込め効果が優れている。 Haze rate is an index representing the degree of unevenness of this transparent conductive film. This is equivalent to the light that is transmitted when the light from a specific light source is incident on a transparent substrate with a transparent conductive film divided by the scattered component whose optical path is bent and divided by all components. Measured using a C light source containing Generally, the haze ratio increases as the height difference between the projections and depressions increases, or as the distance between the projections and depressions of the projections and projections increases, and the light incident into the photoelectric conversion unit is effectively confined. The effect is excellent.
 薄膜太陽電池が非晶質シリコン、結晶質シリコン、微結晶質シリコンを単層の光吸収層とする薄膜太陽電池であるか、前述のハイブリッド薄膜太陽電池であるかによらず、透明導電膜のヘイズ率を高くして十分な光閉じ込めを行うことができれば、高い短絡電流密度(Jsc)を実現することができ、高い変換効率の薄膜太陽電池を製造することができる。 Regardless of whether the thin-film solar cell is a thin-film solar cell having a single light absorption layer of amorphous silicon, crystalline silicon, or microcrystalline silicon or the above-described hybrid thin-film solar cell, the transparent conductive film If the haze ratio can be increased and sufficient light confinement can be performed, a high short-circuit current density (Jsc) can be realized, and a thin film solar cell with high conversion efficiency can be manufactured.
 上記目的から、ヘイズ率の高い透明導電膜として、熱CVD法によって製造される酸化錫を主成分とした金属酸化物材料が知られており、薄膜太陽電池の透明電極として一般に利用されている。 For the above purpose, a metal oxide material mainly composed of tin oxide produced by a thermal CVD method is known as a transparent conductive film having a high haze ratio, and is generally used as a transparent electrode of a thin film solar cell.
 透明導電膜の表面に形成される光電変換ユニットは、一般に高周波プラズマCVD法を用いて製造され、この時に使用される原料ガスとして、SiH、Si等のシリコン含有ガス、又は、それらのガスとHを混合したものが用いられる。また、光電変換ユニットにおけるp型又はn型層を形成するためのドーパントガスとしては、B、PH等が好ましく用いられる。形成条件として、基板温度100℃以上250℃以下(ただし、非晶質p型シリコンカーバイド層3pは180℃以下)、圧力30Pa以上1500Pa以下、高周波パワー密度0.01W/cm以上0.5W/cm以下が好ましく用いられる。 The photoelectric conversion unit formed on the surface of the transparent conductive film is generally manufactured using a high-frequency plasma CVD method, and as a source gas used at this time, a silicon-containing gas such as SiH 4 or Si 2 H 6 , or those A mixture of the above gas and H 2 is used. Further, as a dopant gas for forming a p-type or n-type layer in the photoelectric conversion unit, B 2 H 6, PH 3 or the like is preferably used. As formation conditions, the substrate temperature is 100 ° C. or more and 250 ° C. or less (however, the amorphous p-type silicon carbide layer 3p is 180 ° C. or less), the pressure is 30 Pa or more and 1500 Pa or less, and the high frequency power density is 0.01 W / cm 2 or more and 0.5 W / cm 2 or less is preferably used.
 このように光電変換ユニットを製造する際、形成温度を高くすると、存在する水素によって金属酸化物の還元を促進することになり、酸化錫を主成分とした透明導電膜の場合は、水素還元による透明性の損失が見られる。このような透明性の劣った透明導電膜を用いれば高い変換効率の薄膜太陽電池を実現することはできない。 Thus, when manufacturing the photoelectric conversion unit, if the formation temperature is increased, the reduction of the metal oxide is promoted by the existing hydrogen, and in the case of the transparent conductive film mainly composed of tin oxide, the hydrogen reduction is performed. There is a loss of transparency. If such a transparent conductive film with poor transparency is used, a thin film solar cell with high conversion efficiency cannot be realized.
 同様に、酸化インジウムを主成分とした透明導電膜についても、この水素還元による透明性の損失が発生する。特に酸化インジウム系の透明導電膜を用いた場合は、水素還元により膜が黒色化する程に透明性が損なわれてしまうため、薄膜太陽電池の表面電極として用いることが非常に困難である。 Similarly, the transparent conductive film mainly composed of indium oxide also loses transparency due to this hydrogen reduction. In particular, when an indium oxide-based transparent conductive film is used, the transparency is impaired as the film is blackened by hydrogen reduction, so that it is very difficult to use it as a surface electrode of a thin film solar cell.
 酸化錫を主成分とする透明導電膜の水素による還元を防止する方法として、非特許文献1では、熱CVD法で形成した凹凸の度合いの高い酸化錫からなる透明導電膜の上に、還元耐性の優れた酸化亜鉛膜をスパッタリング法で薄く形成する方法が提案されている。酸化亜鉛は、亜鉛と酸素との結合が強く、耐水素還元性に優れているため、上記構造とすることにより、透明導電膜の透明性を高く保つことができる。 As a method for preventing reduction of a transparent conductive film containing tin oxide as a main component by hydrogen, Non Patent Literature 1 discloses a reduction resistance on a transparent conductive film made of tin oxide having a high degree of unevenness formed by a thermal CVD method. A method of forming a thin zinc oxide film having a good thickness by sputtering is proposed. Since zinc oxide has a strong bond between zinc and oxygen and is excellent in resistance to hydrogen reduction, the transparency of the transparent conductive film can be kept high by adopting the above structure.
 しかしながら、上記構造の透明導電膜を得るためには2種類の手法を組合せて成膜しなければならないため、コスト高となり実用的ではない。また、酸化錫系透明導電膜と酸化亜鉛系透明導電膜の積層膜を全てスパッタリング法で製造する手法については、透明度の高い酸化錫系透明導電膜を、スパッタリング法で製造することができないなどの理由から実現不可能であるとされている。 However, in order to obtain the transparent conductive film having the above-described structure, it is necessary to form a film by combining two kinds of methods. Moreover, about the method of manufacturing all the laminated films of a tin oxide type transparent conductive film and a zinc oxide type transparent conductive film by sputtering method, a highly transparent tin oxide type transparent conductive film cannot be manufactured by sputtering method, etc. It is said that it is impossible to realize for the reason.
 一方、非特許文献2には、酸化亜鉛を主成分として、表面凹凸を有し、高いヘイズ率の透明導電膜をスパッタリング法で得る方法が提案されている。この方法は、2wt%のAlを添加した酸化亜鉛の焼結体ターゲットを用いて、3Pa以上12Pa以下の高ガス圧にて、基板温度を200℃以上400℃以下としてスパッタリング成膜している。しかし、6inchφのターゲットへDC80Wの電力を投入して成膜しており、ターゲットへの投入電力密度が0.442W/cmと極めて低い。そのため、成膜速度は14nm/min以上35nm/min以下と極めて遅く工業的には実用性がない。 On the other hand, Non-Patent Document 2 proposes a method of obtaining a transparent conductive film having a surface roughness and having a high haze ratio, mainly composed of zinc oxide, by a sputtering method. This method uses a zinc oxide sintered body target to which 2 wt% of Al 2 O 3 is added and performs sputtering film formation at a high gas pressure of 3 Pa to 12 Pa and a substrate temperature of 200 ° C. to 400 ° C. ing. However, the film is formed by applying a power of DC 80 W to a 6 inch φ target, and the input power density to the target is as extremely low as 0.442 W / cm 2 . For this reason, the film formation rate is as extremely low as 14 nm / min or more and 35 nm / min or less and industrially impractical.
 また、非特許文献3では、酸化亜鉛を主成分として、従来のスパッタリング法で作製される、表面凹凸の小さな透明導電膜を得た後で、膜の表面を酸でエッチングして表面を凹凸化し、ヘイズ率の高い透明導電膜を製造する方法が開示されている。しかし、この方法では、乾式工程で、真空プロセスであるスパッタリング法で膜を製造した後に、大気中で酸エッチングを行って乾燥し、再び乾式工程のCVD法で半導体層を形成しなければならず、工程が複雑となり製造コストが高くなるなどの課題があった。 In Non-Patent Document 3, after obtaining a transparent conductive film with zinc oxide as a main component and produced by a conventional sputtering method and having small surface irregularities, the surface of the film is etched with acid to make the surface irregular. A method for producing a transparent conductive film having a high haze ratio is disclosed. However, in this method, after a film is manufactured by a sputtering method which is a vacuum process in a dry process, it is dried by performing acid etching in the air, and a semiconductor layer must be formed again by a CVD process in the dry process. There are problems such as complicated processes and high manufacturing costs.
 酸化亜鉛系透明導電膜材料のうち、アルミニウムをドーパントとして含むAZOに関するものでは、酸化亜鉛を主成分として酸化アルミニウムを混合したターゲットを用いて直流マグネトロンスパッタリング法でC軸配向したAZO透明導電膜を製造する方法が提案されている(特許文献1参照)。この場合、高速で成膜を行うためにターゲットに投入する電力密度を高めて直流スパッタリング成膜を行うと、アーキング(異常放電)が多発してしまう。成膜ラインの生産工程においてアーキングが発生すると、膜の欠陥が生じたり、所定の膜厚の膜が得られなくなったりして、高品位の透明導電膜を安定に製造することが不可能になる。 Among zinc oxide-based transparent conductive film materials, those related to AZO containing aluminum as a dopant are used to produce an AZO transparent conductive film that is C-axis oriented by DC magnetron sputtering using a target that is mainly composed of zinc oxide and mixed with aluminum oxide. Has been proposed (see Patent Document 1). In this case, arcing (abnormal discharge) frequently occurs when DC sputtering film formation is performed by increasing the power density applied to the target in order to perform film formation at high speed. When arcing occurs in the production process of a film forming line, a film defect occurs or a film having a predetermined film thickness cannot be obtained, making it impossible to stably manufacture a high-quality transparent conductive film. .
 そのため、本出願人は、酸化亜鉛を主成分として酸化ガリウムを混合するとともに、第三元素(Ti、Ge、Al、Mg、In、Sn)の添加により異常放電を低減させたスパッタターゲットを提案した(特許文献2参照)。ここで、ガリウムをドーパントとして含むGZO焼結体は、Ga、Ti、Ge、Al、Mg、In、Snからなる群より選ばれた少なくとも1種類を2重量%以上固溶したZnO相が組織の主な構成相であり、他の構成相には上記少なくとも1種が固溶していないZnO相や、ZnGa(スピネル相)で表される中間化合物相である。このようなAlなどの第三元素を添加したGZOターゲットでは、特許文献1に記載されているような異常放電は低減できるが、完全に消失させることはできなかった。成膜の連続ラインにおいて、一度でも異常放電が生じれば、その成膜時の製品は欠陥品となってしまい製造歩留まりに影響を及ぼす。 Therefore, the present applicant has proposed a sputter target in which gallium oxide is mixed with zinc oxide as a main component and abnormal discharge is reduced by adding a third element (Ti, Ge, Al, Mg, In, Sn). (See Patent Document 2). Here, the GZO sintered body containing gallium as a dopant is composed of a ZnO phase in which at least one selected from the group consisting of Ga, Ti, Ge, Al, Mg, In, and Sn is dissolved in an amount of 2 wt% or more. It is a main constituent phase, and the other constituent phases are a ZnO phase in which at least one of the above is not dissolved, and an intermediate compound phase represented by ZnGa 2 O 4 (spinel phase). With such a GZO target to which a third element such as Al is added, abnormal discharge as described in Patent Document 1 can be reduced, but it cannot be completely eliminated. If abnormal discharge occurs even once in the continuous film formation line, the product at the time of film formation becomes a defective product, which affects the manufacturing yield.
 本出願人は、この問題点を解決するために、酸化亜鉛を主成分とし、さらに添加元素のアルミニウムとガリウムを含有する酸化物焼結体において、アルミニウムとガリウムの含有量を最適化するとともに、焼成中に生成される結晶相の種類と組成、特にスピネル結晶相の組成を最適に制御することで、スパッタリング装置で連続長時間成膜を行ってもパーティクルが生じにくく、高い直流電力投入下でも異常放電が全く生じないターゲット用酸化物焼結体を提案した(特許文献3参照)。 In order to solve this problem, the present applicant optimizes the content of aluminum and gallium in an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium as additive elements. By optimally controlling the type and composition of the crystalline phase produced during firing, especially the composition of the spinel crystalline phase, particles are unlikely to form even when film formation is continued for a long time with a sputtering device, even under high DC power input. A target oxide sintered body that does not cause any abnormal discharge has been proposed (see Patent Document 3).
 このような酸化亜鉛系焼結体を用いれば、従来よりも低抵抗で高透過性の高品質な透明導電膜の成膜が可能となる。しかし、近年、より高変換効率の太陽電池が求められており、それに用いることができる高品質な透明導電膜が必要とされている。 By using such a zinc oxide-based sintered body, it becomes possible to form a high-quality transparent conductive film having a lower resistance and higher permeability than in the past. However, in recent years, a solar cell with higher conversion efficiency has been demanded, and a high-quality transparent conductive film that can be used therefor is required.
特開昭62-122011号公報Japanese Patent Laid-Open No. 62-12201 特開平10-306367号公報Japanese Patent Laid-Open No. 10-306367 特開2008-110911号公報JP 2008-110911 A
 本発明は、上述のような状況に鑑み、高効率のシリコン系薄膜太陽電池を製造する際に有用な、耐水素還元性に優れ、光閉じ込め効果にも優れた透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法を提供することを目的とする。 In view of the situation as described above, the present invention is useful for producing a high-efficiency silicon-based thin film solar cell, and is a transparent conductive film laminate excellent in hydrogen reduction resistance and excellent in light confinement effect, and its production It is an object of the present invention to provide a method, and a thin film solar cell and a method for manufacturing the same.
 本発明者らは、かかる従来技術の問題を解決するために、鋭意研究を重ね、薄膜太陽電池の表面透明電極用となる透明導電膜として種々の透明導電膜材料を検討した結果、酸化インジウム系透明導電膜(I)を下地として、その上にc軸配向性を有する緻密な結晶の酸化亜鉛系透明導電膜(II)を形成することにより、耐水素還元性の低い酸化インジウム系透明導電膜(I)上を全て保護することが可能となり、さらに酸化亜鉛系透明導電膜(II)上に大きな結晶粒で構成された酸化亜鉛系透明導電膜(III)を形成することにより、光閉じ込め効果にも優れた構造となることを見出し、本発明を完成するに至った。 In order to solve the problems of the prior art, the present inventors have conducted intensive research and studied various transparent conductive film materials as transparent conductive films for surface transparent electrodes of thin film solar cells. An indium oxide-based transparent conductive film having low hydrogen reduction resistance is formed by forming a dense crystalline zinc oxide-based transparent conductive film (II) having c-axis orientation on the transparent conductive film (I) as a base. (I) It is possible to protect the entire surface, and further, by forming the zinc oxide-based transparent conductive film (III) composed of large crystal grains on the zinc oxide-based transparent conductive film (II), the light confinement effect In addition, the present inventors have found that the structure is excellent, and have completed the present invention.
 すなわち、本発明に係る透明導電膜積層体の製造方法は、透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜する第1の成膜工程と、上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜する第2の成膜工程とを有し、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下である透明導電膜積層体を製造することを特徴とする。 That is, in the method for producing a transparent conductive film laminate according to the present invention, the c-axis inclination angle of the hexagonal crystal is formed on the indium oxide-based transparent conductive film (I) formed on the light-transmitting substrate by sputtering. A first film-forming step of forming a zinc oxide-based transparent conductive film (II) having a thickness of 10 ° or less and a film thickness of 10 nm or more and 200 nm or less with respect to a direction perpendicular to the translucent substrate surface; A second film forming step of forming a zinc oxide-based transparent conductive film (III) having a film thickness of 400 nm or more and 1600 nm or less on the transparent conductive film (II) by a sputtering method, and the surface roughness (Ra ) Is 35.0 nm or more, and a transparent conductive film laminate having a surface resistance of 25 Ω / □ or less is produced.
 また、本発明に係る透明導電膜積層体は、透光性基板上に形成された酸化インジウム系透明導電膜(I)と、上記酸化インジウム系透明導電膜(I)上に形成された六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)と、酸化亜鉛系透明導電膜(II)上に形成された膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)とを備え、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下であることを特徴とする。 The transparent conductive film laminate according to the present invention includes an indium oxide-based transparent conductive film (I) formed on a translucent substrate and a hexagonal crystal formed on the indium oxide-based transparent conductive film (I). A zinc oxide-based transparent conductive film (II) in which the c-axis tilt angle of the crystal-based crystal is 10 ° or less with respect to the direction perpendicular to the light-transmitting substrate surface, and the film thickness is 10 nm or more and 200 nm or less; (II) a zinc oxide-based transparent conductive film (III) having a film thickness of 400 nm or more and 1600 nm or less formed thereon, a surface roughness (Ra) of 35.0 nm or more, and a surface resistance of 25Ω / □ or less. It is characterized by being.
 また、本発明に係る薄膜太陽電池の製造方法は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とを順に形成する薄膜太陽電池の製造方法において、上記透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜する第1の成膜工程と、上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜する第2の成膜工程とを有し、上記透光性基板上に表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下である透明導電膜積層体を形成することを特徴とする。 Moreover, the manufacturing method of the thin film solar cell which concerns on this invention is a manufacturing method of the thin film solar cell which forms a transparent conductive film laminated body, a photoelectric converting layer unit, and a back surface electrode layer in order on a translucent board | substrate, On the indium oxide-based transparent conductive film (I) formed on the translucent substrate, the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface by sputtering. The film thickness is 10 nm or more and 200 nm or less, and a film thickness is formed by sputtering on the zinc oxide-based transparent conductive film (II) and the zinc oxide-based transparent conductive film (II). A second film formation step of forming a zinc oxide-based transparent conductive film (III) having a thickness of 400 nm or more and 1600 nm or less, and a surface roughness (Ra) of 35.0 nm or more on the translucent substrate. Resistance is 25Ω / □ or less A transparent conductive film laminate is formed.
 また、本発明に係る薄膜太陽電池は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成された薄膜太陽電池において、上記透明導電膜積層体は、上記透光性基板上に形成された酸化インジウム系透明導電膜(I)と、上記酸化インジウム系透明導電膜(I)上に形成された六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)と、酸化亜鉛系透明導電膜(II)上に形成された膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)とを備え、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下であることを特徴とする。 Moreover, the thin film solar cell according to the present invention is the thin film solar cell in which a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate. The indium oxide-based transparent conductive film (I) formed on the translucent substrate and the hexagonal crystal c-axis tilt angle formed on the indium oxide-based transparent conductive film (I) Zinc oxide-based transparent conductive film (II) having a thickness of 10 ° or less and a film thickness of 10 nm or more and 200 nm or less with respect to the direction perpendicular to the translucent substrate surface, and a film formed on the zinc oxide-based transparent conductive film (II) And a zinc oxide-based transparent conductive film (III) having a thickness of 400 nm or more and 1600 nm or less, having a surface roughness (Ra) of 35.0 nm or more and a surface resistance of 25Ω / □ or less.
 本発明によれば、酸化インジウム系透明導電膜(I)の上に、六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)、及び膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(III)を積層することで、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下の膜特性が得られ、耐水素還元性に優れ、光閉じ込め効果にも優れた透明導電膜積層体を提供することができる。 According to the present invention, on the indium oxide-based transparent conductive film (I), the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface, and the film thickness is 10 nm or more and 200 nm. By laminating the zinc oxide-based transparent conductive film (II) and the zinc oxide-based transparent conductive film (III) having a film thickness of 10 nm or more and 200 nm or less, the surface roughness (Ra) is 35.0 nm or more, A film having a surface resistance of 25Ω / □ or less can be obtained, a transparent conductive film laminate having excellent hydrogen reduction resistance and excellent light confinement effect can be provided.
 また、この透明導電膜積層体は、スパッタリング法のみで製造することができるため、薄膜太陽電池の表面透明電極用として導電性等に優れているだけでなく、従来の熱CVD法による透明導電膜と比較してコスト削減が可能となる。したがって、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため工業的に極めて有用である。 Moreover, since this transparent conductive film laminated body can be manufactured only by the sputtering method, it is not only excellent in conductivity etc. for a surface transparent electrode of a thin film solar cell, but also by a conventional transparent conductive film by a thermal CVD method. As a result, the cost can be reduced. Therefore, since a highly efficient silicon-based thin film solar cell can be provided at a low cost by a simple process, it is extremely useful industrially.
図1は、酸化亜鉛系透明導電膜におけるアルミニウムとガリウムとの含有量の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the contents of aluminum and gallium in a zinc oxide-based transparent conductive film. 図2は、光電変換ユニットとして非晶質シリコン薄膜を用いた薄膜太陽電池の構成例を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration example of a thin film solar cell using an amorphous silicon thin film as a photoelectric conversion unit. 図3は、光電変換ユニットとして非晶質シリコン薄膜と結晶質シリコン薄膜を積層したハイブリッド薄膜太陽電池の構成例を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration example of a hybrid thin film solar cell in which an amorphous silicon thin film and a crystalline silicon thin film are stacked as a photoelectric conversion unit. 図4は、本発明の製造方法によって得られた透明導電性薄膜膜の表面SEM写真である。FIG. 4 is a surface SEM photograph of the transparent conductive thin film obtained by the production method of the present invention. 図5は、本発明の製造方法によって得られた透明導電性薄膜膜の断面SEM写真である。FIG. 5 is a cross-sectional SEM photograph of the transparent conductive thin film obtained by the production method of the present invention.
 以下、本発明の実施の形態(以下、「本実施の形態」という)について、図面を参照しながら下記順序にて詳細に説明する。
 1.透明導電膜積層体
  1-1.酸化インジウム系透明導電膜(I)
  1-2.酸化亜鉛系透明導電膜(II)
  1-3.酸化亜鉛系透明導電膜(III)
  1-4.透明導電膜積層体の特性
 2.透明導電膜積層体の製造方法
  2-1.酸化インジウム系透明導電膜(I)の成膜
  2-2.酸化亜鉛系透明導電膜(II)の成膜
  2-3.酸化亜鉛系透明導電膜(III)の成膜
 3.薄膜太陽電池及びその製造方法
Hereinafter, embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail in the following order with reference to the drawings.
1. 1. Transparent conductive film laminate 1-1. Indium oxide-based transparent conductive film (I)
1-2. Zinc oxide based transparent conductive film (II)
1-3. Zinc oxide based transparent conductive film (III)
1-4. 1. Properties of transparent conductive film laminate 2. Method for producing transparent conductive film laminate 2-1. Film formation of indium oxide based transparent conductive film (I) 2-2. Formation of zinc oxide based transparent conductive film (II) 2-3. 2. Formation of zinc oxide-based transparent conductive film (III) Thin film solar cell and manufacturing method thereof
 <1.透明導電膜積層体>
 本実施の形態に係る透明導電膜積層体は、透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、酸化インジウム系透明導電膜を保護するための酸化亜鉛系透明導電膜(II)、次いで凹凸性に優れた酸化亜鉛系透明導電膜(III)が順次形成された三層積層構造を有する。この積層構造を採用することにより、導電性に優れるが耐水素還元性に劣る酸化インジウム系透明導電膜(I)を保護することができるため、耐水素還元性に優れ、透明導電膜の透明性及び導電性を高く保つことが可能となる。また、このような透明導電膜積層体は、高いヘイズ率を有し、いわゆる光閉じ込め効果が優れており、かつ低抵抗であり、薄膜太陽電池用の表面電極材料として非常に有用である。さらに、本実施の形態に係る透明導電膜積層体は、スパッタリング法のみで製造することができ、高い生産性を有する。
<1. Transparent conductive film laminate>
The transparent conductive film laminate according to the present embodiment is based on an indium oxide-based transparent conductive film (I) formed on a light-transmitting substrate, and the indium oxide-based transparent conductive film is protected thereon. It has a three-layer laminated structure in which a zinc oxide-based transparent conductive film (II) and then a zinc oxide-based transparent conductive film (III) excellent in unevenness are sequentially formed. By adopting this laminated structure, it is possible to protect the indium oxide-based transparent conductive film (I) which is excellent in conductivity but inferior in hydrogen reduction resistance, and therefore has excellent hydrogen reduction resistance and transparency of the transparent conductive film. In addition, the conductivity can be kept high. Moreover, such a transparent conductive film laminated body has a high haze ratio, is excellent in so-called light confinement effect, has low resistance, and is very useful as a surface electrode material for thin film solar cells. Furthermore, the transparent conductive film laminate according to the present embodiment can be manufactured only by the sputtering method and has high productivity.
 <1-1.酸化インジウム系透明導電膜(I)>
 酸化インジウム系透明導電膜(I)は、酸化インジウムを主成分としてSn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した結晶膜である。酸化インジウムにSn、Ti、W、Mo、Zr、Ce又はGaの添加元素が含まれた結晶膜は、導電性に優れるため有用である。特に、Ti、W、Mo、Zr、Ce又はGaの元素が含まれると、移動度の高い膜が得られる。よって、キャリア濃度を増加させずに低抵抗となるため、可視域~近赤外域での透過率の高い低抵抗膜が実現できる。
<1-1. Indium oxide-based transparent conductive film (I)>
The indium oxide-based transparent conductive film (I) is a crystal film containing indium oxide as a main component and one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce, or Ga. A crystal film in which an additive element of Sn, Ti, W, Mo, Zr, Ce, or Ga is contained in indium oxide is useful because of its excellent conductivity. In particular, when an element of Ti, W, Mo, Zr, Ce, or Ga is included, a film with high mobility can be obtained. Therefore, since the resistance is reduced without increasing the carrier concentration, a low resistance film having a high transmittance in the visible region to the near infrared region can be realized.
 酸化インジウムを主成分としてSnを含有する場合は、その含有割合がSn/(In+Sn)原子数比で15原子%以下であることが好ましい。また、Tiを含有する場合は、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であることが好ましい。また、Wを含有する場合は、その含有割合がW/(In+W)原子数比で4.3原子%以下であることが好ましい。また、Zrを含有する場合は、その含有割合がZr/(In+Zr)原子数比で6.5原子%以下であることが好ましい。また、Moを含有する場合は、その含有割合がMo/(In+Mo)原子数比で6.7原子%以下であることが好ましい。また、Ceを含有する場合は、その含有割合がCe/(In+Ce)原子数比で6.5原子%以下であることが好ましい。また、Gaを含有する場合は、その含有割合がGa/(In+Ga)原子数比で6.5原子%以下であることが好ましい。この範囲を超えて多く含有されると、高抵抗となるため有用でない。 In the case where Sn is mainly contained in indium oxide, the content ratio is preferably 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio. Moreover, when it contains Ti, it is preferable that the content rate is 5.5 atomic% or less in Ti / (In + Ti) atomic ratio. Moreover, when it contains W, it is preferable that the content rate is 4.3 atomic% or less in W / (In + W) atomic ratio. Moreover, when it contains Zr, it is preferable that the content rate is 6.5 atomic% or less by Zr / (In + Zr) atomic ratio. Moreover, when it contains Mo, it is preferable that the content rate is 6.7 atomic% or less by Mo / (In + Mo) atomic number ratio. Moreover, when it contains Ce, it is preferable that the content rate is 6.5 atomic% or less by Ce / (In + Ce) atomic ratio. Moreover, when it contains Ga, it is preferable that the content rate is 6.5 atomic% or less by Ga / (In + Ga) atomic ratio. If the content exceeds this range, the resistance becomes high, which is not useful.
 このような酸化インジウム系透明導電膜(I)の中でも、本実施の形態では、錫をドーパントとして含むITO膜、チタンをドーパントとして含むITiO膜が好適に用いられる。 Among such indium oxide based transparent conductive films (I), an ITO film containing tin as a dopant and an ITiO film containing titanium as a dopant are preferably used in the present embodiment.
 また、酸化インジウム系透明導電膜(I)の膜厚は、特に制限されるわけではないが、50nm以上600nm以下であることが好ましく、より好ましくは、300nm以上500nm以下である。 The film thickness of the indium oxide-based transparent conductive film (I) is not particularly limited, but is preferably 50 nm or more and 600 nm or less, more preferably 300 nm or more and 500 nm or less.
 <1-2.酸化亜鉛系透明導電膜(II)>
 酸化亜鉛系透明導電膜(II)は、六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下である。c軸傾斜角度が10°を超えると、結晶粒が大きくなり、粒と粒の間に空隙部が生成し、下地の酸化インジウム系透明導電膜(I)が露出してしまう。一方、c軸傾斜角度が10°以下である場合、結晶粒が小さく、粒と粒の間に生成する空隙部により下地の酸化インジウム系透明導電膜(I)が露出するのを防ぐことができる。
<1-2. Zinc Oxide Transparent Conductive Film (II)>
In the zinc oxide-based transparent conductive film (II), the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface. When the c-axis tilt angle exceeds 10 °, the crystal grains become large, voids are formed between the grains, and the underlying indium oxide-based transparent conductive film (I) is exposed. On the other hand, when the c-axis tilt angle is 10 ° or less, the crystal grains are small, and it is possible to prevent the underlying indium oxide-based transparent conductive film (I) from being exposed by voids formed between the grains. .
 また、酸化亜鉛系透明導電膜(II)の膜厚は、10nm以上200nm以下である。膜厚が10nm未満であると、酸化インジウム系透明導電膜(I)を完全に覆うことが困難となり、膜厚が200nmを超えると、透過性の低下及び生産性の低下を招いてしまう。 The film thickness of the zinc oxide-based transparent conductive film (II) is 10 nm or more and 200 nm or less. When the film thickness is less than 10 nm, it is difficult to completely cover the indium oxide-based transparent conductive film (I). When the film thickness exceeds 200 nm, the transparency and productivity are lowered.
 また、酸化亜鉛系透明導電膜(II)は、酸化亜鉛を主成分(重量割合で90%以上)としていればどの添加元素を含んでいても良く、全く添加元素が含まれなくてもよい。この酸化亜鉛系透明導電膜(II)は、酸化インジウム系透明導電膜(I)に対する保護がメインの役割であるため、その組成は大きく限定されないが、酸化物膜の導電性に寄与する添加元素として、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことが好ましい。 Further, the zinc oxide-based transparent conductive film (II) may contain any additive element as long as zinc oxide is a main component (90% or more by weight), and may contain no additive element. Since this zinc oxide-based transparent conductive film (II) mainly protects the indium oxide-based transparent conductive film (I), its composition is not greatly limited, but an additive element that contributes to the conductivity of the oxide film As for it, it is preferable that 1 or more types of additional metal elements chosen from aluminum or gallium are included.
 具体的には、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素が含まれ、アルミニウムの含有量とガリウムの含有量が下記の式(1)で示される範囲内にあることが好ましい。 Specifically, the main component is zinc oxide, and one or more additive metal elements selected from aluminum or gallium are included, and the aluminum content and the gallium content are within the range represented by the following formula (1). It is preferable that it exists in.
 -[Al]+0.30≦[Ga]≦-1.92×[Al]+6.10 ・・・(1)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。)
-[Al] + 0.30 ≦ [Ga] ≦ −1.92 × [Al] +6.10 (1)
(However, [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al), while [Ga] is expressed by the atomic ratio (%) of Ga / (Zn + Ga). Gallium content.)
 酸化亜鉛系透明導電膜(II)中のアルミニウム及びガリウムの含有量が、図1に示すように式(1)で規定される領域(A)の範囲を超えたり、下回ったりすると、積層膜としての高い導電性を損なうほどに導電性が不十分となる恐れがある。また、同組成である使用ターゲットの導電性も不十分となる為、成膜速度が遅くなり、生産上好ましくない。 When the content of aluminum and gallium in the zinc oxide-based transparent conductive film (II) exceeds or falls below the region (A) defined by the formula (1) as shown in FIG. There is a possibility that the conductivity becomes insufficient to the extent that the high conductivity is impaired. Moreover, since the conductivity of the target used having the same composition becomes insufficient, the film formation rate becomes slow, which is not preferable for production.
 <1-3.酸化亜鉛系透明導電膜(III)>
 酸化亜鉛系透明導電膜(III)の膜厚は、400nm以上1600nm以下である。膜厚が400nm未満であると、十分な表面粗さ(Ra)及びヘイズ率を得るのが困難となり、膜厚が1600nmを超えると、透過性の低下及び生産性の低下を招いてしまう。より好ましい酸化亜鉛系透明導電膜(III)の膜厚は、700nm以上1400nm以下である。
<1-3. Zinc Oxide Transparent Conductive Film (III)>
The film thickness of the zinc oxide-based transparent conductive film (III) is 400 nm or more and 1600 nm or less. When the film thickness is less than 400 nm, it is difficult to obtain sufficient surface roughness (Ra) and haze ratio, and when the film thickness exceeds 1600 nm, the permeability and productivity are lowered. The film thickness of the zinc oxide-based transparent conductive film (III) is more preferably 700 nm or more and 1400 nm or less.
 また、酸化亜鉛系透明導電膜(III)は、酸化物膜の導電性に寄与する添加元素として、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含む酸化亜鉛を用いると好ましい。 Further, in the zinc oxide-based transparent conductive film (III), it is preferable to use zinc oxide containing one or more additive metal elements selected from aluminum or gallium as an additive element contributing to the conductivity of the oxide film.
 具体的には、国際公開第2010/104111号に開示されているように、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素が含まれ、アルミニウムの含有量とガリウムの含有量が下記の式(2)で示される範囲内にあることが好ましい。 Specifically, as disclosed in International Publication No. 2010/104111, zinc oxide is the main component, and one or more additive metal elements selected from aluminum or gallium are included. The content of is preferably in the range represented by the following formula (2).
 -[Al]+0.30≦[Ga]≦-2.68×[Al]+1.74 ・・・(2)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。)
-[Al] + 0.30 ≦ [Ga] ≦ −2.68 × [Al] +1.74 (2)
(However, [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al), while [Ga] is expressed by the atomic ratio (%) of Ga / (Zn + Ga). Gallium content.)
 酸化亜鉛系透明導電膜(III)中のアルミニウム及びガリウムの含有量が、図1に示すように式(2)で規定される領域(B)の範囲より多くなると、その上に形成するシリコン系薄膜にアルミニウムとガリウムが拡散しやすくなり、特性の優れたシリコン系薄膜太陽電池を実現するのが困難となる。また、生産性の面でも、膜中のアルミニウムとガリウムの含有量が式(2)で規定される範囲より多くなると、表面凹凸が大きくてヘイズ率の高い透明導電膜をスパッタリング法で高速に製造すること困難となる。一方、式(2)で規定される範囲よりも少なくなると、導電性が不十分となる。 When the content of aluminum and gallium in the zinc oxide-based transparent conductive film (III) exceeds the range of the region (B) defined by the formula (2) as shown in FIG. 1, the silicon-based material formed thereon Aluminum and gallium easily diffuse into the thin film, making it difficult to realize a silicon-based thin film solar cell with excellent characteristics. Also, in terms of productivity, when the aluminum and gallium contents in the film are larger than the range defined by the formula (2), a transparent conductive film with large surface irregularities and a high haze ratio is produced at high speed by the sputtering method. It becomes difficult to do. On the other hand, when it is less than the range defined by the formula (2), the conductivity becomes insufficient.
 なお、酸化亜鉛系透明導電膜(II)、(III)には、亜鉛、アルミニウム、ガリウム及び酸素以外に、他の元素(例えば、インジウム、チタン、ゲルマニウム、シリコン、タングステン、モリブデン、イリジウム、ルテニウム、レニウム、セリウム、マグネシウム、珪素、フッ素など)が、本発明の目的を損なわない範囲で含まれていてもかまわない。 The zinc oxide-based transparent conductive films (II) and (III) include other elements (for example, indium, titanium, germanium, silicon, tungsten, molybdenum, iridium, ruthenium, zinc, aluminum, gallium and oxygen). Rhenium, cerium, magnesium, silicon, fluorine, etc.) may be contained within a range not impairing the object of the present invention.
 また、酸化亜鉛系透明導電膜(II)および(III)は、上記の式(2)で示される範囲内にあることが望ましい。これにより、酸化亜鉛系透明導電膜(II)及び酸化亜鉛系透明導電膜(III)の成膜に同一のスパッタリングターゲットを用いることができ、生産性を向上させることができる。 Moreover, it is desirable that the zinc oxide-based transparent conductive films (II) and (III) are within the range represented by the above formula (2). Thereby, the same sputtering target can be used for film-forming of a zinc oxide type transparent conductive film (II) and a zinc oxide type transparent conductive film (III), and productivity can be improved.
 <1-4.透明導電膜積層体の特性>
 本実施の形態に係る透明導電膜積層体(I)~(III)において、その膜厚は、特に制限されるわけではなく、材料の組成などにもよるが、酸化インジウム系透明導電膜(I)が、50nm以上500nm以下であり、特に100nm以上300nm以下が好ましく、また、酸化亜鉛系透明導電膜(III)が400nm以上1600nm以下であり、特に700nm以上1400nm以下が好ましい。酸化亜鉛系透明導電膜(II)の厚さは、酸化インジウム系透明導電膜(I)の表面を完全に覆うことができる膜圧であることが好ましいが、生産性の低下及び透過率の劣化を招くおそれがあることから、200nm以下が好ましい。以上の膜厚を満足し、本発明の透明導電膜積層体としての総膜厚は、450nm以上2300nm以下、特に800nm以上1700nm以下が好ましい。
<1-4. Characteristics of transparent conductive film laminate>
In the transparent conductive film laminates (I) to (III) according to the present embodiment, the film thickness is not particularly limited and depends on the composition of the material, but the indium oxide-based transparent conductive film (I ) Is from 50 nm to 500 nm, particularly preferably from 100 nm to 300 nm, and the zinc oxide-based transparent conductive film (III) is from 400 nm to 1600 nm, particularly preferably from 700 nm to 1400 nm. The thickness of the zinc oxide-based transparent conductive film (II) is preferably a film pressure that can completely cover the surface of the indium oxide-based transparent conductive film (I), but the productivity and the transmittance are deteriorated. 200 nm or less is preferable. The above film thickness is satisfied, and the total film thickness as the transparent conductive film laminate of the present invention is preferably 450 nm to 2300 nm, particularly preferably 800 nm to 1700 nm.
 また、透明導電膜積層体の表面粗さ(Ra)は、35.0nm以上である。表面粗さ(Ra)が35.0nm未満であると、ヘイズ率の高い酸化亜鉛系透明導電膜(III)が得られず、シリコン系薄膜太陽電池を作製したときに光閉じ込め効果が劣って、高い変換効率を実現できない。十分な光閉じ込め効果を持たせるためには、表面粗さ(Ra)は35.0nm以上でなるべく大きい方が好ましい。 Moreover, the surface roughness (Ra) of the transparent conductive film laminate is 35.0 nm or more. When the surface roughness (Ra) is less than 35.0 nm, a zinc oxide-based transparent conductive film (III) having a high haze ratio cannot be obtained, and when the silicon-based thin film solar cell is produced, the light confinement effect is inferior. High conversion efficiency cannot be realized. In order to provide a sufficient light confinement effect, the surface roughness (Ra) is preferably as large as possible at 35.0 nm or more.
 但し、酸化亜鉛系透明導電膜(III)の表面粗さ(Ra)が70nmを超えると、酸化亜鉛系透明導電膜(III)上に形成するシリコン系薄膜の成長に影響を及ぼし、酸化亜鉛系透明導電膜(III)とシリコン系薄膜との界面に隙間が生じて接触性が悪化し、太陽電池特性が悪化するので、好ましくない。 However, if the surface roughness (Ra) of the zinc oxide-based transparent conductive film (III) exceeds 70 nm, it affects the growth of the silicon-based thin film formed on the zinc oxide-based transparent conductive film (III), and the zinc oxide-based transparent conductive film (III) This is not preferable because a gap is generated at the interface between the transparent conductive film (III) and the silicon-based thin film, the contact property is deteriorated, and the solar cell characteristics are deteriorated.
 また、透明導電膜積層体の表面抵抗は、25Ω/□以下である。表面抵抗が25Ω/□を超えると、太陽電池の表面電極に利用したときに、表面電極での電力損失が大きくなり、高効率の太陽電池を実現することができない。本実施の形態に係る透明導電膜積層体は、上述のような積層構造であるため、表面抵抗を25Ω/□以下とすることができる。本実施の形態に係る透明導電膜積層体の表面抵抗は、好ましくは20Ω/□以下、より好ましくは13Ω/□以下、さらに好ましくは10Ω/□以下、最も好ましくは8Ω/□以下である。 Moreover, the surface resistance of the transparent conductive film laminate is 25Ω / □ or less. When the surface resistance exceeds 25Ω / □, when used as a surface electrode of a solar cell, power loss at the surface electrode increases, and a highly efficient solar cell cannot be realized. Since the transparent conductive film laminate according to the present embodiment has the laminated structure as described above, the surface resistance can be 25 Ω / □ or less. The surface resistance of the transparent conductive film laminate according to the present embodiment is preferably 20Ω / □ or less, more preferably 13Ω / □ or less, still more preferably 10Ω / □ or less, and most preferably 8Ω / □ or less.
 透明導電膜積層体の表面抵抗は、低いほど表面電極部での電力損失が小さいため、大きなセル面積でも高効率の太陽電池を実現できるので好ましい。逆に表面電極の表面抵抗が高いと、太陽電池のセルが大きい場合、表面電極での電力損失が無視できないレベルに大きくなるため、セル面積を小さくして、抵抗の低い金属配線で多くの小型セルを配線して面積を増加させる必要がある。表面電極が25Ω/□以下であれば、少なくとも5cm□の太陽電池セルを実現できるが、20Ω/□以下であれば少なくとも8cm□の太陽電池セルが実現でき、さらに13Ω/□以下であれば少なくとも15cm□のセルが、10Ω/□以下であれば少なくとも17cm□のセルが、8Ω/□以下であれば少なくとも20cm□のセルが、表面電極での電力損失の影響を考慮することなく実現できる。小さなセル面積の太陽電池は、金属配線によって接続する必要があり、セルの間隔が多くなるなどの要因で、セルを接続して作製した一つのモジュールの単位面積当たり発電量が小さくなるだけでなく、セルの面積当たりの製造コストが増加するなどの問題があるため好ましくない。 The lower the surface resistance of the transparent conductive film laminate, the smaller the power loss at the surface electrode portion, and therefore, a high efficiency solar cell can be realized even with a large cell area. Conversely, if the surface resistance of the surface electrode is high, the power loss at the surface electrode increases to a level that cannot be ignored if the cell of the solar battery is large. It is necessary to increase the area by wiring the cells. If the surface electrode is 25Ω / □ or less, a solar cell of at least 5 cm □ can be realized, but if it is 20Ω / □ or less, a solar cell of at least 8 cm □ can be realized, and if it is 13Ω / □ or less, at least If the 15 cm □ cell is 10 Ω / □ or less, at least 17 cm □ cell can be realized, and if it is 8 Ω / □ or less, at least 20 cm □ cell can be realized without considering the influence of power loss at the surface electrode. Solar cells with a small cell area need to be connected by metal wiring, which not only reduces the amount of power generated per unit area of a single module made by connecting cells due to factors such as increased cell spacing. This is not preferable because of problems such as an increase in manufacturing cost per cell area.
 また、透明導電膜積層体のヘイズ率は、8%以上であることが好ましく、より好ましくは12%以上、更に好ましくは16%以上であり、最も好ましくは20%以上である。シングル構造の標準的な薄膜シリコン系太陽電池セルにおいて、変換効率10%以上を実現するためには、ヘイズ率12%以上が必要不可欠である。また、同様の評価で、変換効率12%以上を実現するためには、ヘイズ率16%以上の表面電極を用いることが有効である。さらに、同様の評価で、変換効率15%以上を実現するためには、ヘイズ率20%以上の表面電極を用いることが有効である。高効率のタンデム型シリコン系薄膜太陽電池では、ヘイズ率20%以上の表面電極が特に有用となる。本実施の形態に係る透明導電膜積層体は、下地に酸化インジウム系透明導電膜(I)を挿入していることに加え、上述した酸化亜鉛系透明導電膜(II)及び(III)を積層していることにより、高いヘイズ率が実現することができる。 Further, the haze ratio of the transparent conductive film laminate is preferably 8% or more, more preferably 12% or more, still more preferably 16% or more, and most preferably 20% or more. In a standard thin film silicon solar cell having a single structure, a haze ratio of 12% or more is indispensable in order to achieve a conversion efficiency of 10% or more. In order to realize a conversion efficiency of 12% or more in the same evaluation, it is effective to use a surface electrode having a haze ratio of 16% or more. Furthermore, it is effective to use a surface electrode having a haze ratio of 20% or more in order to realize a conversion efficiency of 15% or more in the same evaluation. In a highly efficient tandem silicon thin film solar cell, a surface electrode having a haze ratio of 20% or more is particularly useful. In the transparent conductive film laminate according to the present embodiment, the above-described zinc oxide-based transparent conductive films (II) and (III) are stacked in addition to the indium oxide-based transparent conductive film (I) inserted in the base. By doing so, a high haze rate can be realized.
 また、本実施の形態に係る透明導電膜積層体は、上述のように酸化亜鉛系透明導電膜(II)が酸化インジウム系透明導電膜を保護するため、耐水素還元性に優れる。具体的には、500℃、水素雰囲気中での加熱処理による透過率の低下を10%以下に抑えることができる。 Moreover, since the transparent conductive film laminate according to the present embodiment protects the indium oxide-based transparent conductive film by the zinc oxide-based transparent conductive film (II) as described above, it is excellent in resistance to hydrogen reduction. Specifically, a decrease in transmittance due to heat treatment in a hydrogen atmosphere at 500 ° C. can be suppressed to 10% or less.
 <2.透明導電膜積層体の製造方法>
 本実施の形態に係る透明導電膜積層体の製造方法は、透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜し、酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜するものである。
<2. Manufacturing method of transparent conductive film laminate>
In the method for manufacturing a transparent conductive film laminate according to the present embodiment, the c-axis tilt angle of the hexagonal crystal is increased by sputtering on the indium oxide-based transparent conductive film (I) formed on the light-transmitting substrate. A zinc oxide-based transparent conductive film (II) having a thickness of 10 ° or less and a film thickness of 10 nm or more and 200 nm or less with respect to the direction perpendicular to the translucent substrate surface was formed, and on the zinc oxide-based transparent conductive film (II), A zinc oxide-based transparent conductive film (III) having a film thickness of 400 nm or more and 1600 nm or less is formed by a sputtering method.
 以下、各透明導電膜の成膜方法について詳細に説明する。 Hereinafter, a method for forming each transparent conductive film will be described in detail.
 <2-1.酸化インジウム系透明導電膜(I)の成膜>
 酸化インジウム系透明導電膜(I)の成膜には、Sn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した酸化インジウムを主成分とする酸化物焼結体ターゲットが用いられる。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
<2-1. Formation of Indium Oxide-Based Transparent Conductive Film (I)>
For the formation of the indium oxide-based transparent conductive film (I), an oxide firing mainly composed of indium oxide containing one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce, or Ga is used. A ligation target is used. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
 このような酸化物焼結体ターゲットの中でも、Snを含有し、その含有割合がSn/(In+Sn)原子数比で15原子%以下であるものや、Tiを含有し、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であるものが好適に用いられる。 Among such oxide sintered compact targets, Sn is contained, and the content ratio is 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio, or Ti is contained, and the content ratio is Ti / Those having an atomic ratio of (In + Ti) of 5.5 atomic% or less are preferably used.
 この酸化インジウム系透明導電膜(I)の形成方法には、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法と、基板を加熱して結晶質膜を形成する第2の方法を用いることができる。 The indium oxide-based transparent conductive film (I) is formed by a first method in which an amorphous film is formed without heating the substrate and then crystallized by heat treatment, and a crystal is formed by heating the substrate. A second method of forming a material film can be used.
 第1の方法では、基板温度100℃以下、スパッタリングガス圧0.1以上1.0Pa未満の条件で、非晶質膜を形成した後に、引き続き、200℃以上600℃以下に加熱処理して、非晶質膜が結晶化され、酸化インジウム系透明導電膜が形成される。また、第2の方法では、基板温度200℃以上600℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、酸化インジウム系透明導電膜が結晶膜として形成される。 In the first method, after forming an amorphous film under the conditions of a substrate temperature of 100 ° C. or less and a sputtering gas pressure of 0.1 or more and less than 1.0 Pa, heat treatment is subsequently performed to 200 ° C. or more and 600 ° C. or less, The amorphous film is crystallized to form an indium oxide-based transparent conductive film. In the second method, the indium oxide-based transparent conductive film is formed as a crystal film under conditions of a substrate temperature of 200 ° C. or more and 600 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa.
 本実施の形態においては、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法を用いることが好ましい。これは、第1の方法のほうが、基板を加熱して結晶質膜を形成する第2の方法よりも表面粗さ(Ra)とヘイズ率がより大きな膜が得られるためである。 In the present embodiment, it is preferable to use the first method in which an amorphous film is formed without heating the substrate and then crystallized by heat treatment. This is because the first method can obtain a film having a larger surface roughness (Ra) and haze ratio than the second method in which the substrate is heated to form the crystalline film.
 <2-2.酸化亜鉛系透明導電膜(II)の成膜>
 酸化亜鉛系透明導電膜(II)の成膜に用いられる酸化物焼結体ターゲットは、酸化鉛を主成分(重量割合で90%以上)としていればどの添加元素を含んでいても良く、全く添加元素が含まれなくてもよい。酸化亜鉛系透明導電膜(II)は、酸化インジウム系透明導電膜(I)に対する保護がメインの役割であるため、その酸化物焼結体ターゲットの組成は大きく限定されないが、酸化物膜の導電性に寄与する添加元素として、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことが好ましい。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
<2-2. Formation of Zinc Oxide Transparent Conductive Film (II)>
The oxide sintered compact target used for film formation of the zinc oxide-based transparent conductive film (II) may contain any additive element as long as it contains lead oxide as a main component (90% or more by weight). An additive element may not be contained. Since the zinc oxide-based transparent conductive film (II) mainly plays a role in protecting the indium oxide-based transparent conductive film (I), the composition of the oxide sintered compact target is not greatly limited. It is preferable that the additive element contributing to the property contains one or more additive metal elements selected from aluminum or gallium. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
 アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含む酸化亜鉛焼結体ターゲットを用いる際には、アルミニウムとガリウムの含有量が上記の式(1)で示される範囲内である酸化物焼結体ターゲットを使用することが好ましい。 When using a zinc oxide sintered compact target containing one or more additive metal elements selected from aluminum or gallium, the oxide firing in which the contents of aluminum and gallium are within the range represented by the above formula (1). It is preferable to use a ligation target.
 酸化物焼結体ターゲット中のアルミニウムとガリウムの含有量が式(1)で規定される範囲内であれば、酸化亜鉛系透明導電膜(II)の導電性は十分なものとなるが、酸化亜鉛系透明導電膜(II)の成膜に用いられる酸化物焼結体ターゲットは、酸化亜鉛系透明導電膜(III)の成膜と同一のものを用いることができる。これにより、酸化亜鉛系透明導電膜(II)の成膜と酸化亜鉛系透明導電膜(III)の成膜とにおける酸化物焼結体ターゲットの交換や、ターゲット組成が異なることによるチャンバ内の汚染を防ぐことができ、また、生産性を向上させることができる。 If the content of aluminum and gallium in the oxide sintered compact target is within the range specified by the formula (1), the conductivity of the zinc oxide-based transparent conductive film (II) will be sufficient, but the oxidation As the oxide sintered compact target used for forming the zinc-based transparent conductive film (II), the same target as that for forming the zinc oxide-based transparent conductive film (III) can be used. This makes it possible to replace the oxide sintered compact target in the film formation of the zinc oxide-based transparent conductive film (II) and the film formation of the zinc oxide-based transparent conductive film (III), and to contaminate the chamber due to the different target composition. Can be prevented, and productivity can be improved.
 このアルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含む酸化亜鉛焼結体ターゲットは、原料粉末として、酸化亜鉛粉末に、酸化ガリウム粉末と酸化アルミニウム粉末を添加・混合した後、引き続き、この原料粉末に水系媒体を配合して得られたスラリーを粉砕・混合処理し、次に粉砕・混合物を成形し、その後、成形体を焼成することで製造できる。詳細な製造方法については、前記特許文献3に記載されている。 This zinc oxide sintered compact target containing one or more additive metal elements selected from aluminum or gallium is prepared by adding and mixing gallium oxide powder and aluminum oxide powder to zinc oxide powder as a raw material powder, The slurry obtained by blending the raw material powder with the aqueous medium can be pulverized and mixed, then the pulverized / mixture is formed, and then the formed body is fired. The detailed manufacturing method is described in Patent Document 3.
 酸化亜鉛系透明導電膜(II)の成膜も、酸化インジウム系透明導電膜(I)の成膜と同様に、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法と、基板を加熱して結晶質膜を形成する第2の方法を用いることができる。 Similarly to the formation of the indium oxide-based transparent conductive film (I), the zinc oxide-based transparent conductive film (II) is formed by forming an amorphous film without heating the substrate, and then heat-treating the crystal. A first method for forming a crystalline film and a second method for forming a crystalline film by heating the substrate can be used.
 第1の方法では、スパッタリングガス圧が0.1Pa以上1.0Pa未満において基板温度が100℃以下の条件で、スパッタリングターゲットへの直流投入電力密度を1.66W/cm以上として、非晶質膜として形成した後、200℃以上600℃以下に加熱処理し、酸化亜鉛系透明導電膜(II)を結晶化する。また、第2の方法では、スパッタリングガス圧が0.1Pa以上1.0Pa未満において基板温度が200℃以上600℃以下の条件で、スパッタリングターゲットへの直流投入電力密度を1.66W/cm以上として、酸化亜鉛系透明導電膜(II)を成膜する。 In the first method, an amorphous material is used in which the DC input power density to the sputtering target is 1.66 W / cm 2 or more under the condition that the sputtering gas pressure is 0.1 Pa or more and less than 1.0 Pa and the substrate temperature is 100 ° C. or less. After forming as a film, it heat-processes at 200 degreeC or more and 600 degrees C or less, and crystallizes zinc oxide type transparent conductive film (II). In the second method, the DC input power density to the sputtering target is 1.66 W / cm 2 or more under the condition that the substrate temperature is 200 ° C. or more and 600 ° C. or less when the sputtering gas pressure is 0.1 Pa or more and less than 1.0 Pa. As a film, a zinc oxide-based transparent conductive film (II) is formed.
 本実施の形態では、第1の方法又は第2の方法のいずれの方法も、透明導電膜積層体の特性に大きく影響を及ぼすことはないものの、生産性の観点から、成膜後の加熱処理工程を設ける必要のない第2の方法が好ましい。 In this embodiment mode, neither the first method nor the second method significantly affects the characteristics of the transparent conductive film laminate, but from the viewpoint of productivity, the heat treatment after film formation. The 2nd method which does not need to provide a process is preferable.
 本実施の形態では、上記のようにスパッタリングガス圧が0.1Pa以上1.0Pa未満の条件で酸化亜鉛系透明導電膜(II)を形成する。スパッタリングガス圧が0.1Pa未満の場合、結晶膜の形成が困難となる。また、スパッタリングガス圧が1.0Pa以上の場合、六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下の酸化亜鉛系透明導電膜(II)を成膜することが困難となる。 In the present embodiment, the zinc oxide-based transparent conductive film (II) is formed under the condition that the sputtering gas pressure is 0.1 Pa or more and less than 1.0 Pa as described above. When the sputtering gas pressure is less than 0.1 Pa, it is difficult to form a crystal film. Further, when the sputtering gas pressure is 1.0 Pa or more, a zinc oxide-based transparent conductive film (II) in which the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface is formed. Difficult to do.
 また、本実施の形態では、酸化亜鉛系透明導電膜(II)の成膜時に水素ガスを導入してもよい。水素ガスを導入することにより、膜中の余剰な酸素が解離され、導電性及び透過率を向上させることができる。この場合、スパッタリングガス種としてアルゴン(Ar)と水素(H)の混合ガスを用いて、その混合割合(モル比)がH/(Ar+H)≦0.43であることが好ましい。スパッタリングガス種として用いるアルゴン(Ar)と水素(H)の混合ガスの混合割合(モル比)が、H/(Ar+H)>0.43である場合、透明導電膜の基板に対する付着力が低下したり、透明導電膜が粗くなりすぎて導電性が悪化したりし、実用上、太陽電池の電極として利用することが困難となる。また、下地層である酸化インジウム系透明導電膜(I)において水素還元による透明性の損失が発生し、薄膜太陽電池の表面電極として用いることが非常に困難となってしまう。 Moreover, in this Embodiment, you may introduce | transduce hydrogen gas at the time of film-forming of a zinc oxide type transparent conductive film (II). By introducing hydrogen gas, excess oxygen in the film is dissociated, and conductivity and transmittance can be improved. In this case, it is preferable to use a mixed gas of argon (Ar) and hydrogen (H 2 ) as a sputtering gas species, and the mixing ratio (molar ratio) is H 2 / (Ar + H 2 ) ≦ 0.43. When the mixing ratio (molar ratio) of the mixed gas of argon (Ar) and hydrogen (H 2 ) used as the sputtering gas species is H 2 / (Ar + H 2 )> 0.43, the adhesion of the transparent conductive film to the substrate Or the transparent conductive film becomes too rough and the conductivity deteriorates, making it practically difficult to use as an electrode of a solar cell. In addition, transparency loss due to hydrogen reduction occurs in the indium oxide-based transparent conductive film (I), which is the underlayer, and it becomes very difficult to use as a surface electrode of a thin film solar cell.
 <2-3.酸化亜鉛系透明導電膜(III)の成膜>
 酸化亜鉛系透明導電膜(III)の成膜に用いられる酸化物焼結体ターゲットは、アルミニウムとガリウムの含有量が式(2)で規定される範囲内であれば、上記のような表面凹凸が大きくて、ヘイズ率の高い酸化亜鉛系透明導電膜(III)を、スパッタリング法で高速に製造することができる。
<2-3. Formation of Zinc Oxide Transparent Conductive Film (III)>
If the oxide sintered compact target used for the film formation of the zinc oxide-based transparent conductive film (III) is within the range defined by the formula (2), the surface irregularities as described above The zinc oxide-based transparent conductive film (III) having a large haze ratio can be produced at high speed by a sputtering method.
 酸化亜鉛系透明導電膜(III)の成膜も、酸化亜鉛系透明導電膜(II)の成膜と同様に、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法と、基板を加熱して結晶質膜を形成する第2の方法を用いることができる。 Similarly to the formation of the zinc oxide-based transparent conductive film (II), the zinc oxide-based transparent conductive film (III) is crystallized by forming an amorphous film without heating the substrate and then heat-treating it. A first method for forming a crystalline film and a second method for forming a crystalline film by heating the substrate can be used.
 第1の方法では、スパッタリングガス圧が1.0Pa以上15.0Pa以下において基板温度が100℃以下の条件で、スパッタリングターゲットへの直流投入電力密度を1.66W/cm以上として、非晶質膜として形成した後、200℃以上600℃以下に加熱処理し、酸化亜鉛系透明導電膜(III)を結晶化する。また、第2の方法では、スパッタリングガス圧が1.0Pa以上15.0Pa以下において基板温度が200℃以上600℃以下の条件で、スパッタリングターゲットへの直流投入電力密度を1.66W/cm以上として、酸化亜鉛系透明導電膜(III)を成膜する。 In the first method, an amorphous material is used in which the direct current input power density to the sputtering target is 1.66 W / cm 2 or more under the condition that the sputtering gas pressure is 1.0 Pa or more and 15.0 Pa or less and the substrate temperature is 100 ° C. or less. After forming as a film, it heat-processes at 200 degreeC or more and 600 degrees C or less, and crystallizes zinc oxide type transparent conductive film (III). In the second method, the DC input power density to the sputtering target is 1.66 W / cm 2 or more under the conditions that the sputtering gas pressure is 1.0 Pa or more and 15.0 Pa or less and the substrate temperature is 200 ° C. or more and 600 ° C. or less. As a film, a zinc oxide-based transparent conductive film (III) is formed.
 本実施の形態では、第1の方法又は第2のいずれの方法も、透明導電膜積層体の特性に大きく影響を及ぼすことはないものの、生産性の観点から、成膜後の加熱処理工程を設ける必要のない第2の方法が好ましい。 In the present embodiment, the first method or the second method does not greatly affect the characteristics of the transparent conductive film laminate, but from the viewpoint of productivity, the heat treatment step after film formation is performed. The second method which does not need to be provided is preferable.
 また、本実施の形態では、スパッタリングガス圧が1.0Pa以上15.0Pa以下の条件で酸化亜鉛系透明導電膜(III)を形成することが好ましい。スパッタリングガス圧が1.0Pa未満の場合、表面凹凸の大きい膜が得られ難く、Ra値が35.0nm以上の膜が得られなくなってしまう。一方、15.0Paを超えると成膜速度が遅くなってしまい好ましくない。例えば、静止対向成膜において、ターゲットへの直流投入電力密度が1.66W/cm以上の高い電力を投入して40nm/min以上の成膜速度を得るためには、スパッタリングガス圧を15.0Pa以下とする必要がある。 Moreover, in this Embodiment, it is preferable to form zinc oxide type transparent conductive film (III) on the conditions whose sputtering gas pressure is 1.0 Pa or more and 15.0 Pa or less. When the sputtering gas pressure is less than 1.0 Pa, it is difficult to obtain a film having large surface irregularities, and a film having an Ra value of 35.0 nm or more cannot be obtained. On the other hand, if it exceeds 15.0 Pa, the film formation rate is slow, which is not preferable. For example, in static facing film formation, in order to obtain a film formation rate of 40 nm / min or more by applying high power with a DC input power density of 1.66 W / cm 2 or more to the target, the sputtering gas pressure is 15. It is necessary to make it 0 Pa or less.
 また、本実施の形態では、酸化亜鉛系透明導電膜(III)の成膜時に、酸化亜鉛系透明導電膜(II)の成膜時と同様に水素ガスをH/(Ar+H)≦0.43の混合割合(モル比)で導入し、膜中の余剰な酸素を解離し、導電性及び透過率を向上させてもよい。 Further, in the present embodiment, during the formation of the zinc oxide-based transparent conductive film (III), hydrogen gas is supplied as H 2 / (Ar + H 2 ) ≦ 0 in the same manner as when the zinc oxide-based transparent conductive film (II) is formed. .43 may be introduced at a mixing ratio (molar ratio) to dissociate excess oxygen in the film, thereby improving conductivity and transmittance.
 また、本実施の形態では、酸化亜鉛系透明導電膜(III)の成膜時の基板温度は、酸化亜鉛系透明導電膜(II)の成膜時と同様に200℃以上600℃以下とすることが好ましい。これにより、透明導電膜の結晶性が良くなり、キャリア電子の移動度が増大し、優れた導電性を実現することができる。基板温度が200℃未満であると、膜の粒子の成長が劣るためRa値の大きな膜を得ることができない。また、基板温度が600℃を超えると、加熱に要する電力量が多くなり製造コストが増加するなどの問題が生じるだけでなく、基板としてガラス基板を用いた場合にはその軟化点を超えてしまい、ガラスが劣化してしまうなどの問題も生じるため好ましくない。 Moreover, in this Embodiment, the substrate temperature at the time of film-forming of zinc oxide type transparent conductive film (III) shall be 200 to 600 degreeC similarly to the time of film-forming of zinc oxide type transparent conductive film (II). It is preferable. Thereby, the crystallinity of the transparent conductive film is improved, the mobility of carrier electrons is increased, and excellent conductivity can be realized. When the substrate temperature is less than 200 ° C., the growth of film particles is inferior, so that a film having a large Ra value cannot be obtained. In addition, when the substrate temperature exceeds 600 ° C., not only does the problem arise such that the amount of electric power required for heating increases and the manufacturing cost increases, but when the glass substrate is used as the substrate, the softening point is exceeded. This is not preferable because problems such as deterioration of the glass also occur.
 上述の透明導電膜の成膜において、スパッタリングターゲットへの投入電力を増大させると、成膜速度が増加し、膜の生産性が向上するが、従来の技術では上記の特性が得られにくくなる。ここでいう高速成膜とは、ターゲットへの投入電力を2.76W/cm以上に増加させてスパッタリング成膜を行うことをいう。これにより、例えば、静止対向成膜において90nm/min以上の成膜速度が実現でき、表面凹凸が大きくて高ヘイズ率の酸化亜鉛系透明導電膜を得ることができる。また、ターゲット上を基板が通過しながら成膜する通過型成膜(搬送成膜)においても、例えば同様の投入電力密度において成膜した5.1nm・m/min(搬送速度(m/min)で割ると、得られる膜厚(nm)が算出される)の高速搬送成膜においても表面凹凸性が優れて、ヘイズ率の高い酸化亜鉛系透明導電膜を得ることができる。なお、この場合の成膜速度は、本発明の目的を達成できれば特に制限されない。 In the film formation of the transparent conductive film described above, when the input power to the sputtering target is increased, the film formation rate is increased and the film productivity is improved. However, the above-described characteristics are hardly obtained by the conventional technique. The high-speed film formation here refers to performing sputtering film formation by increasing the input power to the target to 2.76 W / cm 2 or more. Thereby, for example, a film formation speed of 90 nm / min or more can be realized in static facing film formation, and a zinc oxide-based transparent conductive film having a large surface roughness and a high haze ratio can be obtained. Also, in the pass-type film formation (transfer film formation) in which the substrate is passed over the target, for example, the film was formed at a similar input power density of 5.1 nm · m / min (transfer speed (m / min)). In the high-speed transport film formation of the obtained film thickness (nm), it is possible to obtain a zinc oxide-based transparent conductive film having excellent surface irregularity and a high haze ratio. In addition, the film-forming speed | rate in this case will not be restrict | limited especially if the objective of this invention can be achieved.
 本実施の形態では、上述した条件で成膜することによって、ターゲットへの投入電力密度を2.760W/cm以上に増加させた高速成膜を試みても、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下の表面凹凸性を有する透明導電膜積層体を製造することができる。特に、本実施の形態によれば、上記の表面粗さ(Ra)、表面抵抗が、450nm以上1000nm以下の薄い膜厚でも実現することができ、膜厚が薄くなることにより透過率も向上する。 In the present embodiment, even if high-speed film formation is attempted by increasing the input power density to the target to 2.760 W / cm 2 or more by forming the film under the above-described conditions, the surface roughness (Ra) is 35. A transparent conductive film laminate having a surface irregularity having a surface resistance of 0.0 nm or more and a surface resistance of 25 Ω / □ or less can be produced. In particular, according to the present embodiment, the surface roughness (Ra) and the surface resistance can be realized even with a thin film thickness of 450 nm or more and 1000 nm or less, and the transmittance is improved by reducing the film thickness. .
 以上説明したように、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上を添加金属元素として含み、アルミニウムの含有量[Al]とガリウムの含有量[Ga]が特定の範囲内である酸化亜鉛系透明導電膜(III)を形成することによって、スパッタリング法のみで高速成膜が可能であり、かつ表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下で、光閉じ込め効果にも優れる透明導電膜積層体を得ることができる。さらに、この酸化亜鉛系透明導電膜を酸化インジウム系透明導電膜(I)上に成膜する際、低ガス圧条件でのスパッタリングによる層(II)と、高ガス圧条件でのスパッタリングによる層(III)を順次積層することで、低ガス圧層(II)が、耐水素還元性の低い酸化インジウム系透明導電膜(I)上を全て保護することができ、耐水素還元性に優れ、光閉じ込め効果にも優れた構造を得ることができる。 As described above, zinc oxide is the main component, one or more selected from aluminum or gallium is included as an additive metal element, and the aluminum content [Al] and the gallium content [Ga] are within a specific range. By forming a certain zinc oxide-based transparent conductive film (III), high-speed film formation is possible only by a sputtering method, surface roughness (Ra) is 35.0 nm or more, surface resistance is 25 Ω / □ or less, A transparent conductive film laminate excellent in the light confinement effect can be obtained. Further, when the zinc oxide-based transparent conductive film is formed on the indium oxide-based transparent conductive film (I), a layer (II) obtained by sputtering under a low gas pressure condition and a layer (II) obtained by sputtering under a high gas pressure condition ( By sequentially laminating III), the low gas pressure layer (II) can protect all over the indium oxide-based transparent conductive film (I) with low hydrogen reduction resistance, and has excellent hydrogen reduction resistance, light A structure having an excellent confinement effect can be obtained.
 また、透明導電膜積層体は、スパッタリング法のみで製造することができるため、薄膜太陽電池の表面透明電極用として導電性等に優れているだけでなく、従来の熱CVD法による透明導電膜と比較してコスト削減が可能となる。したがって、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため工業的に極めて有用である。 Moreover, since a transparent conductive film laminated body can be manufactured only by sputtering method, it is not only excellent in electroconductivity etc. for the surface transparent electrode of a thin film solar cell, but the transparent conductive film by the conventional thermal CVD method and In comparison, the cost can be reduced. Therefore, since a highly efficient silicon-based thin film solar cell can be provided at a low cost by a simple process, it is extremely useful industrially.
 また、この透明導電膜積層体は、特に耐水素還元性に優れ、かつ、高いヘイズ率及び優れた導電性を有しており、波長380nm以上1200nm以下の可視光線から近赤外線までを含む太陽光の光エネルギーを極めて有効に電気エネルギーに変換することができる。従って、高効率太陽電池の表面電極用途として非常に有用である。 In addition, this transparent conductive film laminate is particularly excellent in hydrogen reduction resistance, has a high haze ratio and excellent conductivity, and includes sunlight ranging from visible light to near infrared light having a wavelength of 380 nm to 1200 nm. Can be converted into electrical energy very effectively. Therefore, it is very useful as a surface electrode application of a high efficiency solar cell.
 <3.薄膜太陽電池及びその製造方法>
 本実施の形態に係る薄膜太陽電池は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成されている。
<3. Thin Film Solar Cell and Method for Producing the Same>
In the thin film solar cell according to the present embodiment, a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate.
 本実施の形態に係る薄膜太陽電池は、上述した透明導電膜積層体を電極として用いていることを特徴とする光電変換素子である。太陽電池素子の構造は特に限定されず、p型半導体とn型半導体を積層したPN接合型、p型半導体とn型半導体の間に絶縁層(I層)を介在させたPIN接合型等が挙げられる。 The thin film solar cell according to the present embodiment is a photoelectric conversion element using the above-described transparent conductive film laminate as an electrode. The structure of the solar cell element is not particularly limited, and includes a PN junction type in which a p-type semiconductor and an n-type semiconductor are stacked, a PIN junction type in which an insulating layer (I layer) is interposed between the p-type semiconductor and the n-type semiconductor, and the like. Can be mentioned.
 薄膜太陽電池は、半導体の種類によって大別され、微結晶シリコン又は/及びアモルファスシリコン等のシリコン系半導体薄膜を光電変換素子として用いたシリコン系太陽電池、CuInSe系やCu(In,Ga)Se系、Ag(In,Ga)Se系、CuInS系、Cu(In,Ga)S系、Ag(In,Ga)S系やこれらの固溶体、GaAs系、CdTe系等で代表される化合物半導体の薄膜を光電変換素子として用いた化合物薄膜系太陽電池、及び、有機色素を用いた色素増感型太陽電池(グレッツェルセル型太陽電池とも呼ばれる)に分類されるが、本実施の形態に係る太陽電池は、何れの場合も含まれ、上述した透明導電膜積層体を電極として用いることで高効率を実現できる。特に、シリコン系太陽電池や化合物薄膜系太陽電池では、太陽光が入射する側(受光部側、表側)の電極には透明導電膜が必要不可欠であり、本実施の形態に係る透明導電膜積層体を用いることで高い変換効率の特性を発揮することができる。 Thin film solar cells are roughly classified according to the type of semiconductor. Silicon solar cells using a silicon-based semiconductor thin film such as microcrystalline silicon and / or amorphous silicon as a photoelectric conversion element, CuInSe-based or Cu (In, Ga) Se-based , Ag (In, Ga) Se, CuInS, Cu (In, Ga) S, Ag (In, Ga) S and their solid solutions, GaAs, CdTe, and other compound semiconductor thin films Although it is classified into a compound thin film solar cell used as a photoelectric conversion element, and a dye-sensitized solar cell using an organic dye (also referred to as a Gretzel cell solar cell), the solar cell according to the present embodiment is In any case, high efficiency can be realized by using the above-described transparent conductive film laminate as an electrode. In particular, in a silicon-based solar cell and a compound thin-film solar cell, a transparent conductive film is indispensable for an electrode on which sunlight is incident (light receiving unit side, front side), and the transparent conductive film lamination according to the present embodiment By using the body, high conversion efficiency characteristics can be exhibited.
 光電変換ユニットにおけるp型やn型の導電型半導体層は、光電変換ユニット内に内部電界を生じさせる役目を果たしている。この内部電界の大きさによって、薄膜太陽電池の重要な特性の1つである開放電圧(Voc)の値が左右される。i型層は、実質的に真性の半導体層であって光電変換ユニットの厚さの大部分を占めている。光電変換作用は、主としてこのi型層内で生じる。そのため、i型層は、通常i型光電変換層又は単に光電変換層と呼ばれる。光電変換層は、真性半導体層に限らず、ドープされた不純物(ドーパント)によって吸収される光の損失が問題にならない範囲で、微量にp型又はn型にドープされた層であってもよい。 The p-type and n-type conductive semiconductor layers in the photoelectric conversion unit serve to generate an internal electric field in the photoelectric conversion unit. The value of the open circuit voltage (Voc), which is one of the important characteristics of the thin film solar cell, depends on the magnitude of the internal electric field. The i-type layer is a substantially intrinsic semiconductor layer and occupies most of the thickness of the photoelectric conversion unit. The photoelectric conversion action mainly occurs in this i-type layer. Therefore, the i-type layer is usually called an i-type photoelectric conversion layer or simply a photoelectric conversion layer. The photoelectric conversion layer is not limited to an intrinsic semiconductor layer, and may be a layer doped with a small amount of p-type or n-type as long as loss of light absorbed by a doped impurity (dopant) does not become a problem. .
 図2は、シリコン系非晶質薄膜太陽電池の構造の一例を示す図である。シリコン系薄膜を光電変換ユニット(光吸収層)に用いたシリコン系薄膜太陽電池には、非晶質薄膜太陽電池の他に、微結晶質薄膜太陽電池や結晶質薄膜太陽電池のほか、これらを積層したハイブリッド薄膜太陽電池も実用化されている。なお、前記の通り、光電変換ユニット又は薄膜太陽電池において、その主要部を占める光電変換層が非晶質のものは、非晶質ユニット又は非晶質薄膜太陽電池と称されている。また、光電変換層が結晶質のものは、結晶質ユニット又は結晶質薄膜太陽電池と称されている。さらに、光電変換層が微結晶質のものは、微結晶質ユニット又は結晶質薄膜太陽電池と称されている。 FIG. 2 is a diagram showing an example of the structure of a silicon-based amorphous thin film solar cell. In addition to amorphous thin film solar cells, silicon thin film solar cells that use silicon thin films for photoelectric conversion units (light absorption layers) include microcrystalline thin film solar cells and crystalline thin film solar cells. Laminated hybrid thin film solar cells have also been put into practical use. In addition, as above-mentioned, in the photoelectric conversion unit or thin film solar cell, when the photoelectric conversion layer which occupies the principal part is amorphous, it is called the amorphous unit or the amorphous thin film solar cell. A crystalline photoelectric conversion layer is called a crystalline unit or a crystalline thin film solar cell. Furthermore, the one having a microcrystalline photoelectric conversion layer is referred to as a microcrystalline unit or a crystalline thin film solar cell.
 このような薄膜太陽電池の変換効率を向上させる方法として、2以上の光電変換ユニットを積層してタンデム型太陽電池にする方法がある。例えば、この方法においては、薄膜太陽電池の光入射側に大きなバンドギャップを有する光電変換層を含む前方ユニットを配置し、その後方に順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配置する。これにより、入射光の広い波長範囲にわたって光電変換を可能にし、太陽電池全体としての変換効率の向上を図ることができる。このタンデム型太陽電池の中でも、特に非晶質光電変換ユニットと、結晶質或いは微結晶質光電変換ユニットを積層したものはハイブリッド薄膜太陽電池と称される。 As a method for improving the conversion efficiency of such a thin film solar cell, there is a method of stacking two or more photoelectric conversion units into a tandem solar cell. For example, in this method, a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film solar cell, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed behind the front unit. . Thereby, photoelectric conversion is enabled over the wide wavelength range of incident light, and the conversion efficiency as the whole solar cell can be improved. Among these tandem solar cells, those in which an amorphous photoelectric conversion unit and a crystalline or microcrystalline photoelectric conversion unit are stacked are called hybrid thin film solar cells.
 図3は、ハイブリッド薄膜太陽電池の構造の一例を示す図である。ハイブリッド薄膜太陽電池において、例えば、i型非晶質シリコンが光電変換し得る光の波長域は長波長側では800nm程度までであるが、i型結晶質或いは微結晶質シリコンは、それより長い約1150nm程度の波長までの光を光電変換することができる。 FIG. 3 is a diagram showing an example of the structure of a hybrid thin film solar cell. In a hybrid thin-film solar cell, for example, the wavelength range of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, but i-type crystalline or microcrystalline silicon is longer than that. Light up to a wavelength of about 1150 nm can be photoelectrically converted.
 次に、図2、3を用いて、本実施の形態に係る薄膜太陽電池の構成について、より具体的に説明する。図2、3において、透光性基板1上に、上述した酸化インジウム系透明導電膜(I)である透明導電膜21と、酸化亜鉛系透明導電膜(II)である透明導電膜22と、酸化亜鉛系透明導電膜(III)である透明導電膜23とからなる透明導電膜積層体2が形成されている。 Next, the configuration of the thin-film solar cell according to the present embodiment will be described more specifically with reference to FIGS. 2 and 3, on the translucent substrate 1, the transparent conductive film 21 which is the above-described indium oxide-based transparent conductive film (I), the transparent conductive film 22 which is the zinc oxide-based transparent conductive film (II), The transparent conductive film laminated body 2 which consists of the transparent conductive film 23 which is a zinc oxide type transparent conductive film (III) is formed.
 透光性基板1としては、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。透明導電膜積層体2上には、非晶質光電変換ユニット3が形成されている。非晶質光電変換ユニット3は、非晶質p型シリコンカーバイド層31と、ノンドープ非晶質i型シリコン光電変換層32と、n型シリコン系界面層33とから構成されている。非晶質p型シリコンカーバイド層31は、透明導電膜積層体2の還元による透過率低下を防止するため、基板温度180℃以下で形成されている。 As the translucent substrate 1, a plate-like member or a sheet-like member made of glass, transparent resin or the like is used. An amorphous photoelectric conversion unit 3 is formed on the transparent conductive film laminate 2. The amorphous photoelectric conversion unit 3 includes an amorphous p-type silicon carbide layer 31, a non-doped amorphous i-type silicon photoelectric conversion layer 32, and an n-type silicon-based interface layer 33. The amorphous p-type silicon carbide layer 31 is formed at a substrate temperature of 180 ° C. or lower in order to prevent a decrease in transmittance due to the reduction of the transparent conductive film stack 2.
 図3に示すハイブリッド薄膜太陽電池おいては、非晶質光電変換ユニット3の上に結晶質光電変換ユニット4が形成されている。結晶質光電変換ユニット4は、結晶質p型シリコン層41と、結晶質i型シリコン光電変換層42と、結晶質n型シリコン層43とから構成されている。非晶質光電変換ユニット3及び結晶質光電変換ユニット4(以下、この両方のユニットをまとめて単に「光電変換ユニット」と称する)の形成には、高周波プラズマCVD法が適している。光電変換ユニットの形成条件としては、基板温度100℃以上250℃以下(ただし、非晶質p型シリコンカーバイド層31は、180℃以下)、圧力30Pa以上1500Pa以下、高周波パワー密度0.01W/cm以上0.5W/cm以下が好ましく用いられる。光電変換ユニット形成に使用する原料ガスとしては、SiH、Si等のシリコン含有ガス、又は、それらのガスとHを混合したものが用いられる。光電変換ユニットにおけるp型又はn型層を形成するためのドーパントガスとしては、B又はPH等が好ましく用いられる。 In the hybrid thin film solar cell shown in FIG. 3, the crystalline photoelectric conversion unit 4 is formed on the amorphous photoelectric conversion unit 3. The crystalline photoelectric conversion unit 4 includes a crystalline p-type silicon layer 41, a crystalline i-type silicon photoelectric conversion layer 42, and a crystalline n-type silicon layer 43. A high frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 (hereinafter, both units are simply referred to as “photoelectric conversion unit”). As conditions for forming the photoelectric conversion unit, the substrate temperature is 100 ° C. or higher and 250 ° C. or lower (however, the amorphous p-type silicon carbide layer 31 is 180 ° C. or lower), the pressure is 30 Pa or higher and 1500 Pa or lower, and the high frequency power density is 0.01 W / cm. 2 or more and 0.5 W / cm 2 or less are preferably used. As a raw material gas used for forming the photoelectric conversion unit, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is used. As a dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit, B 2 H 6 or PH 3 is preferably used.
 図2に示すn型シリコン系界面層33上又は図3に示すn型シリコン系界面層43上には、裏面電極5が形成される。裏面電極5は、透明反射層51と、裏面反射層52とから構成されている。透明反射層51には、ZnO、ITO等の金属酸化物を用いることが好ましい。裏面反射層52には、Ag、Al又はそれらの合金を用いることが好ましい。 The back electrode 5 is formed on the n-type silicon interface layer 33 shown in FIG. 2 or on the n-type silicon interface layer 43 shown in FIG. The back electrode 5 includes a transparent reflective layer 51 and a back reflective layer 52. The transparent reflective layer 51 is preferably made of a metal oxide such as ZnO or ITO. For the back reflective layer 52, it is preferable to use Ag, Al, or an alloy thereof.
 裏面電極5の形成においては、スパッタリング、蒸着等の方法が好ましく用いられる。裏面電極5は、通常、0.5μm以上5μm以下、好ましくは1μm以上3μm以下の厚さとされる。裏面電極5の形成後、非晶質p型シリコンカーバイド層31の形成温度以上の雰囲気温度で大気圧近傍下に加熱することにより、太陽電池が完成する。加熱雰囲気に用いられる気体としては、大気、窒素、窒素と酸素の混合物等が好ましく用いられる。また、大気圧近傍とは概ね0.5気圧以上1.5気圧以下の範囲を示す。 In forming the back electrode 5, a method such as sputtering or vapor deposition is preferably used. The back electrode 5 has a thickness of usually 0.5 μm to 5 μm, preferably 1 μm to 3 μm. After the back surface electrode 5 is formed, the solar cell is completed by heating to near atmospheric pressure at an atmospheric temperature equal to or higher than the formation temperature of the amorphous p-type silicon carbide layer 31. As the gas used in the heating atmosphere, air, nitrogen, a mixture of nitrogen and oxygen, or the like is preferably used. Moreover, the vicinity of atmospheric pressure generally indicates a range of 0.5 atm or more and 1.5 atm or less.
 以上説明したように、本実施の形態に係る薄膜太陽電池の製造方法によれば、透明導電膜積層体2を電極としたシリコン系薄膜太陽電池を提供することができる。また、本実施の形態に係る薄膜太陽電池の製造方法では、透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、酸化インジウム系透明導電膜を保護するための酸化亜鉛系透明導電膜(II)、次いで凹凸性に優れた酸化亜鉛系透明導電膜(III)が順次形成された三層積層構造を有する透明導電膜積層体とすることにより、より低抵抗の、薄膜太陽電池の表面透明電極用の透明導電膜を得ることができる。さらに、透明導電膜積層体は、従来の熱CVD法による透明導電膜と比べて安価に提供することができる。本実施の形態に係る薄膜太陽電池の製造方法は、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため、工業的に極めて有用である。 As described above, according to the method for manufacturing a thin-film solar cell according to the present embodiment, it is possible to provide a silicon-based thin-film solar cell using the transparent conductive film laminate 2 as an electrode. In the method for manufacturing a thin-film solar cell according to the present embodiment, the indium oxide-based transparent conductive film (I) formed on the light-transmitting substrate is used as a base, and the indium oxide-based transparent conductive film is protected thereon. By forming a transparent conductive film laminate having a three-layer laminated structure in which a zinc oxide-based transparent conductive film (II) and then a zinc oxide-based transparent conductive film (III) excellent in unevenness are successively formed, A low-resistance transparent conductive film for a surface transparent electrode of a thin film solar cell can be obtained. Furthermore, the transparent conductive film laminate can be provided at a lower cost than a transparent conductive film formed by a conventional thermal CVD method. The method for manufacturing a thin-film solar cell according to the present embodiment is extremely useful industrially because a highly efficient silicon-based thin-film solar cell can be provided at a low cost by a simple process.
 なお、図3にはハイブリッド薄膜太陽電池の構造を示しているが、光電変換ユニットは必ずしも2つである必要はなく、非晶質又は結晶質のシングル構造、3層以上の積層型太陽電池構造であってもよい。 FIG. 3 shows the structure of the hybrid thin film solar cell. However, the number of photoelectric conversion units is not necessarily two, but an amorphous or crystalline single structure, a stacked solar cell structure having three or more layers. It may be.
 以下、本発明に係る三層積層構造の透明導電膜について、実施例を比較例と対比しながら説明する。なお、本発明は、この実施例によって限定されるものではない。 Hereinafter, examples of the transparent conductive film having a three-layer structure according to the present invention will be described in comparison with comparative examples. In addition, this invention is not limited by this Example.
 [評価]
 (1)膜厚は、以下の手順で測定した。成膜前に基板の一部を予め油性マジックインクを塗布しておき、成膜後にエタノールでマジックをふき取り、膜の無い部分を形成し、膜の有る部分と無い部分の段差を、接触式表面形状測定器(KLA Tencor社製 Alpha-StepIQ)で測定して求めた。
[Evaluation]
(1) The film thickness was measured by the following procedure. Before forming a film, apply a part of the substrate with oil-based magic ink, wipe the magic with ethanol after film formation, and form a film-free part. It was determined by measuring with a shape measuring instrument (Alpha-Step IQ manufactured by KLA Tencor).
 (2)透明導電膜の作製に用いたターゲットは、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析した。 (2) The target used for the production of the transparent conductive film was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000).
 (3)透明導電性薄膜の抵抗値は、抵抗率計ロレスタEP(ダイアインスツルメンツ社製MCP-T360型)による四探針法で測定した。 (3) The resistance value of the transparent conductive thin film was measured by a four-probe method using a resistivity meter Loresta EP (Dia Instruments MCP-T360 type).
 (4)透明導電膜積層体の全光線光透過率及び平行線透過率、並びに全光線反射率及び平行光反射率を分光光度計(日立製作所社製、U-4000)で測定した。 (4) The total light transmittance and parallel line transmittance, and the total light reflectance and parallel light reflectance of the transparent conductive film laminate were measured with a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.).
 (5)膜のヘイズ率は、JIS規格K7136に基づいてヘイズメーター(村上色彩技術研究所社製HM-150)で評価した。また、膜の表面粗さ(Ra)は、原子間力顕微鏡(デジタルインスツルメンツ社製、NS-III、D5000システム)を用いて5μm×5μmの領域を測定した。 (5) The haze ratio of the film was evaluated with a haze meter (HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd.) based on JIS standard K7136. The surface roughness (Ra) of the film was measured in an area of 5 μm × 5 μm using an atomic force microscope (manufactured by Digital Instruments, NS-III, D5000 system).
 (6)透明導電膜積層体の耐水素還元性は、500℃、水素雰囲気中において熱処理を施した前後で、透明導電膜積層体の透過率について変化を調査することにより評価した。なお、ここでの透過率は、波長300~1200nmにおける平均透過率とした。 (6) The hydrogen reduction resistance of the transparent conductive film laminate was evaluated by investigating changes in the transmittance of the transparent conductive film laminate before and after heat treatment in a hydrogen atmosphere at 500 ° C. Here, the transmittance was an average transmittance at a wavelength of 300 to 1200 nm.
 (7)酸化亜鉛系透明導電膜(II)の配向性は、X線回折測定(PANalytical社製、XPert Pro MPD)による極点図形の評価を行い、膜の結晶におけるc軸が、基板の垂直方向に対して何度傾斜しているか評価した。 (7) The orientation of the zinc oxide-based transparent conductive film (II) is evaluated by the pole figure by X-ray diffraction measurement (manufactured by PANalytical, XPPro Pro MPD), and the c-axis in the film crystal is perpendicular to the substrate. It was evaluated how many times it was inclined against.
 [実施例1] GAZO/GAZO/ITO
 以下の手順で、錫を含有する酸化インジウム系透明導電膜(I)の上に特徴の違う二種の酸化亜鉛系透明導電膜(II)、(III)を形成した構造の表面凹凸の大きな透明導電膜積層体をスパッタリング法で作製した。
[Example 1] GAZO / GAZO / ITO
Transparent structure with large surface irregularities in the structure in which two types of zinc oxide-based transparent conductive films (II) and (III) having different characteristics are formed on the tin-containing indium oxide-based transparent conductive film (I) by the following procedure. A conductive film laminate was produced by a sputtering method.
 [実施例1:酸化インジウム系透明導電膜(I)の作製]
 最初に、表1に示す条件で下地となる酸化インジウム系透明導電膜(I)の成膜を行った。下地の酸化インジウム系透明導電膜の作製に用いたターゲット(住友金属鉱山株式会社製)の組成をICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Sn/(In+Sn)で5.30原子%以下であった。この結果を表2に示す。また、ターゲットの純度は99.999%であり、大きさは6インチ(Φ)×5mm(厚さ)であった。
[Example 1: Preparation of indium oxide-based transparent conductive film (I)]
First, an indium oxide-based transparent conductive film (I) serving as a base was formed under the conditions shown in Table 1. When the composition of the target (manufactured by Sumitomo Metal Mining Co., Ltd.) used for the production of the underlying indium oxide-based transparent conductive film was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000), Sn / (In + Sn) was 5 .30 atomic% or less. The results are shown in Table 2. Moreover, the purity of the target was 99.999%, and the size was 6 inches (Φ) × 5 mm (thickness).
 このスパッタリングターゲットを、直流マグネトロンスパッタリング装置(トッキ社製、SPF503K)の強磁性体ターゲット用カソード(ターゲット表面上から1cm離れた位置での水平磁場強度が、最大で約80kA/m(1kG))に取り付け、該スパッタリングターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。スパッタリングターゲットと基板との距離を50mmとした。 This sputtering target is applied to a cathode for a ferromagnetic target of a DC magnetron sputtering apparatus (SPF503K manufactured by Tokki Co., Ltd.) (maximum horizontal magnetic field strength at a position 1 cm away from the target surface is about 80 kA / m (1 kG)). A Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposite surface of the sputtering target. The average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%. The distance between the sputtering target and the substrate was 50 mm.
 チャンバ内の真空度が、2×10-4Pa以下に達した時点で、6vol.%のOガスを混合したArガスをチャンバ内に導入して、ガス圧0.6Paとし、基板を400℃まで加熱してから、直流投入電力300W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=300W÷181cm=1.660W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚300nmの酸化インジウム系透明導電膜を基板上に形成した。 When the degree of vacuum in the chamber reaches 2 × 10 −4 Pa or less, 6 vol. Ar gas mixed with 2 % O 2 gas was introduced into the chamber to a gas pressure of 0.6 Pa, the substrate was heated to 400 ° C., and then DC input power 300 W (target input power density = DC input power) ÷ Target surface area = 300 W ÷ 181 cm 2 = 1.660 W / cm 2 ) was introduced between the target and the substrate to generate DC plasma. After pre-sputtering for 10 minutes to clean the target surface, sputtering film formation is performed while the substrate is stationary immediately above the center of the target, and a 300 nm-thick indium oxide transparent conductive film is formed on the substrate. did.
 [実施例1:酸化亜鉛系透明導電膜(II)の作製]
 次に、表1に示す条件で酸化インジウム系透明導電膜(I)の上に、アルミニウムとガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、酸化亜鉛系透明導電膜(II)を形成した。ターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Al/(Zn+Al)で0.30原子%であり、Ga/(Zn+Ga)で0.30原子%であった。表2に測定結果を示す。何れのターゲットとも純度は、99.999%であり、ターゲットの大きさは、6インチ(Φ)×5mm(厚さ)であった。
[Example 1: Preparation of zinc oxide-based transparent conductive film (II)]
Next, on the indium oxide-based transparent conductive film (I) under the conditions shown in Table 1, using a zinc oxide-based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing aluminum and gallium as additive elements, A zinc oxide-based transparent conductive film (II) was formed. The composition of the target was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). As a result, Al / (Zn + Al) was 0.30 atomic% and Ga / (Zn + Ga) was 0.30 atomic%. It was. Table 2 shows the measurement results. The purity of each target was 99.999%, and the target size was 6 inches (Φ) × 5 mm (thickness).
 透明導電膜(II)の成膜は、チャンバ内を真空引きし、その真空度が2×10-4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧0.3Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm=2.210W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚150nmの酸化亜鉛系透明導電膜(II)を形成し、透明導電膜積層体を得た。 In forming the transparent conductive film (II), the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 × 10 −4 Pa or less, Ar gas having a purity of 99.9999 mass% is introduced into the chamber. The gas pressure was 0.3 Pa. The substrate temperature was set to 400 ° C., and DC input power of 400 W (input power density to target = DC input power ÷ target surface area = 400 W ÷ 181 cm 2 = 2.210 W / cm 2 ) was input between the target and the substrate, Plasma was generated. After pre-sputtering for 10 minutes to clean the target surface, sputtering film formation was carried out with the substrate still right above the center of the target, forming a 150 nm-thick zinc oxide transparent conductive film (II) Then, a transparent conductive film laminate was obtained.
 [実施例1:酸化亜鉛系透明導電膜(III)の作製]
 最後に、表1に示す条件で酸化亜鉛系透明導電膜(II)上に、アルミニウムとガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Al/(Zn+Al)で0.30原子%であり、Ga/(Zn+Ga)で0.30原子%であった(表2)。何れのターゲットとも純度は、99.999%であり、ターゲットの大きさは、6インチ(Φ)×5mm(厚さ)であった。
[Example 1: Preparation of zinc oxide-based transparent conductive film (III)]
Finally, on the zinc oxide-based transparent conductive film (II) under the conditions shown in Table 1, using a zinc oxide-based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing aluminum and gallium as additive elements, the surface A zinc oxide-based transparent conductive film (III) having large irregularities was formed. The composition of the target was 0.30 atomic% for Al / (Zn + Al) and 0.30 atomic% for Ga / (Zn + Ga), as in the zinc oxide-based transparent conductive film (II) (Table 2). The purity of each target was 99.999%, and the target size was 6 inches (Φ) × 5 mm (thickness).
 酸化亜鉛系透明導電膜(III)の成膜は、チャンバ内を真空引きし、その真空度が2×10-4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧4.0Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm=2.210W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚700nmの酸化亜鉛系透明導電膜(III)を形成し、透明導電膜積層体を得た。 In forming the zinc oxide-based transparent conductive film (III), the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 × 10 −4 Pa or less, Ar gas having a purity of 99.9999 mass% is placed in the chamber. The gas pressure was 4.0 Pa. The substrate temperature was set to 400 ° C., and DC input power of 400 W (input power density to target = DC input power ÷ target surface area = 400 W ÷ 181 cm 2 = 2.210 W / cm 2 ) was input between the target and the substrate, Plasma was generated. After pre-sputtering for 10 minutes for cleaning the target surface, sputtering film formation was performed while the substrate was left still directly above the center of the target to form a 700 nm-thick zinc oxide transparent conductive film (III) Then, a transparent conductive film laminate was obtained.
 得られた透明導電性薄膜積層体の膜厚、及び抵抗値を、前記(1)、(3)の方法で測定した。また、透明導電性薄膜積層体の全光線光透過率及び平行線透過率、並びに全光線反射率及び平行光反射率、膜のヘイズ率及び表面粗さRaを前記(4)、(5)の方法で測定した。また、得られた透明導電膜積層体の耐水素還元性評価として、前記(6)の方法で水素雰囲気中での加熱処理前後で、平均透過率(300nm以上1200nm以下)の測定を実施した。また、酸化亜鉛系透明導電膜(II)の断面については、前記(7)の方法でX線回折測定によるc軸傾斜の評価を行った。 The film thickness and resistance value of the obtained transparent conductive thin film laminate were measured by the methods (1) and (3). Further, the total light transmittance and parallel line transmittance of the transparent conductive thin film laminate, the total light reflectance and parallel light reflectance, the haze ratio of the film, and the surface roughness Ra of the above (4) and (5) Measured by the method. In addition, as an evaluation of hydrogen reduction resistance of the obtained transparent conductive film laminate, an average transmittance (300 nm to 1200 nm) was measured before and after heat treatment in a hydrogen atmosphere by the method (6). Moreover, about the cross section of the zinc oxide type transparent conductive film (II), c-axis inclination evaluation by X-ray diffraction measurement was performed by the method of said (7).
 表3に、得られた透明導電膜積層体の特性評価結果を示す。透明導電膜積層体の膜厚は1150nmであった。原子間力顕微鏡で測定した表面粗さRa値は39.1nmと高い値を示し、ヘイズ率も10.3%と高かった。また、表面抵抗は12.0Ω/□であり、高い導電性を示した。また、酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して5°であった。さらに、得られた透明導電膜積層体の透過率は0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。 Table 3 shows the characteristic evaluation results of the obtained transparent conductive film laminate. The film thickness of the transparent conductive film laminate was 1150 nm. The surface roughness Ra value measured with an atomic force microscope was as high as 39.1 nm, and the haze ratio was as high as 10.3%. The surface resistance was 12.0Ω / □, indicating high conductivity. The c-axis tilt angle of the hexagonal crystal of the zinc oxide-based transparent conductive film (II) was 5 ° with respect to the direction perpendicular to the translucent substrate surface. Furthermore, the transmittance | permeability of the obtained transparent conductive film laminated body was 0%, and the fall was not seen at all before and after heat processing in hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
 また、図4に透明導電性薄膜膜の表面SEM写真及び図5に透明導電性薄膜膜の断面SEM写真を示す。図4に示す表面SEM写真より、結晶粒の大きい粗い表面が得られていることが分かる。また、図5に示す断面SEM写真より、酸化インジウム系透明導電膜(I)上の酸化亜鉛系透明導電膜(II)は、結晶粒が小さく緻密に形成されていることが分かる。 FIG. 4 shows a surface SEM photograph of the transparent conductive thin film, and FIG. 5 shows a cross-sectional SEM photograph of the transparent conductive thin film. From the surface SEM photograph shown in FIG. 4, it can be seen that a rough surface with large crystal grains is obtained. Moreover, it can be seen from the cross-sectional SEM photograph shown in FIG. 5 that the zinc oxide-based transparent conductive film (II) on the indium oxide-based transparent conductive film (I) has small crystal grains and is densely formed.
 [実施例2~5:GAZO/GAZO/ITO]
 実施例1に示した酸化インジウム系透明導電膜(I)、酸化亜鉛系透明導電膜(II)及び酸化亜鉛系透明導電膜(III)について、表1、2に示すようにそれぞれの膜厚を変えて、透明導電膜積層体の作製を実施した。その他の成膜条件は、実施例1と同様にして行った。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 2 to 5: GAZO / GAZO / ITO]
Regarding the indium oxide-based transparent conductive film (I), the zinc oxide-based transparent conductive film (II), and the zinc oxide-based transparent conductive film (III) shown in Example 1, the respective film thicknesses are set as shown in Tables 1 and 2. It changed and produced the transparent conductive film laminated body. Other film forming conditions were the same as in Example 1. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 表3に、実施例2~5の透明導電膜積層体の特性評価結果を示す。透明導電膜積層体の膜厚は、それぞれ950nm(実施例2)、2150nm(実施例3)、1100nm(実施例4)、2300nm(実施例5)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ35.5nm(実施例2)、47.1nm(実施例3)、36.0nm(実施例4)、48.5nm(実施例5)と高い値を示し、ヘイズ率も、それぞれ8.5%(実施例2)、13.1%(実施例3)、9.1%(実施例4)、14.2%(実施例5)と高かった。また、表面抵抗は、それぞれ12.6Ω/□(実施例2)、5.3Ω/□(実施例3)、11.0Ω/□(実施例4)、5.1Ω/□(実施例5)であり、高い導電性を示した。 Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 2 to 5. The film thicknesses of the transparent conductive film laminate were 950 nm (Example 2), 2150 nm (Example 3), 1100 nm (Example 4), and 2300 nm (Example 5), respectively. The surface roughness Ra values measured with an atomic force microscope were 35.5 nm (Example 2), 47.1 nm (Example 3), 36.0 nm (Example 4), and 48.5 nm (Example 5), respectively. And haze ratios of 8.5% (Example 2), 13.1% (Example 3), 9.1% (Example 4), and 14.2% (Example 5), respectively. It was high. The surface resistances were 12.6Ω / □ (Example 2), 5.3Ω / □ (Example 3), 11.0Ω / □ (Example 4), 5.1Ω / □ (Example 5), respectively. And showed high conductivity.
 また、実施例2~5の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対してそれぞれ8°(実施例2)、8°(実施例3)、4°(実施例4)、5°(実施例5)であった。さらに、実施例2~5の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。 In addition, the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Examples 2 to 5 are 8 ° (Example 2) and 8 respectively with respect to the direction perpendicular to the translucent substrate surface. ° (Example 3), 4 ° (Example 4), and 5 ° (Example 5). Further, the transmittances of the transparent conductive film laminates of Examples 2 to 5 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
 [実施例6~9:GAZO/GAZO/ITiO]
 実施例2~5における下地膜に用いた錫含有の酸化インジウム系透明導電膜(I)を、チタン含有の酸化インジウム系透明導電膜(ITiO)に変えて透明導電膜積層体を作製した。この際、下地の酸化インジウム系透明導電膜(I)は、表1に示す条件で作製した。
[Examples 6 to 9: GAZO / GAZO / ITO]
A transparent conductive film laminate was prepared by replacing the tin-containing indium oxide-based transparent conductive film (I) used for the base film in Examples 2 to 5 with a titanium-containing indium oxide-based transparent conductive film (ITO). At this time, the underlying indium oxide-based transparent conductive film (I) was produced under the conditions shown in Table 1.
 下地の酸化インジウム系透明導電膜(I)の作製に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Ti/(In+Ti)で0.50原子%以下であった。表2に測定結果を示す。また、ターゲットの純度は99.999%であり、大きさは6インチ(Φ)×5mm(厚さ)であった。 The composition of the target used for the preparation of the underlying indium oxide-based transparent conductive film (I) was 0.50 atomic% in terms of Ti / (In + Ti) when quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). It was the following. Table 2 shows the measurement results. Moreover, the purity of the target was 99.999%, and the size was 6 inches (Φ) × 5 mm (thickness).
 成膜は、実施例1で用いた装置で行い、カソードの種類も同じである。ターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。なお、スパッタリングターゲットと基板との距離を50mmとした。チャンバ内の真空度が、2×10-4Pa以下に達した時点で、6vol.%のOガスを混合したArガスをチャンバ内に導入して、ガス圧0.6Paとし、基板を400℃まで加熱してから、直流投入電力300W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=300W÷181cm=1.660W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚50nm及び500の酸化インジウム系透明導電膜を基板上に形成した。 Film formation is performed by the apparatus used in Example 1, and the type of cathode is the same. A Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposing surface of the target. The average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%. The distance between the sputtering target and the substrate was 50 mm. When the degree of vacuum in the chamber reaches 2 × 10 −4 Pa or less, 6 vol. Ar gas mixed with 2 % O 2 gas was introduced into the chamber to a gas pressure of 0.6 Pa, the substrate was heated to 400 ° C., and then DC input power 300 W (target input power density = DC input power) ÷ Target surface area = 300 W ÷ 181 cm 2 = 1.660 W / cm 2 ) was introduced between the target and the substrate to generate DC plasma. After performing pre-sputtering for 10 minutes for cleaning the target surface, sputtering film formation was carried out while the substrate was kept still immediately above the center of the target, and an indium oxide-based transparent conductive film having a film thickness of 50 nm and 500 was formed on the substrate. Formed.
 次に、作製した下地膜(I)の上に、表1に示す実施例2~5と同様の条件にて酸化亜鉛系透明導電膜(II)及び(III)を形成し、透明導電膜積層体を得た。 Next, zinc oxide-based transparent conductive films (II) and (III) are formed on the prepared base film (I) under the same conditions as in Examples 2 to 5 shown in Table 1, and a transparent conductive film stack is formed. Got the body.
 表3に、実施例6~9の透明導電膜積層体の特性評価結果を示す。実施例6~9の透明導電膜(I)~(III)の組成は、ターゲットの組成とほぼ同じであった。また、実施例6~9の透明導電膜積層体の膜厚は、それぞれ950nm(実施例6)、2150nm(実施例7)、1100nm(実施例8)、2300nm(実施例9)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ36.3nm(実施例6)、49.0nm(実施例7)、38.1nm(実施例8)、49.6nm(実施例9)と高い値を示し、ヘイズ率も、それぞれ9.0%(実施例6)、14.5%(実施例7)、9.9%(実施例8)、15.0%(実施例9)と高かった。また、表面抵抗は、それぞれ12.1Ω/□(実施例6)、5.3Ω/□(実施例7)、9.8Ω/□(実施例8)、5.0Ω/□(実施例9)であり、高い導電性を示した。 Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 6 to 9. The compositions of the transparent conductive films (I) to (III) of Examples 6 to 9 were almost the same as the composition of the target. The film thicknesses of the transparent conductive film laminates of Examples 6 to 9 were 950 nm (Example 6), 2150 nm (Example 7), 1100 nm (Example 8), and 2300 nm (Example 9), respectively. The surface roughness Ra values measured with an atomic force microscope were 36.3 nm (Example 6), 49.0 nm (Example 7), 38.1 nm (Example 8), and 49.6 nm (Example 9), respectively. And haze ratios of 9.0% (Example 6), 14.5% (Example 7), 9.9% (Example 8), and 15.0% (Example 9), respectively. It was high. The surface resistances were 12.1Ω / □ (Example 6), 5.3Ω / □ (Example 7), 9.8Ω / □ (Example 8), 5.0Ω / □ (Example 9), respectively. And showed high conductivity.
 また、実施例6~9の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対してそれぞれ10°(実施例6)、8°(実施例7)、2°(実施例8)、4°(実施例9)であった。さらに、実施例6~9の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。 Further, the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Examples 6 to 9 were 10 ° (Example 6) and 8 respectively with respect to the direction perpendicular to the translucent substrate surface. ° (Example 7), 2 ° (Example 8) and 4 ° (Example 9). Further, the transmittances of the transparent conductive film laminates of Examples 6 to 9 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
 [実施例10~13:AZO/AZO/ITO]
 実施例2~5における酸化インジウム系透明導電膜(I)を下地として、その上に表1の条件で酸化亜鉛系透明導電膜(II)及び(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 10 to 13: AZO / AZO / ITO]
Using the indium oxide-based transparent conductive film (I) in Examples 2 to 5 as a base, the zinc oxide-based transparent conductive films (II) and (III) are formed on the base film under the conditions shown in Table 1, and the transparent conductive film laminate is formed. Produced. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 [実施例10~13:酸化亜鉛系透明導電膜(II)の作製]
 酸化亜鉛系透明導電膜(II)の成膜に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Al/(Zn+Al)で0.30原子%であった。表2に測定結果を示す。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
[Examples 10 to 13: Production of zinc oxide-based transparent conductive film (II)]
The composition of the target used for forming the zinc oxide-based transparent conductive film (II) was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). As a result, Al / (Zn + Al) was 0.30 atomic%. there were. Table 2 shows the measurement results. The purity of each target was 99.999%, and the size of the target was 6 inches (Φ) × 5 mm (thickness).
 酸化亜鉛系透明導電膜(II)の成膜は、実施例1で用いた装置で行い、カソードの種類も同じである。ターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。スパッタリングターゲットと基板との距離を50mmとした。 The film formation of the zinc oxide-based transparent conductive film (II) is performed by the apparatus used in Example 1, and the type of the cathode is the same. A Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposing surface of the target. The average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%. The distance between the sputtering target and the substrate was 50 mm.
 次に、チャンバ内を真空引きし、その真空度が、2×10-4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧0.5Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm=2.210W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタリングを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、表1に示すようにそれぞれの膜厚を変えて、酸化亜鉛系透明導電膜(II)を形成し、透明導電膜積層体を得た。 Next, the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 × 10 −4 Pa or less, Ar gas having a purity of 99.9999 mass% is introduced into the chamber, and the gas pressure is 0.5 Pa. It was. The substrate temperature was set to 400 ° C., and DC input power of 400 W (input power density to target = DC input power ÷ target surface area = 400 W ÷ 181 cm 2 = 2.210 W / cm 2 ) was input between the target and the substrate, Plasma was generated. After pre-sputtering for 10 minutes for cleaning the target surface, sputtering film formation was carried out while the substrate was still directly above the center of the target, and each film thickness was changed as shown in Table 1 to oxidize. A zinc-based transparent conductive film (II) was formed to obtain a transparent conductive film laminate.
 [実施例10~13:酸化亜鉛系透明導電膜(III)の作製]
 最後に、酸化亜鉛系透明導電膜上に、アルミニウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Al/(Zn+Al)で0.30原子%であった(表2)。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)である。
[Examples 10 to 13: Production of zinc oxide-based transparent conductive film (III)]
Finally, on the zinc oxide-based transparent conductive film, a zinc oxide-based transparent conductive film (III) having large surface irregularities is obtained using a zinc oxide-based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing aluminum as an additive element. ) Was formed. The composition of the target was 0.30 atomic% in Al / (Zn + Al) as in the case of the zinc oxide-based transparent conductive film (II) (Table 2). The purity of each target is 99.999%, and the size of the target is 6 inches (Φ) × 5 mm (thickness).
 酸化亜鉛系透明導電膜(III)の成膜は、チャンバ内を真空引きし、その真空度が2×10-4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧4.0Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm=2.210W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、表1に示すようにそれぞれの膜厚を変えて、酸化亜鉛系透明導電膜(III)を形成し、透明導電膜積層体を得た。 In forming the zinc oxide-based transparent conductive film (III), the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 × 10 −4 Pa or less, Ar gas having a purity of 99.9999 mass% is placed in the chamber. The gas pressure was 4.0 Pa. The substrate temperature was set to 400 ° C., and DC input power of 400 W (input power density to target = DC input power ÷ target surface area = 400 W ÷ 181 cm 2 = 2.210 W / cm 2 ) was input between the target and the substrate, Plasma was generated. After pre-sputtering for 10 minutes for cleaning the target surface, sputtering film formation was carried out while the substrate was still directly above the target center, and each film thickness was changed as shown in Table 1 to oxidize the target surface. A zinc-based transparent conductive film (III) was formed to obtain a transparent conductive film laminate.
 表3に、実施例10~13の透明導電膜積層体の特性評価結果を示す。実施例10~13の透明導電膜積層体の膜厚は、それぞれ950nm(実施例10)、2150nm(実施例11)、1100nm(実施例12)、2300nm(実施例13)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ35.3nm(実施例10)、46.3nm(実施例11)、35.4nm(実施例12)、48.5nm(実施例13)と高い値を示し、ヘイズ率も、それぞれ8.5%(実施例10)、12.8%(実施例11)、8.2%(実施例12)、14.0%(実施例13)と高かった。また、表面抵抗は、それぞれ15.3Ω/□(実施例10)、7.0Ω/□(実施例11)、11.7Ω/□(実施例12)、7.0Ω/□(実施例13)であり、高い導電性を示した。 Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 10 to 13. The film thicknesses of the transparent conductive film laminates of Examples 10 to 13 were 950 nm (Example 10), 2150 nm (Example 11), 1100 nm (Example 12), and 2300 nm (Example 13), respectively. The surface roughness Ra values measured with an atomic force microscope are 35.3 nm (Example 10), 46.3 nm (Example 11), 35.4 nm (Example 12), and 48.5 nm (Example 13), respectively. And haze ratios of 8.5% (Example 10), 12.8% (Example 11), 8.2% (Example 12), and 14.0% (Example 13), respectively. It was high. The surface resistances were 15.3Ω / □ (Example 10), 7.0Ω / □ (Example 11), 11.7Ω / □ (Example 12), 7.0Ω / □ (Example 13), respectively. And showed high conductivity.
 また、実施例10~13の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ9°(実施例10)、7°(実施例11)、5°(実施例12)、3°(実施例13)であった。さらに、実施例10~13の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。 Further, the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive film (II) of Examples 10 to 13 were 9 ° (Example 10) with respect to the direction perpendicular to the translucent substrate surface, respectively. 7 ° (Example 11), 5 ° (Example 12), and 3 ° (Example 13). Further, the transmittances of the transparent conductive film laminates of Examples 10 to 13 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
 [実施例14~17:AZO/AZO/ITiO]
 表1、2に示すように、酸化インジウム系透明導電膜(I)として、実施例6~9における、チタンを含む酸化インジウム系透明導電膜(ITiO)を下地とし、その上に、酸化亜鉛系透明導電膜(II)、(III)として、実施例10~13における、アルミニウムを含む酸化亜鉛系透明導電膜(AZO)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 14 to 17: AZO / AZO / ITO]
As shown in Tables 1 and 2, as the indium oxide-based transparent conductive film (I), the indium oxide-based transparent conductive film (ITO) containing titanium in Examples 6 to 9 is used as a base, and a zinc oxide-based transparent conductive film is formed thereon. As transparent conductive films (II) and (III), a zinc oxide-based transparent conductive film (AZO) containing aluminum in Examples 10 to 13 was formed to produce a transparent conductive film laminate. The characteristics evaluation of the produced transparent conductive film laminated body was implemented by the same item and method as Example 1.
 表3に、実施例14~17の透明導電膜積層体の特性評価結果を示す。実施例14~17の透明導電膜積層体の膜厚は、それぞれ950nm(実施例14)、2150nm(実施例15)、1100nm(実施例16)、2300nm(実施例17)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ36.0nm(実施例14)、47.0nm(実施例15)、37.0nm(実施例16)、48.4nm(実施例17)と高い値を示し、ヘイズ率も、それぞれ8.8%(実施例14)、12.7%(実施例15)、9.1%(実施例16)、14.0%(実施例17)と高かった。また、表面抵抗は、それぞれ14.9Ω/□(実施例14)、6.7Ω/□(実施例15)、11.3Ω/□(実施例16)、6.9Ω/□(実施例17)であり、高い導電性を示した。 Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 14 to 17. The film thicknesses of the transparent conductive film laminates of Examples 14 to 17 were 950 nm (Example 14), 2150 nm (Example 15), 1100 nm (Example 16), and 2300 nm (Example 17), respectively. The surface roughness Ra values measured with an atomic force microscope were 36.0 nm (Example 14), 47.0 nm (Example 15), 37.0 nm (Example 16), and 48.4 nm (Example 17), respectively. And haze ratios of 8.8% (Example 14), 12.7% (Example 15), 9.1% (Example 16), and 14.0% (Example 17), respectively. It was high. The surface resistances were 14.9Ω / □ (Example 14), 6.7Ω / □ (Example 15), 11.3Ω / □ (Example 16), and 6.9Ω / □ (Example 17), respectively. And showed high conductivity.
 また、実施例14~17の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ10°(実施例14)、10°(実施例15)、5°(実施例16)、3°(実施例17)であった。さらに、実施例14~17の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。 Further, the c-axis tilt angles of the hexagonal crystals of the zinc oxide based transparent conductive films (II) of Examples 14 to 17 were 10 ° with respect to the direction perpendicular to the translucent substrate surface (Example 14), They were 10 ° (Example 15), 5 ° (Example 16), and 3 ° (Example 17). Furthermore, the transmittances of the transparent conductive film laminates of Examples 14 to 17 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
 [実施例18~21:GZO/GZO/ITO]
 表1、2に示すように酸化インジウム系透明導電膜(I)として、実施例2~5におけるITO膜を下地とし、その上にガリウムを含む酸化亜鉛系透明導電膜(II)、(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 18 to 21: GZO / GZO / ITO]
As shown in Tables 1 and 2, as the indium oxide-based transparent conductive film (I), the zinc oxide-based transparent conductive film (II), (III) having the ITO film in Examples 2 to 5 as a base and containing gallium thereon. To form a transparent conductive film laminate. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 [実施例18~21:酸化亜鉛系透明導電膜(II)の作製]
 酸化亜鉛系透明導電膜(II)の成膜に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Ga/(Zn+Ga)で0.87原子%であった。表2に測定結果を示す。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
[Examples 18 to 21: Production of zinc oxide-based transparent conductive film (II)]
The composition of the target used for forming the zinc oxide-based transparent conductive film (II) was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). As a result, Ga / (Zn + Ga) was 0.87 atomic%. there were. Table 2 shows the measurement results. The purity of each target was 99.999%, and the size of the target was 6 inches (Φ) × 5 mm (thickness).
 酸化亜鉛系透明導電膜(II)の成膜は、実施例1で用いた装置で行い、カソードの種類も同じである。ターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。スパッタリングターゲットと基板との距離を50mmとした。 The film formation of the zinc oxide-based transparent conductive film (II) is performed by the apparatus used in Example 1, and the type of the cathode is the same. A Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposing surface of the target. The average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%. The distance between the sputtering target and the substrate was 50 mm.
 次に、チャンバ内を真空引きし、その真空度が、2×10-4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧0.5Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm=2.210W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタリングを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、表1に示すようにそれぞれの膜厚を変えて、酸化亜鉛系透明導電膜(II)を形成し、透明導電膜積層体を得た。 Next, the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 × 10 −4 Pa or less, Ar gas having a purity of 99.9999 mass% is introduced into the chamber, and the gas pressure is 0.5 Pa. It was. The substrate temperature was set to 400 ° C., and DC input power of 400 W (input power density to target = DC input power ÷ target surface area = 400 W ÷ 181 cm 2 = 2.210 W / cm 2 ) was input between the target and the substrate, Plasma was generated. After pre-sputtering for 10 minutes for cleaning the target surface, sputtering film formation was carried out while the substrate was still directly above the center of the target, and each film thickness was changed as shown in Table 1 to oxidize. A zinc-based transparent conductive film (II) was formed to obtain a transparent conductive film laminate.
 [実施例18~21:酸化亜鉛系透明導電膜(III)の作製]
 最後に、酸化亜鉛系透明導電膜(II)の上に、ガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Ga/(Zn+Ga)で0.87原子%であった。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
[Examples 18 to 21: Production of zinc oxide-based transparent conductive film (III)]
Finally, on the zinc oxide-based transparent conductive film (II), using a zinc oxide-based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing gallium as an additive element, a zinc oxide-based transparent with large surface irregularities A conductive film (III) was formed. The composition of the target was 0.87 atomic% in terms of Ga / (Zn + Ga), similar to the zinc oxide-based transparent conductive film (II). The purity of each target was 99.999%, and the size of the target was 6 inches (Φ) × 5 mm (thickness).
 酸化亜鉛系透明導電膜(III)の成膜は、チャンバ内を真空引きし、その真空度が2×10-4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧4.0Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm=2.210W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、表1に示すようにそれぞれの膜厚を変えて、酸化亜鉛系透明導電膜(III)を形成し、透明導電膜積層体を得た。 In forming the zinc oxide-based transparent conductive film (III), the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 × 10 −4 Pa or less, Ar gas having a purity of 99.9999 mass% is placed in the chamber. The gas pressure was 4.0 Pa. The substrate temperature was set to 400 ° C., and DC input power of 400 W (input power density to target = DC input power ÷ target surface area = 400 W ÷ 181 cm 2 = 2.210 W / cm 2 ) was input between the target and the substrate, Plasma was generated. After pre-sputtering for 10 minutes for cleaning the target surface, sputtering film formation was carried out while the substrate was still directly above the target center, and each film thickness was changed as shown in Table 1 to oxidize the target surface. A zinc-based transparent conductive film (III) was formed to obtain a transparent conductive film laminate.
 表3に、実施例18~21の透明導電膜積層体の特性評価結果を示す。実施例18~21の透明導電膜積層体の膜厚は、それぞれ950nm(実施例18)、2150nm(実施例19)、1100nm(実施例20)、2300nm(実施例21)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ35.8nm(実施例18)、47.1nm(実施例19)、38.0nm(実施例20)、49.3nm(実施例21)と高い値を示し、ヘイズ率も、それぞれ9.0%(実施例18)、12.9%(実施例19)、10.0%(実施例20)、14.9%(実施例21)と高かった。また、表面抵抗は、それぞれ12.0Ω/□(実施例18)、5.7Ω/□(実施例19)、10.5Ω/□(実施例20)、5.1Ω/□(実施例21)であり、高い導電性を示した。 Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 18 to 21. The film thicknesses of the transparent conductive film laminates of Examples 18 to 21 were 950 nm (Example 18), 2150 nm (Example 19), 1100 nm (Example 20), and 2300 nm (Example 21), respectively. The surface roughness Ra values measured with an atomic force microscope were 35.8 nm (Example 18), 47.1 nm (Example 19), 38.0 nm (Example 20), and 49.3 nm (Example 21), respectively. And haze ratios of 9.0% (Example 18), 12.9% (Example 19), 10.0% (Example 20), and 14.9% (Example 21), respectively. It was high. The surface resistances were 12.0Ω / □ (Example 18), 5.7Ω / □ (Example 19), 10.5Ω / □ (Example 20), 5.1Ω / □ (Example 21), respectively. And showed high conductivity.
 また、実施例18~21の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ8°(実施例18)、9°(実施例19)、4°(実施例20)、4°(実施例21)であった。さらに、実施例18~21の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。 The c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Examples 18 to 21 were 8 ° with respect to the direction perpendicular to the translucent substrate surface (Example 18), They were 9 ° (Example 19), 4 ° (Example 20), and 4 ° (Example 21). Furthermore, the transmittances of the transparent conductive film laminates of Examples 18 to 21 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
 [実施例22~25:GZO/GZO/ITiO]
 表1、2に示すように酸化インジウム系透明導電膜(I)として、実施例6~9における、チタンを含むITiO膜を下地として、その上に、酸化亜鉛系透明導電膜(II)、(III)として、実施例18~21における、ガリウムを含むGZO膜を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 22 to 25: GZO / GZO / ITO]
As shown in Tables 1 and 2, as the indium oxide-based transparent conductive film (I), an ITiO film containing titanium in Examples 6 to 9 was used as a base, and a zinc oxide-based transparent conductive film (II), ( As III), a GZO film containing gallium in Examples 18 to 21 was formed to produce a transparent conductive film laminate. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 表3に、実施例22~25の透明導電膜積層体の特性評価結果を示す。実施例22~25の透明導電膜積層体の膜厚は、それぞれ950nm(実施例22)、2150nm(実施例23)、1100nm(実施例24)、2300nm(実施例25)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ36.9nm(実施例22)、49.1nm(実施例23)、38.5nm(実施例24)、51.0nm(実施例25)と高い値を示し、ヘイズ率も、それぞれ9.5%(実施例22)、14.0%(実施例23)、10.0%(実施例24)、16.2%(実施例25)と高かった。また、表面抵抗は、それぞれ11.4Ω/□(実施例22)、5.2Ω/□(実施例23)、10.2Ω/□(実施例24)、4.9Ω/□(実施例25)であり、高い導電性を示した。 Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 22 to 25. The film thicknesses of the transparent conductive film laminates of Examples 22 to 25 were 950 nm (Example 22), 2150 nm (Example 23), 1100 nm (Example 24), and 2300 nm (Example 25), respectively. The surface roughness Ra values measured with an atomic force microscope were 36.9 nm (Example 22), 49.1 nm (Example 23), 38.5 nm (Example 24), and 51.0 nm (Example 25), respectively. And haze ratios of 9.5% (Example 22), 14.0% (Example 23), 10.0% (Example 24), and 16.2% (Example 25), respectively. It was high. The surface resistances were 11.4Ω / □ (Example 22), 5.2Ω / □ (Example 23), 10.2Ω / □ (Example 24), 4.9Ω / □ (Example 25), respectively. And showed high conductivity.
 また、実施例22~25の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ9°(実施例22)、7°(実施例23)、3°(実施例24)、3°(実施例25)であった。さらに、実施例22~25の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。 The c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Examples 22 to 25 were 9 ° (Example 22) with respect to the direction perpendicular to the translucent substrate surface, respectively. 7 ° (Example 23), 3 ° (Example 24), and 3 ° (Example 25). Further, the transmittances of the transparent conductive film laminates of Examples 22 to 25 were all 0%, and no decrease was observed before and after the heat treatment in a hydrogen atmosphere. Therefore, it was confirmed that a transparent conductive film laminate having excellent hydrogen reduction resistance and a high haze ratio and a low resistance value can be obtained at high speed.
 [比較例1:GAZO/ITiO]
 表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
[Comparative Example 1: GAZO / ITO]
As shown in Tables 1 and 2, a transparent conductive film laminate in which a zinc oxide-based transparent conductive film (III) is formed on an indium oxide-based transparent conductive film (I) without inserting a zinc oxide-based transparent conductive film (II) A transparent conductive film laminate was produced in the same manner as in Example 6 except that. The characteristics evaluation of the produced transparent conductive film laminated body was implemented by the same item and method as Example 1.
 表3に、得られた透明導電膜積層体の特性評価結果を示す。得られた透明導電膜の膜厚は900nmであり、原子間力顕微鏡で測定した表面粗さRa値は36.0nmと高い値を示し、ヘイズ率も8.5%と高かった。しかし、得られた透明導電膜積層体の透過率は、水素雰囲気中での加熱処理を施すことにより、75.2%から35.7%まで大きく低下した。これは、表面の酸化亜鉛系透明導電膜(III)が非常に粗く、下地層である酸化インジウム系透明導電膜(I)の表面を完全に保護できておらず、酸化インジウム系透明導電膜中の酸素が水素によって解離されたためと考えられる。したがって、酸化亜鉛系透明導電膜(II)で酸化インジウム系透明導電膜(I)を保護していない場合、耐水素還元性が非常に低い透明導電膜積層体しか得られず、有用でないことが確認された。 Table 3 shows the characteristic evaluation results of the obtained transparent conductive film laminate. The film thickness of the obtained transparent conductive film was 900 nm, the surface roughness Ra value measured with an atomic force microscope was as high as 36.0 nm, and the haze ratio was as high as 8.5%. However, the transmittance of the obtained transparent conductive film laminate was greatly reduced from 75.2% to 35.7% by performing heat treatment in a hydrogen atmosphere. This is because the zinc oxide-based transparent conductive film (III) on the surface is very rough and the surface of the indium oxide-based transparent conductive film (I), which is the underlying layer, is not completely protected. This is thought to be because the oxygen was dissociated by hydrogen. Accordingly, when the indium oxide-based transparent conductive film (I) is not protected by the zinc oxide-based transparent conductive film (II), only a transparent conductive film laminate having extremely low hydrogen reduction resistance can be obtained, which is not useful. confirmed.
 [比較例2:GAZO/ITiO]
 表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例14と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
[Comparative Example 2: GAZO / ITO]
As shown in Tables 1 and 2, a transparent conductive film laminate in which a zinc oxide-based transparent conductive film (III) is formed on an indium oxide-based transparent conductive film (I) without inserting a zinc oxide-based transparent conductive film (II) A transparent conductive film laminate was produced in the same manner as in Example 14 except that. The characteristics evaluation of the produced transparent conductive film laminated body was implemented by the same item and method as Example 1.
 表3に、得られた透明導電膜積層体の特性評価結果を示す。得られた透明導電膜の膜厚は900nmであり、原子間力顕微鏡で測定した表面粗さRa値は35.0nmと高い値を示し、ヘイズ率も8.2%と高かった。しかし、得られた透明導電膜積層体の透過率は、水素雰囲気中での加熱処理を施すことにより、76.5%から40.3%まで大きく低下した。これは比較例1と同様に、表面の酸化亜鉛系透明導電膜(III)の保護性が不十分であり、酸化インジウム系透明導電膜中の酸素が解離されたためと考えられる。したがって比較例1と同様に、酸化亜鉛系透明導電膜(II)で酸化インジウム系透明導電膜(I)を保護していない場合、耐水素還元性が非常に低く、太陽電池の電極として有用ではないことが確認された。 Table 3 shows the characteristic evaluation results of the obtained transparent conductive film laminate. The film thickness of the obtained transparent conductive film was 900 nm, the surface roughness Ra value measured with an atomic force microscope was as high as 35.0 nm, and the haze ratio was as high as 8.2%. However, the transmittance of the obtained transparent conductive film laminate was greatly reduced from 76.5% to 40.3% by performing heat treatment in a hydrogen atmosphere. This is presumably because, as in Comparative Example 1, the surface protection of the zinc oxide-based transparent conductive film (III) was insufficient, and oxygen in the indium oxide-based transparent conductive film was dissociated. Therefore, as in Comparative Example 1, when the indium oxide-based transparent conductive film (I) is not protected by the zinc oxide-based transparent conductive film (II), the hydrogen reduction resistance is very low and useful as an electrode of a solar cell. Not confirmed.
 [比較例3:GAZO/ITiO]
 表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例22と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
[Comparative Example 3: GAZO / ITO]
As shown in Tables 1 and 2, a transparent conductive film laminate in which a zinc oxide-based transparent conductive film (III) is formed on an indium oxide-based transparent conductive film (I) without inserting a zinc oxide-based transparent conductive film (II) A transparent conductive film laminate was produced in the same manner as in Example 22 except that. The characteristics evaluation of the produced transparent conductive film laminated body was implemented by the same item and method as Example 1.
 表3に、得られた透明導電膜積層体の特性評価結果を示す。得られた透明導電膜の膜厚は900nmであり、原子間力顕微鏡で測定した表面粗さRa値は35.5nmと高い値を示し、ヘイズ率も8.8%と高かった。しかし、得られた透明導電膜積層体の透過率は、水素雰囲気中での加熱処理を施すことにより、71.3%から32.1%まで大きく低下した。これは比較例1と同様に、表面の酸化亜鉛系透明導電膜(III)の保護性が不十分であり、酸化インジウム系透明導電膜中の酸素が解離されたためと考えられる。したがって比較例1と同様に、酸化亜鉛系透明導電膜(II)で酸化インジウム系透明導電膜(I)を保護していない場合、耐水素還元性が非常に低く、太陽電池の電極として有用ではないことが確認された。 Table 3 shows the characteristic evaluation results of the obtained transparent conductive film laminate. The film thickness of the obtained transparent conductive film was 900 nm, the surface roughness Ra value measured with an atomic force microscope was as high as 35.5 nm, and the haze ratio was as high as 8.8%. However, the transmittance of the obtained transparent conductive film laminate was greatly reduced from 71.3% to 32.1% by performing heat treatment in a hydrogen atmosphere. This is presumably because, as in Comparative Example 1, the surface protection of the zinc oxide-based transparent conductive film (III) was insufficient, and oxygen in the indium oxide-based transparent conductive film was dissociated. Therefore, as in Comparative Example 1, when the indium oxide-based transparent conductive film (I) is not protected by the zinc oxide-based transparent conductive film (II), the hydrogen reduction resistance is very low and useful as an electrode of a solar cell. Not confirmed.
 [比較例4、5:GAZO/GAZO/ITiO]
 表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際に用いた、アルミニウムを含む酸化亜鉛焼結体ターゲット組成を前述した式(1)から逸脱した組成に変えた以外は、実施例14と同様にして、透明導電膜積層体を作製した。酸化亜鉛系透明導電膜(III)に用いたターゲットとしては、比較例4では、その組成がAl/(Zn+Al)で0.40原子%、Ga/(Zn+Ga)で1.00原子%であるものを用いた。また、比較例5では、Al/(Zn+Al)で0.10原子%、Ga/(Zn+Ga)で0.10原子%であるものを用いた。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Comparative Examples 4, 5: GAZO / GAZO / ITO]
As shown in Tables 1 and 2, the zinc oxide sintered compact target composition containing aluminum used when forming the zinc oxide-based transparent conductive film (III) was changed to a composition deviating from the above-described formula (1). A transparent conductive film laminate was produced in the same manner as Example 14 except for the above. As a target used for the zinc oxide-based transparent conductive film (III), in Comparative Example 4, the composition is 0.40 atomic% for Al / (Zn + Al) and 1.00 atomic% for Ga / (Zn + Ga). Was used. In Comparative Example 5, Al / (Zn + Al) was 0.10 atomic% and Ga / (Zn + Ga) was 0.10 atomic%. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 得られた膜の特性は表3に示すように、比較例1、2の全ての膜で水素雰囲気中での加熱処理前後で透過率の変化が0%であり、全く低下が見られなかった。また、比較例1、2の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対してそれぞれ8°(比較例4)、9°(比較例5)であった。 As shown in Table 3, the characteristics of the obtained films were 0% in the transmittance change before and after the heat treatment in the hydrogen atmosphere in all the films of Comparative Examples 1 and 2, and no decrease was observed. . Further, the c-axis tilt angles of the hexagonal crystals of the zinc oxide-based transparent conductive films (II) of Comparative Examples 1 and 2 were 8 ° (Comparative Example 4) and 9 respectively with respect to the vertical direction of the translucent substrate surface. ° (Comparative Example 5).
 比較例4の膜は、導電性は良好であるものの、実施例14と異なりRa値が低く、ヘイズ率も低い膜であった。よって、光閉じ込め効果が不十分であるため高効率の太陽電池の表面透明電極として利用することはできないことが分かった。また、比較例5の膜は、Ra値とヘイズ率は高いが、表面抵抗が高すぎるため、太陽電池の電極として有用ではない。 Although the film of Comparative Example 4 had good conductivity, unlike Example 14, the film had a low Ra value and a low haze ratio. Therefore, it was found that the light confinement effect is insufficient, so that it cannot be used as a surface transparent electrode of a highly efficient solar cell. Moreover, although the film | membrane of the comparative example 5 has high Ra value and a haze rate, since surface resistance is too high, it is not useful as an electrode of a solar cell.
 [実施例26~28、比較例6、7:GAZO/GAZO/ITiO]
 表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際のガス圧をそれぞれ、0.5Pa(比較例6)、1.0Pa(実施例26)、10.5Pa(実施例27)、15.0Pa(実施例28)、20.0Pa(比較例7)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 26 to 28, Comparative Examples 6 and 7: GAZO / GAZO / ITO]
As shown in Tables 1 and 2, the gas pressures when forming the zinc oxide-based transparent conductive film (III) were 0.5 Pa (Comparative Example 6), 1.0 Pa (Example 26), 10.5 Pa ( Example 27) A transparent conductive film laminate was produced in the same manner as in Example 6 except that the pressure was changed to 15.0 Pa (Example 28) and 20.0 Pa (Comparative Example 7). The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 得られた膜の特性は、表3に示すように成膜時のガス圧が増加するに伴い、Ra値とヘイズ率は増加した。比較例6の膜は、ヘイズ率が低くて光閉じ込め効果が弱く、高効率の太陽電池の表面透明電極としては利用できない。比較例7は、作製時の成膜速度が非常に遅くて生産性が悪く、また、得られた膜はヘイズ率が高いが表面抵抗が高いことと、膜の基板への付着力が弱くて剥がれやすくデバイスの電極として利用することができない。 As shown in Table 3, as the characteristics of the obtained film, the Ra value and the haze ratio increased as the gas pressure during film formation increased. The film of Comparative Example 6 has a low haze ratio and a weak light confinement effect, and cannot be used as a surface transparent electrode of a highly efficient solar cell. In Comparative Example 7, the film formation rate at the time of production was very slow and the productivity was poor, and the obtained film had a high haze ratio but a high surface resistance, and the adhesion of the film to the substrate was weak. It is easy to peel off and cannot be used as a device electrode.
 一方、実施例26~28の透明導電膜積層体は、表面抵抗が低いだけでなく、ヘイズ率も8%以上と十分に高く、膜の付着力も高い。また、酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ8(実施例26)、10°(実施例27)、8°(実施例28)であった。さらに、実施例26~28の透明導電膜積層体は、全ての膜で水素雰囲気中での加熱処理前後で透過率の変化が0%であり、全く低下が見られなかったため、高効率の太陽電池の表面透明電極として利用できることが確認された。 On the other hand, the transparent conductive film laminates of Examples 26 to 28 not only have low surface resistance, but also have a sufficiently high haze ratio of 8% or more and high film adhesion. In addition, the c-axis tilt angle of the hexagonal crystal of the zinc oxide-based transparent conductive film (II) is 8 (Example 26) and 10 ° (Example 27) with respect to the direction perpendicular to the translucent substrate surface, respectively. 8 ° (Example 28). Further, in the transparent conductive film laminates of Examples 26 to 28, the transmittance change was 0% before and after the heat treatment in a hydrogen atmosphere in all the films, and no reduction was observed. It was confirmed that it can be used as a surface transparent electrode of a battery.
 [実施例29、30、比較例8、9:GAZO/GAZO/ITiO]
 表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際の基板温度をそれぞれ、150℃(比較例8)、200℃(実施例29)、550℃(実施例30)、610℃(比較例9)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 29 and 30, Comparative Examples 8 and 9: GAZO / GAZO / ITO]
As shown in Tables 1 and 2, the substrate temperatures for forming the zinc oxide-based transparent conductive film (III) were 150 ° C. (Comparative Example 8), 200 ° C. (Example 29), and 550 ° C. (Example 30), respectively. ), 610 ° C. (Comparative Example 9), a transparent conductive film laminate was produced in the same manner as in Example 6. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 得られた膜の特性は、表3に示すように基板温度が増加するに伴い、Ra値とヘイズ率も増加したが、表面抵抗も増加した。比較例8の膜は、表面抵抗は低くて十分であるが、ヘイズ率が低くて光閉じ込め効果が弱く、高効率の太陽電池の表面透明電極としては利用できない。比較例9は、作製時の成膜速度が非常に遅くて生産性が悪く、また得られた膜もヘイズ率が高いが表面抵抗も高いため、太陽電池の表面透明電極として利用することができない。 As shown in Table 3, the characteristics of the obtained film were such that the Ra value and the haze ratio increased as the substrate temperature increased, but the surface resistance also increased. The film of Comparative Example 8 is sufficiently low in surface resistance, but has a low haze ratio and a weak light confinement effect, and cannot be used as a surface transparent electrode of a highly efficient solar cell. In Comparative Example 9, the film formation rate at the time of production is very slow and the productivity is poor, and the obtained film also has a high haze ratio but a high surface resistance, so it cannot be used as a surface transparent electrode of a solar cell. .
 一方、実施例29、30の透明導電膜積層体は、表面抵抗が低いだけでなくヘイズ率も8%以上と十分に高い。また、酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ10(実施例29)、9°(実施例30)であった。さらに、実施例29、30の透明導電膜積層体は、全ての膜で水素雰囲気中での加熱処理前後で透過率の変化が0%であり、全く低下が見られなかったため、高効率の太陽電池の表面透明電極として有用である。 On the other hand, the transparent conductive film laminates of Examples 29 and 30 not only have a low surface resistance but also a sufficiently high haze ratio of 8% or more. The c-axis tilt angles of the hexagonal crystal of the zinc oxide-based transparent conductive film (II) are 10 (Example 29) and 9 ° (Example 30) with respect to the direction perpendicular to the translucent substrate surface, respectively. Met. Furthermore, in the transparent conductive film laminates of Examples 29 and 30, the transmittance change was 0% before and after the heat treatment in a hydrogen atmosphere in all the films, and no reduction was observed. It is useful as a surface transparent electrode of a battery.
 [実施例31~33、比較例10:GAZO/GAZO/ITiO]
 表1、2に示すように実施例6~9における酸化インジウム系透明導電膜(I)を下地として、その上に、水素(H)ガスをH/(Ar+H)のモル比においてそれぞれ、0.01(実施例31)、0.25(実施例32)、0.43(実施例33)、0.50原子%(比較例10)の割合で導入し、酸化亜鉛系透明導電膜(III)の膜厚を400nmとした以外は実施例6~9と同様にして酸化亜鉛系透明導電膜(II)、(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 31 to 33, Comparative Example 10: GAZO / GAZO / ITO]
As shown in Tables 1 and 2, the indium oxide-based transparent conductive film (I) in Examples 6 to 9 is used as a base, and a hydrogen (H 2 ) gas is provided thereon in a molar ratio of H 2 / (Ar + H 2 ). , 0.01 (Example 31), 0.25 (Example 32), 0.43 (Example 33), and 0.50 atomic% (Comparative Example 10). Zinc oxide-based transparent conductive films (II) and (III) were formed in the same manner as in Examples 6 to 9 except that the film thickness of (III) was changed to 400 nm, to prepare a transparent conductive film laminate. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 得られた膜の特性は表3に示すように、成膜ガスのH割合が増加するに伴い、Ra値とヘイズ率は増加したが、表面抵抗も増加する傾向にあった。比較例10の膜は、Ra値やヘイズ率こそ高いが、表面抵抗が高すぎるため、太陽電池の電極として利用することができない。また、比較例10の膜は、基板に対する付着力が極めて弱いなどの問題もあった。 As shown in Table 3, the characteristics of the obtained film tended to increase the Ra value and haze ratio as the H 2 ratio of the film forming gas increased, but also increase the surface resistance. The film of Comparative Example 10 has a high Ra value and a high haze ratio, but cannot be used as an electrode of a solar cell because the surface resistance is too high. Further, the film of Comparative Example 10 also had problems such as extremely weak adhesion to the substrate.
 一方、実施例31~33の透明導電膜積層体は、表面抵抗が低いだけでなく、ヘイズ率も8%以上と十分に高く、膜の付着力も高い。また、酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ5(実施例31)、8°(実施例32)、10°(実施例33)であった。さらに、実施例31~33の透明導電膜積層体は、透過率について水素雰囲気中での加熱処理前後で全く低下が見られなかったため、高効率の太陽電池の表面透明電極として有用である。 On the other hand, the transparent conductive film laminates of Examples 31 to 33 not only have low surface resistance, but also have a sufficiently high haze ratio of 8% or more and high film adhesion. The c-axis tilt angles of the hexagonal crystal of the zinc oxide-based transparent conductive film (II) are 5 (Example 31) and 8 ° (Example 32), respectively, with respect to the direction perpendicular to the translucent substrate surface. 10 ° (Example 33). Furthermore, since the transparent conductive film laminates of Examples 31 to 33 did not show any decrease in the transmittance before and after the heat treatment in a hydrogen atmosphere, they are useful as surface transparent electrodes for high-efficiency solar cells.
 [実施例34、比較例11、12:GAZO/GAZO/ITiO]
 表1、2に示すように酸化亜鉛系透明導電膜(II)を成膜する際のガス圧をそれぞれ、0.8Pa(実施例34)、1.0Pa(比較例11)、2.0Pa(比較例12)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[Example 34, Comparative Examples 11 and 12: GAZO / GAZO / ITO]
As shown in Tables 1 and 2, the gas pressures when forming the zinc oxide-based transparent conductive film (II) were 0.8 Pa (Example 34), 1.0 Pa (Comparative Example 11), and 2.0 Pa (2.0 Pa, respectively). A transparent conductive film laminate was produced in the same manner as in Example 6 except that Comparative Example 12) was used. The characteristics evaluation of the produced transparent conductive film laminate and the zinc oxide-based transparent conductive film (II) was carried out using the same items and methods as in Example 1.
 得られた膜の特性は、表3に示すように、全ての膜で水素雰囲気中での加熱処理前後で透過率の変化が0%であり、全く低下が見られなかったものの、成膜時のガス圧が高くなるほどRa値が増加した。また、実施例34で得た透明導電膜積層体の透過率は、水素雰囲気中での加熱処理を施すことにより、74.3%から66.7%へ7.6%の若干の低下が見られた。 As shown in Table 3, the characteristics of the obtained films were 0% in the transmittance before and after the heat treatment in the hydrogen atmosphere in all the films, and no decrease was observed. The Ra value increased as the gas pressure increased. In addition, the transmittance of the transparent conductive film laminate obtained in Example 34 was slightly decreased by 7.6% from 74.3% to 66.7% by performing the heat treatment in a hydrogen atmosphere. It was.
 一方、比較例11で得られた透明導電膜積層体の透過率は、73.9%から61.5%へ10%以上の低下が見られた。また、比較例12で得られた透明導電膜積層体の透過率は、73.0%から48.5%と非常に大きな低下が見られた。これらは、比較例11および12で形成した表面の酸化亜鉛系透明導電膜(II)が緻密性に欠ける粗い膜となっているため、下地層である酸化インジウム系透明導電膜(I)の表面を完全に保護できておらず、酸化インジウム系透明導電膜中の酸素が水素によって解離された為と考えられる。したがって、比較例11、12のような高スパッタリングガス圧条件で酸化亜鉛系透明導電膜(II)を得る場合、耐水素還元性が非常に低い透明導電膜積層体しか得られず、有用でないことが確認された。 On the other hand, the transmittance of the transparent conductive film laminate obtained in Comparative Example 11 was reduced by 10% or more from 73.9% to 61.5%. Moreover, the transmittance | permeability of the transparent conductive film laminated body obtained by the comparative example 12 was seen from 73.0% to 48.5%, and the big fall was seen. Since the zinc oxide-based transparent conductive film (II) on the surface formed in Comparative Examples 11 and 12 is a rough film lacking in denseness, the surface of the indium oxide-based transparent conductive film (I) that is the underlying layer This is considered to be because oxygen in the indium oxide-based transparent conductive film was dissociated by hydrogen. Therefore, when obtaining a zinc oxide-based transparent conductive film (II) under the high sputtering gas pressure conditions as in Comparative Examples 11 and 12, only a transparent conductive film laminate having extremely low hydrogen reduction resistance can be obtained, which is not useful. Was confirmed.
 [実施例35、36:GAZO/GAZO/ITiO]
 表1、2に示すように、それぞれ酸化インジウム系透明導電膜(I)を形成する際(実施例35)、または酸化亜鉛系透明導電膜(II)を形成する際(実施例36)に、基板を加熱せず室温にて非晶質膜を形成した後に、350℃加熱処理を施した以外は、実施例6と同様にして、透明導電膜積層体を作製した。得られた膜の特性評価は、実施例1と同様に実施した。
[Examples 35 and 36: GAZO / GAZO / ITO]
As shown in Tables 1 and 2, when forming the indium oxide-based transparent conductive film (I) (Example 35) or forming the zinc oxide-based transparent conductive film (II) (Example 36), A transparent conductive film laminate was produced in the same manner as in Example 6 except that an amorphous film was formed at room temperature without heating the substrate and then heat treatment was performed at 350 ° C. Characteristic evaluation of the obtained film was performed in the same manner as in Example 1.
 表3に示すように、実施例35の透明導電膜積層体は、酸化インジウム系透明導電膜(I)について基板加熱成膜を行った実施例6の膜と比較して、ヘイズ率が増加した。さらに、実施例35、36の透明導電膜積層体の透過率は、ともに水素雰囲気中での加熱処理前後で変化が0%であり、耐水素還元性に優れ、高いヘイズ率および低い抵抗値を有する透明導電膜積層体を高速に得られることが確認された。 As shown in Table 3, the transparent conductive film laminate of Example 35 had an increased haze ratio compared to the film of Example 6 in which the substrate heating film formation was performed on the indium oxide-based transparent conductive film (I). . Furthermore, the transmittances of the transparent conductive film laminates of Examples 35 and 36 are both 0% before and after heat treatment in a hydrogen atmosphere, excellent in hydrogen reduction resistance, high haze rate and low resistance value. It was confirmed that the transparent conductive film laminated body having it can be obtained at high speed.
 [実施例37:GAZO/GAZO/ITiO]
 表1、2に示すように、酸化亜鉛系透明導電膜(II)の組成を変更した以外は、実施例6と同様にして、透明導電膜積層体を作製した。得られた膜の特性評価は、実施例1と同様に実施した。
[Example 37: GAZO / GAZO / ITO]
As shown in Tables 1 and 2, a transparent conductive film laminate was produced in the same manner as in Example 6 except that the composition of the zinc oxide-based transparent conductive film (II) was changed. Characteristic evaluation of the obtained film was performed in the same manner as in Example 1.
 表3に示すように、実施例37の透明導電膜積層体は、実施例6の膜と比較して、抵抗値が低下した。さらに、実施例37の透明導電膜積層体の透過率は、水素雰囲気中での加熱処理前後で変化が0%であり、耐水素還元性に優れ、高いヘイズ率および低い抵抗値を有する透明導電膜積層体を高速に得られることが確認された。 As shown in Table 3, the resistance value of the transparent conductive film laminate of Example 37 was lower than that of the film of Example 6. Further, the transmittance of the transparent conductive film laminate of Example 37 was 0% before and after heat treatment in a hydrogen atmosphere, had excellent hydrogen reduction resistance, and had a high haze ratio and a low resistance value. It was confirmed that the film laminate can be obtained at high speed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1 透光性基板、 2 透明導電膜積層体、 3 非晶質光電変換ユニット、 4 結晶質光電変換ユニット、 5 裏面電極、 21 酸化インジウム系透明導電膜(I)、 22 酸化亜鉛系透明導電膜(II)、 23 酸化亜鉛系透明導電膜(III) DESCRIPTION OF SYMBOLS 1 Translucent board | substrate, 2 Transparent conductive film laminated body, 3 Amorphous photoelectric conversion unit, 4 Crystalline photoelectric conversion unit, 5 Back electrode, 21 Indium oxide type transparent conductive film (I), 22 Zinc oxide type transparent conductive film (II), 23. Zinc oxide-based transparent conductive film (III)

Claims (20)

  1.  透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜する第1の成膜工程と、
     上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜する第2の成膜工程とを有し、
     表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下である透明導電膜積層体を製造する透明導電膜積層体の製造方法。
    On the indium oxide-based transparent conductive film (I) formed on the translucent substrate, the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface by sputtering. A first film forming step of forming a zinc oxide-based transparent conductive film (II) having a thickness of 10 nm to 200 nm;
    A second film-forming step of forming a zinc oxide-based transparent conductive film (III) having a film thickness of 400 nm or more and 1600 nm or less on the zinc oxide-based transparent conductive film (II) by a sputtering method;
    A method for producing a transparent conductive film laminate, comprising producing a transparent conductive film laminate having a surface roughness (Ra) of 35.0 nm or more and a surface resistance of 25 Ω / □ or less.
  2.  上記酸化亜鉛系透明導電膜(II)を形成するためのスパッタリングターゲットが、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことを特徴とする請求項1に記載の透明導電膜積層体の製造方法。 The sputtering target for forming the zinc oxide-based transparent conductive film (II) contains zinc oxide as a main component and includes one or more additive metal elements selected from aluminum or gallium. The manufacturing method of the transparent conductive film laminated body of description.
  3.  上記酸化亜鉛系透明導電膜(II)及び上記酸化亜鉛系透明導電膜(III)を形成するためのスパッタリングターゲットが、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含み、その含有量が下記式(1)で示される範囲内であることを特徴とする請求項1に記載の透明導電膜積層体の製造方法。
    -[Al]+0.30≦[Ga]≦-2.68×[Al]+1.74 ・・・(1)
     (但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。)
    The sputtering target for forming the zinc oxide-based transparent conductive film (II) and the zinc oxide-based transparent conductive film (III) is composed of zinc oxide as a main component and one or more additive metal elements selected from aluminum or gallium 2. The method for producing a transparent conductive film laminate according to claim 1, wherein the content is in a range represented by the following formula (1).
    -[Al] + 0.30 ≦ [Ga] ≦ −2.68 × [Al] +1.74 (1)
    (However, [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al), while [Ga] is expressed by the atomic ratio (%) of Ga / (Zn + Ga). Gallium content.)
  4.  上記第1の成膜工程では、スパッタリングガス圧を0.1Pa以上1.0Pa未満とし、
     上記第2の成膜工程では、スパッタリングガス圧を1.0Pa以上15.0Pa以下とすることを特徴とする請求項1~3のいずれか1項に記載の透明導電膜積層体の製造方法。
    In the first film forming step, the sputtering gas pressure is set to 0.1 Pa or more and less than 1.0 Pa,
    The method for producing a transparent conductive film laminate according to any one of claims 1 to 3, wherein in the second film formation step, a sputtering gas pressure is set to 1.0 Pa or more and 15.0 Pa or less.
  5.  上記第1の成膜工程及び上記第2の成膜工程において、スパッタリングガス種として、アルゴンと水素の混合ガスの混合割合をH/(Ar+H)≦0.43とすることを特徴とする請求項1~4のいずれか1項に記載の透明導電膜積層体の製造方法。 In the first film formation step and the second film formation step, a mixing ratio of a mixed gas of argon and hydrogen is set to H 2 / (Ar + H 2 ) ≦ 0.43 as a sputtering gas species. The method for producing a transparent conductive film laminate according to any one of claims 1 to 4.
  6.  上記第1の成膜工程では、スパッタリングガス圧が0.1Pa以上1.0Pa未満において基板温度が100℃以下の条件で、前記スパッタリングターゲットへの直流投入電力密度を1.66W/cm以上として、非晶質膜として形成した後、200℃以上600℃以下に加熱処理し、上記酸化亜鉛系透明導電膜(II)を結晶化することを特徴とする請求項1~3のいずれか1項に記載の透明導電膜積層体の製造方法。 In the first film forming step, the DC input power density to the sputtering target is 1.66 W / cm 2 or more under the condition that the substrate temperature is 100 ° C. or less when the sputtering gas pressure is 0.1 Pa or more and less than 1.0 Pa. 4. The zinc oxide-based transparent conductive film (II) is crystallized by heat treatment at 200 ° C. or more and 600 ° C. or less after being formed as an amorphous film. The manufacturing method of the transparent conductive film laminated body of description.
  7.  上記第1の成膜工程では、スパッタリングガス圧が0.1Pa以上1.0Pa未満において基板温度が200℃以上600℃以下の条件で、前記スパッタリングターゲットへの直流投入電力密度を1.66W/cm以上として、上記酸化亜鉛系透明導電膜(II)を成膜することを特徴とする請求項1~3のいずれか1項に記載の透明導電膜積層体の製造方法。 In the first film-forming step, the DC input power density to the sputtering target is 1.66 W / cm under the condition that the substrate temperature is 200 ° C. or more and 600 ° C. or less when the sputtering gas pressure is 0.1 Pa or more and less than 1.0 Pa. The method for producing a transparent conductive film laminate according to any one of claims 1 to 3, wherein the zinc oxide-based transparent conductive film (II) is formed into two or more.
  8.  上記第2の成膜工程では、スパッタリングガス圧が1.0Pa以上15.0Pa以下、基板温度が200℃以上600℃以下の条件で、前記スパッタリングターゲットへの直流投入電力密度を1.66W/cm以上として、高速で成膜することを特徴とする請求項6又は7に記載の透明導電膜積層体の製造方法。 In the second film forming step, the DC input power density to the sputtering target is 1.66 W / cm under the conditions of sputtering gas pressure of 1.0 Pa to 15.0 Pa and substrate temperature of 200 ° C. to 600 ° C. The method for producing a transparent conductive film laminate according to claim 6, wherein the film is formed at a high speed as 2 or more.
  9.  上記酸化インジウム系透明導電膜(I)が、基板温度100℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、非晶質膜として形成された後、200℃以上600℃以下に加熱処理されて、上記透光性基板上に結晶化されることを特徴とする請求項1に記載の透明導電膜積層体の製造方法。 After the indium oxide-based transparent conductive film (I) is formed as an amorphous film under the conditions of a substrate temperature of 100 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa, the temperature is 200 ° C. or more and 600 ° C. or less. The method for producing a transparent conductive film laminate according to claim 1, wherein the transparent conductive film laminate is crystallized on the translucent substrate by heat treatment.
  10.  上記酸化インジウム系透明導電膜(I)が、基板温度200℃以上600℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、上記透光性基板上に結晶膜として形成されることを特徴とする請求項1に記載の透明導電膜積層体の製造方法。 The indium oxide-based transparent conductive film (I) is formed as a crystal film on the translucent substrate under the conditions of a substrate temperature of 200 ° C. or more and 600 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa. The manufacturing method of the transparent conductive film laminated body of Claim 1 characterized by these.
  11.  透光性基板上に形成された酸化インジウム系透明導電膜(I)と、
     上記酸化インジウム系透明導電膜(I)上に形成された六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)と、
     酸化亜鉛系透明導電膜(II)上に形成された膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)とを備え、
     表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下であることを特徴とする透明導電膜積層体。
    An indium oxide-based transparent conductive film (I) formed on a light-transmitting substrate;
    The c-axis tilt angle of the hexagonal crystal formed on the indium oxide-based transparent conductive film (I) is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface, and the film thickness is 10 nm or more and 200 nm or less. A zinc oxide-based transparent conductive film (II);
    A zinc oxide-based transparent conductive film (III) having a thickness of 400 nm or more and 1600 nm or less formed on the zinc oxide-based transparent conductive film (II),
    A transparent conductive film laminate having a surface roughness (Ra) of 35.0 nm or more and a surface resistance of 25 Ω / □ or less.
  12.  上記酸化亜鉛系透明導電膜(II)が、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことを特徴とする請求項11に記載の透明導電膜積層体。 The transparent conductive film laminate according to claim 11, wherein the zinc oxide-based transparent conductive film (II) contains zinc oxide as a main component and contains one or more additive metal elements selected from aluminum or gallium. .
  13.  上記酸化亜鉛系透明導電膜(II)及び上記酸化亜鉛系透明導電膜(III)が、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含み、その含有量が下記式(1)で示される範囲内であることを特徴とする請求項11に記載の透明導電膜積層体。
     -[Al]+0.30≦[Ga]≦-2.68×[Al]+1.74 ・・・(1)
     (但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。)
    The zinc oxide-based transparent conductive film (II) and the zinc oxide-based transparent conductive film (III) contain zinc oxide as a main component and include one or more additive metal elements selected from aluminum or gallium, and the content thereof is It is in the range shown by following formula (1), The transparent conductive film laminated body of Claim 11 characterized by the above-mentioned.
    -[Al] + 0.30 ≦ [Ga] ≦ −2.68 × [Al] +1.74 (1)
    (However, [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al), while [Ga] is expressed by the atomic ratio (%) of Ga / (Zn + Ga). Gallium content.)
  14.  500℃、水素雰囲気中での加熱処理による透過率低下が10%以下であることを特徴とする請求項11~13のいずれか1項に記載の透明導電膜積層体。 The transparent conductive film laminate according to any one of claims 11 to 13, wherein a decrease in transmittance due to heat treatment in a hydrogen atmosphere at 500 ° C is 10% or less.
  15.  ヘイズ率が8%以上であることを特徴とする請求項11~13のいずれか1項に記載の透明導電膜積層体。 The transparent conductive film laminate according to any one of claims 11 to 13, wherein a haze ratio is 8% or more.
  16.  酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、Sn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した結晶膜であることを特徴とする請求項11~13のいずれか1項に記載の透明導電膜積層体。 The indium oxide-based transparent conductive film (I) is a crystalline film containing indium oxide as a main component and containing one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce or Ga. The transparent conductive film laminate according to any one of claims 11 to 13.
  17.  酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、かつSnを含有し、その含有割合がSn/(In+Sn)原子数比で15原子%以下であることを特徴とする請求項11~13のいずれか1項に記載の透明導電膜積層体。 The indium oxide-based transparent conductive film (I) contains indium oxide as a main component and contains Sn, and the content ratio is 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio. The transparent conductive film laminate according to any one of 11 to 13.
  18.  酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、かつTiを含有し、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であることを特徴とする請求項11~13のいずれか1項に記載の透明導電膜積層体。 The indium oxide-based transparent conductive film (I) contains indium oxide as a main component and contains Ti, and the content ratio is 5.5 atomic% or less in terms of Ti / (In + Ti) atomic ratio. The transparent conductive film laminate according to any one of claims 11 to 13.
  19.  透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とを順に形成する薄膜太陽電池の製造方法において、
     上記透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜する第1の成膜工程と、
     上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜する第2の成膜工程とを有し、
     上記透光性基板上に表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下である透明導電膜積層体を形成することを特徴とする薄膜太陽電池の製造方法。
    In the method for producing a thin-film solar cell, in which a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are formed in this order on a light-transmitting substrate.
    On the indium oxide-based transparent conductive film (I) formed on the translucent substrate, the c-axis tilt angle of the hexagonal crystal is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface by sputtering. A first film forming step of forming a zinc oxide-based transparent conductive film (II) having a thickness of 10 nm to 200 nm,
    A second film-forming step of forming a zinc oxide-based transparent conductive film (III) having a film thickness of 400 nm or more and 1600 nm or less on the zinc oxide-based transparent conductive film (II) by a sputtering method;
    A method for producing a thin-film solar cell, comprising forming a transparent conductive film laminate having a surface roughness (Ra) of 35.0 nm or more and a surface resistance of 25 Ω / □ or less on the translucent substrate.
  20.  透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成された薄膜太陽電池において、
     上記透明導電膜積層体は、
     上記透光性基板上に形成された酸化インジウム系透明導電膜(I)と、
     上記酸化インジウム系透明導電膜(I)上に形成された六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)と、
     上記酸化亜鉛系透明導電膜(II)上に形成された膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)とを備え、
     表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下であることを特徴とする薄膜太陽電池。
    In a thin film solar cell in which a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate,
    The transparent conductive film laminate is
    An indium oxide-based transparent conductive film (I) formed on the translucent substrate;
    The c-axis tilt angle of the hexagonal crystal formed on the indium oxide-based transparent conductive film (I) is 10 ° or less with respect to the direction perpendicular to the translucent substrate surface, and the film thickness is 10 nm or more and 200 nm or less. A zinc oxide-based transparent conductive film (II);
    A zinc oxide-based transparent conductive film (III) having a thickness of 400 nm or more and 1600 nm or less formed on the zinc oxide-based transparent conductive film (II),
    A thin film solar cell having a surface roughness (Ra) of 35.0 nm or more and a surface resistance of 25 Ω / □ or less.
PCT/JP2012/050124 2011-01-05 2012-01-05 Transparent electroconductive film laminate and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same WO2012093702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-000777 2011-01-05
JP2011000777A JP2012142499A (en) 2011-01-05 2011-01-05 Transparent conductive film laminate and method for manufacturing the same, and thin film solar cell and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012093702A1 true WO2012093702A1 (en) 2012-07-12

Family

ID=46457552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050124 WO2012093702A1 (en) 2011-01-05 2012-01-05 Transparent electroconductive film laminate and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2012142499A (en)
TW (1) TW201243869A (en)
WO (1) WO2012093702A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308206A (en) * 2012-11-07 2016-02-03 住友金属矿山株式会社 Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
CN113022384A (en) * 2021-05-26 2021-06-25 北京理工大学 Fuel cell automobile energy management method based on convex optimization

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635430B2 (en) * 2011-02-02 2014-12-03 株式会社アルバック Substrate with transparent conductive film, solar cell, and production method thereof
JP2014095099A (en) * 2012-11-07 2014-05-22 Sumitomo Metal Mining Co Ltd Transparent conductive film laminate, method of producing transparent conductive film laminate, thin-film solar cell and method of producing thin-film solar cell
JP5835200B2 (en) * 2012-12-04 2015-12-24 住友金属鉱山株式会社 Transparent conductive glass substrate with surface electrode and method for producing the same, thin film solar cell and method for producing the same
JP5397794B1 (en) * 2013-06-04 2014-01-22 Roca株式会社 Method for producing oxide crystal thin film
CN108878058B (en) * 2018-06-25 2019-11-22 湖北雄华科技有限公司 Three-decker transparent conductive film and preparation method thereof for dimming glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233800A (en) * 1998-02-12 1999-08-27 Sharp Corp Substrate for solar cell, manufacture thereof and semiconductor element
JP2000022189A (en) * 1998-01-23 2000-01-21 Canon Inc Substrate with lead oxide layer, formation of lead oxide layer, photovoltaic element and fabrication thereof
JP2010034232A (en) * 2008-07-28 2010-02-12 Sumitomo Metal Mining Co Ltd Thin-film solar cell and surface electrode for thin-film solar cell
JP2010238894A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-In2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022189A (en) * 1998-01-23 2000-01-21 Canon Inc Substrate with lead oxide layer, formation of lead oxide layer, photovoltaic element and fabrication thereof
JPH11233800A (en) * 1998-02-12 1999-08-27 Sharp Corp Substrate for solar cell, manufacture thereof and semiconductor element
JP2010034232A (en) * 2008-07-28 2010-02-12 Sumitomo Metal Mining Co Ltd Thin-film solar cell and surface electrode for thin-film solar cell
JP2010238894A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-In2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308206A (en) * 2012-11-07 2016-02-03 住友金属矿山株式会社 Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
CN113022384A (en) * 2021-05-26 2021-06-25 北京理工大学 Fuel cell automobile energy management method based on convex optimization

Also Published As

Publication number Publication date
TW201243869A (en) 2012-11-01
JP2012142499A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5621764B2 (en) Transparent conductive film, transparent conductive film laminate, manufacturing method thereof, and silicon-based thin film solar cell
JP5252066B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
JP5445395B2 (en) Method for producing transparent conductive film and method for producing thin film solar cell
WO2014073329A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
WO2012093702A1 (en) Transparent electroconductive film laminate and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
WO2014073328A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12732343

Country of ref document: EP

Kind code of ref document: A1