JP2001059157A - Transparent electrically conductive film and its production - Google Patents

Transparent electrically conductive film and its production

Info

Publication number
JP2001059157A
JP2001059157A JP11233996A JP23399699A JP2001059157A JP 2001059157 A JP2001059157 A JP 2001059157A JP 11233996 A JP11233996 A JP 11233996A JP 23399699 A JP23399699 A JP 23399699A JP 2001059157 A JP2001059157 A JP 2001059157A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
volume
water vapor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11233996A
Other languages
Japanese (ja)
Other versions
JP3453329B2 (en
Inventor
Nobuki Yamashita
信樹 山下
Yoshimichi Yonekura
義道 米倉
Shoji Morita
章二 森田
Akimi Takano
暁己 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23399699A priority Critical patent/JP3453329B2/en
Publication of JP2001059157A publication Critical patent/JP2001059157A/en
Application granted granted Critical
Publication of JP3453329B2 publication Critical patent/JP3453329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a film exhibiting high transmissivity and low resistance by allowing the vapor of multiple oxide of indium oxide and tin oxide to act on a group IV semiconductor power generating layer together with water vapor in a temp. region which does not exert thermal damage thereon to execute film formation and forming a transparent electrically conductive film whose surface has a rugged shape. SOLUTION: A substrate (such as non-alkali glass) having a group IV semiconductor power generating layer is carried into a vacuum vessel, and the temp. of the substrate is controlled to a temp. region of <=150 deg.C in which thermal damage is not exerted on the group IV semiconductor power generating layer. Next, the vapor or sputter particles of multiple oxide of indium oxide and tin oxide to form a film material are formed in the vacuum vessel, and moreover, water vapor is introduced therein, the vapor or sputter particles of multiple oxide of indium oxide and tin oxide are deposited on the group IV semiconductor power generating layer in the coexistence of the water vapor, and a film of multiple oxide of indium oxide and tin oxide having a surface with a rugged shape is laminated and formed to obtain a transparent electrically conductive film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明導電膜及びそ
の製造方法、特に太陽電池用の酸化インジウム・酸化錫
複合酸化物(ITO)からなる透明導電膜及びその製造
方法に関するものである。
The present invention relates to a transparent conductive film and a method for producing the same, and more particularly to a transparent conductive film made of indium oxide / tin oxide composite oxide (ITO) for a solar cell and a method for producing the same.

【0002】[0002]

【従来の技術】従来、例えばIV族半導体の一種のアモル
ファス・シリコン(以下a−Siと記す)太陽電池の電
極として透明導電膜が用いられている。図1はそのよう
なa−Si太陽電池の一例を示し、ガラス基板1の上に
表面透明電極として酸化錫(以下SnO2と記す)から
なる透明導電膜2、その一部の上にa−Si層3、その
a−Si層3上に裏面透明電極として酸化インジウム・
酸化錫複合酸化物(以下ITOと記す)からなる透明導
電膜4を積層し、更にその上にアルミニウム電極膜5が
積層され、別に透明導電膜2に集電電極としてのアルミ
ニウム電極6が設けられており、基板1、透明導電膜2
を通じてa−Si層3に入射する光7によって光起電力
を発生する。透明導電膜2は、公知の熱化学的蒸着法に
より形成され、その厚みは約1μmであり、その表面に
は0.1μm以下の凹凸が形成されている。この凹凸は
光起電力の増大つまり発電効率向上に大きく貢献する。
2. Description of the Related Art Conventionally, a transparent conductive film has been used as an electrode of an amorphous silicon (hereinafter abbreviated as a-Si) solar cell, for example, a kind of group IV semiconductor. FIG. 1 shows an example of such an a-Si solar cell. A transparent conductive film 2 made of tin oxide (hereinafter referred to as SnO 2 ) is formed on a glass substrate 1 as a surface transparent electrode, and a- Si layer 3, indium oxide.
A transparent conductive film 4 made of a tin oxide composite oxide (hereinafter referred to as ITO) is laminated, and an aluminum electrode film 5 is further laminated thereon. An aluminum electrode 6 as a current collecting electrode is separately provided on the transparent conductive film 2. Substrate 1, transparent conductive film 2
Photoelectromotive force is generated by the light 7 incident on the a-Si layer 3 through the. The transparent conductive film 2 is formed by a known thermochemical vapor deposition method, has a thickness of about 1 μm, and has a surface with irregularities of 0.1 μm or less. The unevenness greatly contributes to an increase in photovoltaic power, that is, an improvement in power generation efficiency.

【0003】この理由の一つは、ガラス基板1の側から
入射した光は透明導電膜2、a−Si層3界面での凹凸
により反射され難くなり、a−Si層3中に有効に取り
込まれるということと、2つ目は透明導電膜4とアルミ
ニウム電極膜界面で反射された光は透明導電膜2、a−
Si層3界面へ戻されるが、その際の入射角が大きくな
るので、全反射され外へ行かない割合が増加することで
ある。ここで、上部の透明導電膜4も下部の透明導電膜
2と同様に、その表面に凹凸を形成すると全反射され外
へ行かない割合が増加し、より発電効率向上につなが
る。
One of the reasons is that light incident from the side of the glass substrate 1 is hardly reflected by irregularities at the interface between the transparent conductive film 2 and the a-Si layer 3 and is effectively taken into the a-Si layer 3. Secondly, the light reflected at the interface between the transparent conductive film 4 and the aluminum electrode film is reflected on the transparent conductive film 2, a-
Although the light is returned to the interface of the Si layer 3, the incident angle at that time increases, so that the ratio of total reflection and not going outside increases. Here, similarly to the lower transparent conductive film 2, if the upper transparent conductive film 4 has irregularities on its surface, the ratio of total reflection and not going outside increases, leading to further improvement in power generation efficiency.

【0004】[0004]

【発明が解決しようとする課題】このITOからなる表
面に凹凸を持つ透明導電膜4の製造方法としては真空蒸
着法等があるが、真空蒸着法では表面に凹凸を有する構
造の透明導電膜4は製造可能であるが、350℃以上に
基材を加熱する必要がある。この350℃以上の温度
で、a−Si層3上に透明導電膜4を形成すると、a−
Si層3の結晶化、ドーピングした不純物の拡散により
発電効率が大幅に低下するという問題点があり、a−S
i層3の結晶化、ドーピングした不純物の拡散が起こら
ない約150℃以下での基板温度で表面に凹凸構造を持
ち、尚且つ高透過率を示し、低抵抗のITOからなる透
明導電膜及びその製造方法が求められていた。
As a method of manufacturing the transparent conductive film 4 made of ITO having irregularities on the surface, there is a vacuum evaporation method or the like. In the case of the vacuum evaporation method, the transparent conductive film 4 having a structure having irregularities on the surface is used. Can be manufactured, but it is necessary to heat the substrate to 350 ° C. or higher. When the transparent conductive film 4 is formed on the a-Si layer 3 at the temperature of 350 ° C. or more, a-
There is a problem that the power generation efficiency is greatly reduced due to crystallization of the Si layer 3 and diffusion of the doped impurities.
a transparent conductive film made of ITO having a concave-convex structure on the surface at a substrate temperature of about 150 ° C. or less at which the diffusion of the doped impurities does not occur and exhibiting a high transmittance and a low resistance, and the same; A manufacturing method was required.

【0005】本発明は上記課題を解決するためになされ
たものであって、IV族半導体発電層に熱的損傷を生じる
ことなく、高透過率を示し、低抵抗のITOからなる透
明導電膜及びその製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a transparent conductive film made of ITO having high transmittance and low resistance without causing thermal damage to a group IV semiconductor power generation layer. It is an object of the present invention to provide a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】本発明に係る透明導電膜
は、IV族半導体発電層の上に積層される透明導電膜であ
って、前記IV族半導体発電層に熱的損傷を及ぼさない1
50℃以下の温度域で、酸化インジウム・酸化錫複合酸
化物の蒸気とともに水蒸気を作用させて成膜され、凹凸
形状の表面を有することを特徴とする。
The transparent conductive film according to the present invention is a transparent conductive film laminated on a group IV semiconductor power generation layer, and does not thermally damage the group IV semiconductor power generation layer.
In a temperature range of 50 ° C. or lower, the film is formed by applying steam together with the vapor of the indium oxide / tin oxide composite oxide, and has a surface with an uneven shape.

【0007】さらに、透明導電膜は、酸化インジウム・
酸化錫複合酸化物の蒸気および水蒸気とともに酸素を作
用させて成膜されていることが好ましい。スパッタリン
グ法を用いて成膜する場合は、アルゴンガスを50〜9
9.99体積%、水蒸気を50〜0.01体積%、酸素
ガスを0〜1体積%それぞれ含有する混合ガスを作用さ
せることが望ましい。水蒸気添加量が0.01体積%未
満では成膜した透明導電膜の表面に凹凸形状が出現しな
くなるので、水蒸気添加量の下限値は0.01体積%と
する。一方、水蒸気添加量が50体積%を超えると膜の
抵抗率が高くなり(例えば1×10-3Ω・cmを超える
抵抗率)、電気的性能が劣る膜となるので、水蒸気添加
量の上限値は50体積%とする。
Further, the transparent conductive film is made of indium oxide.
The film is preferably formed by the action of oxygen together with the vapor of tin oxide composite oxide and water vapor. In the case of forming a film using a sputtering method, an argon gas is used in an amount of 50 to 9%.
It is desirable to apply a mixed gas containing 9.99% by volume, 50 to 0.01% by volume of water vapor, and 0 to 1% by volume of oxygen gas. If the amount of added steam is less than 0.01% by volume, no irregularities appear on the surface of the formed transparent conductive film, so the lower limit of the amount of added steam is set to 0.01% by volume. On the other hand, if the amount of added steam exceeds 50% by volume, the resistivity of the film increases (for example, the resistivity exceeds 1 × 10 −3 Ω · cm), resulting in a film having poor electrical performance. The value is 50% by volume.

【0008】真空蒸着法を用いて成膜する場合は、酸素
ガスを50〜99.99体積%、水蒸気を50〜0.0
1体積%それぞれ含有する混合ガスを作用させることが
望ましい。水蒸気添加量の数値限定理由は上記と同様で
ある。
When a film is formed by a vacuum evaporation method, oxygen gas is 50 to 99.99% by volume and water vapor is 50 to 0.0
It is desirable to cause a mixed gas containing 1% by volume to act. The reason for limiting the numerical value of the amount of added steam is the same as described above.

【0009】また、透明導電膜は、図3の(a)に示す
三角形状または図6の(a)に示す半球形状の結晶粒が
多数並ぶことにより表面の凹凸形状が形成されているこ
とが好ましい。
Further, the transparent conductive film may have an irregular shape on the surface by arranging a large number of triangular crystal grains shown in FIG. 3A or hemispherical crystal grains shown in FIG. preferable.

【0010】また、膜厚は50〜1000nmの範囲に
あることが望ましい。
It is desirable that the film thickness be in the range of 50 to 1000 nm.

【0011】本発明に係る透明導電膜の製造方法は、IV
族半導体発電層の上に積層される透明導電膜の製造方法
において、(a)IV族半導体発電層を有する基板を真空
容器内に搬入する工程と、(b)IV族半導体発電層に熱
的損傷を及ぼさない150℃以下の温度域に基板を温度
調整する工程と、(c)膜材料となる酸化インジウム・
酸化錫複合酸化物の蒸気またはスパッタ粒子を前記真空
容器内で生成するとともに、水蒸気を前記真空容器内に
導入し、水蒸気の共存下で酸化インジウム・酸化錫複合
酸化物の蒸気またはスパッタ粒子を前記IV族半導体発電
層の上に堆積させ、凹凸形状の表面を有する酸化インジ
ウム・酸化錫複合酸化物の膜を積層形成する工程とを、
具備することを特徴とする。
The method for producing a transparent conductive film according to the present invention comprises the steps of:
In the method for producing a transparent conductive film laminated on a group IV semiconductor power generation layer, (a) carrying a substrate having a group IV semiconductor power generation layer into a vacuum vessel; (C) adjusting the temperature of the substrate to a temperature range of 150 ° C. or less without causing damage;
While producing vapor or sputtered particles of the tin oxide composite oxide in the vacuum vessel, introducing steam into the vacuum vessel, and producing vapor or sputtered particles of indium oxide / tin oxide composite oxide in the presence of water vapor. Depositing on the group IV semiconductor power generation layer, and laminating a film of indium oxide / tin oxide composite oxide having an uneven surface,
It is characterized by having.

【0012】上記工程(c)では、さらに酸素ガスを前
記真空容器内に導入することが好ましい。スパッタリン
グ法により成膜する場合は、真空容器内にアルゴンガス
と水蒸気と酸素ガスとを導入し、膜材料となる酸化イン
ジウム・酸化錫複合酸化物ターゲットと基板との間に高
周波を印可して放電を生じさせ、水蒸気および酸素ガス
の共存下でターゲット表面から酸化インジウム・酸化錫
複合酸化物のスパッタ粒子を飛び出させることにより、
凹凸形状の表面を有する酸化インジウム・酸化錫複合酸
化物の膜をIV族半導体発電層の上に積層形成することが
望ましい。この場合に、アルゴンガスを50〜99.9
9体積%、水蒸気を50〜0.01体積%、酸素ガスを
0〜1体積%それぞれ含有する混合ガスを作用させるこ
とが望ましい。
In the step (c), it is preferable that oxygen gas is further introduced into the vacuum vessel. When forming a film by the sputtering method, argon gas, water vapor, and oxygen gas are introduced into a vacuum vessel, and a high frequency is applied between a substrate of indium oxide / tin oxide composite oxide as a film material and a substrate to discharge. By causing sputtered particles of indium oxide / tin oxide composite oxide to fly out of the target surface in the presence of water vapor and oxygen gas,
It is desirable that a film of indium oxide / tin oxide composite oxide having an uneven surface is laminated on the group IV semiconductor power generation layer. In this case, 50 to 99.9 of argon gas is used.
It is desirable to use a mixed gas containing 9% by volume, 50 to 0.01% by volume of steam, and 0 to 1% by volume of oxygen gas.

【0013】真空蒸着法により成膜する場合は、膜材料
となる酸化インジウム・酸化錫複合酸化物を蒸発源で加
熱し、蒸発させて蒸気を生成し、さらに水蒸気および酸
素ガスを前記真空容器内に導入し、前記蒸発源と基板と
で挟まれた領域に放電を生じさせ、前記酸化インジウム
・酸化錫複合酸化物蒸気、水蒸気、酸素ガスをプラズマ
化することにより、凹凸形状の表面を有する酸化インジ
ウム・酸化錫複合酸化物の膜をIV族半導体発電層の上に
積層形成することが望ましい。この場合は、酸素ガスが
50〜99.99体積%、水蒸気が50〜0.01体積
%であることが望ましい。水蒸気添加量が0.01体積
%未満では成膜した透明導電膜の表面に凹凸形状が出現
しなくなるので、水蒸気添加量の下限値は0.01体積
%とする。一方、水蒸気添加量が50体積%を超えると
膜の抵抗率が1×10-3Ω・cmを超えてしまい電気的
性能が劣る膜となるので、水蒸気添加量の上限値は50
体積%とする。
When a film is formed by a vacuum evaporation method, indium oxide / tin oxide composite oxide, which is a film material, is heated by an evaporation source to evaporate to generate steam, and water vapor and oxygen gas are supplied into the vacuum vessel. To generate a discharge in a region sandwiched between the evaporation source and the substrate, and convert the indium oxide / tin oxide composite oxide vapor, water vapor, and oxygen gas into plasma, thereby oxidizing the surface having an uneven surface. It is desirable to form a layer of an indium / tin oxide composite oxide on the group IV semiconductor power generation layer. In this case, it is desirable that the oxygen gas is 50 to 99.99% by volume and the water vapor is 50 to 0.01% by volume. If the amount of added steam is less than 0.01% by volume, no irregularities appear on the surface of the formed transparent conductive film, so the lower limit of the amount of added steam is set to 0.01% by volume. On the other hand, if the amount of added steam exceeds 50% by volume, the resistivity of the film exceeds 1 × 10 −3 Ω · cm, resulting in a film having poor electrical performance.
% By volume.

【0014】[0014]

【発明の実施の形態】以下、添付の図面を参照しながら
本発明の種々の好ましい実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】(第1の実施形態)図2は本発明の第1の
実施形態に係る透明導電膜の製造に用いた装置を示す概
略構成図である。この第1実施形態ではスパッタリング
装置10を用いてITO透明導電膜をガラス基板上に成
膜する。スパッタリング装置10は、図示されない真空
排気装置によって真空排気される真空容器11を備えて
いる。スパッタ源12はITOから構成されるターゲッ
ト13、磁場発生用磁石14、水冷機能を備えたターゲ
ットホルダ電極15、シールド16、真空シール機能を
備えた絶縁体17から構成されている。ターゲットホル
ダ電極15には整合器18を介して高周波電源19が接
続されている。
(First Embodiment) FIG. 2 is a schematic configuration diagram showing an apparatus used for manufacturing a transparent conductive film according to a first embodiment of the present invention. In the first embodiment, an ITO transparent conductive film is formed on a glass substrate by using a sputtering apparatus 10. The sputtering device 10 includes a vacuum vessel 11 that is evacuated by a vacuum exhaust device (not shown). The sputtering source 12 includes a target 13 made of ITO, a magnet 14 for generating a magnetic field, a target holder electrode 15 having a water cooling function, a shield 16, and an insulator 17 having a vacuum sealing function. A high-frequency power supply 19 is connected to the target holder electrode 15 via a matching unit 18.

【0016】ターゲット13の対向部にはヒーター21
を備えた基板ホルダ電極22が設置され、その下面部に
基板20が取り付け保持されるようになっている。ま
た、ターゲット13近傍には図示しないガス流量制御装
置に連通するガス供給管25のガス導入口25aが配置
されている。
A heater 21 is provided at a portion facing the target 13.
Is provided, and the substrate 20 is mounted and held on the lower surface thereof. In addition, a gas inlet 25a of a gas supply pipe 25 communicating with a gas flow controller (not shown) is disposed near the target 13.

【0017】上記の構成装置において、先ず、無アルカ
リガラス等の基板20を有機溶剤(例えばアセトン)で
超音波洗浄を施した後、真空容器11内の基板ホルダ電
極22に取り付け、2×10-6Torr以下に予備排気
する。また、ヒータ21により基板20を約150℃に
加熱する。
In the above-described apparatus, first, the substrate 20 made of non-alkali glass or the like is subjected to ultrasonic cleaning with an organic solvent (for example, acetone), and then attached to the substrate holder electrode 22 in the vacuum vessel 11 to obtain 2 × 10 −. Pre-evacuate to 6 Torr or less. The substrate 20 is heated to about 150 ° C. by the heater 21.

【0018】さらに、真空容器11内にガス導入口25
aを介してプロセスガスを導入する。このプロセスガス
は、90体積%のアルゴンガス(Ar)に10体積%の
水蒸気(H2O)を添加したものである。真空ポンプに
よる排気量とガス供給装置によるガス導入量とを制御
し、真空容器11の内圧を5×10-3Torrに調整す
る。
Further, a gas inlet 25 is provided in the vacuum vessel 11.
A process gas is introduced via a. This process gas is obtained by adding 10% by volume water vapor (H 2 O) to 90% by volume of argon gas (Ar). The amount of exhaust by the vacuum pump and the amount of gas introduced by the gas supply device are controlled, and the internal pressure of the vacuum vessel 11 is adjusted to 5 × 10 −3 Torr.

【0019】次に、整合器18を介して、高周波電源1
9より高周波電力をターゲットホルダ電極15に印加す
ると、両電極15,22間に放電が発生し、放電により
生成されたアルゴンイオンがターゲット13の表面に衝
突し、これからスパッタ粒子が基板20に向かって飛び
出す。これによりITOスパッタ粒子が基板20上に堆
積し、ITO膜24が形成される。得られたITO膜2
4は、膜厚が50〜1000nm(0.05〜1μm)
の範囲にあり、その抵抗率は5×10-4Ω・cmであっ
た。この抵抗率の値は従来法で成膜されたものと実質的
に同等である。
Next, the high-frequency power supply 1
When a high-frequency power is applied to the target holder electrode 15 from FIG. 9, a discharge is generated between the electrodes 15 and 22, and argon ions generated by the discharge collide with the surface of the target 13, and the sputtered particles are directed toward the substrate 20. Jump out. As a result, ITO sputter particles are deposited on the substrate 20, and the ITO film 24 is formed. Obtained ITO film 2
No. 4 has a film thickness of 50 to 1000 nm (0.05 to 1 μm)
And the resistivity was 5 × 10 −4 Ω · cm. This value of the resistivity is substantially equal to that of the film formed by the conventional method.

【0020】図3の(a)は上述したようにして形成し
た本発明の第1実施形態に係る透明導電膜を走査型電子
顕微鏡(SEM)により観察し撮影した顕微鏡写真であ
る。このように三角形状の結晶粒が多数形成され、透明
導電膜の表面は凹凸形状を呈していることが判明した。
これに対して、図3の(b)はガス導入口25aより水
蒸気無しのアルゴンガス100体積%のみを導入(他の
条件は同じ)して形成した透明導電膜をSEMにより観
察し撮影した顕微鏡写真である。このように従来の膜の
表面は平滑であり凹凸形状は呈していない。両者の比較
から、プロセスガスに水蒸気を添加して成膜すると、透
明導電膜の表面が凹凸形状となり、ここで入射光が全反
射されて外へ行かない割合が増加するので、結果として
発電効率が向上することが判明した。
FIG. 3A is a micrograph of the transparent conductive film according to the first embodiment of the present invention formed as described above, which is observed and photographed with a scanning electron microscope (SEM). Thus, it was found that a large number of triangular crystal grains were formed, and the surface of the transparent conductive film had an uneven shape.
On the other hand, FIG. 3B shows a microscope in which a transparent conductive film formed by introducing only 100% by volume of argon gas without water vapor from the gas inlet 25a (the other conditions are the same) was observed and photographed by SEM. It is a photograph. As described above, the surface of the conventional film is smooth and has no uneven shape. From the comparison between the two, when the film is formed by adding water vapor to the process gas, the surface of the transparent conductive film becomes uneven, and the proportion of incident light that is totally reflected and does not go outside increases, resulting in power generation efficiency. Was found to improve.

【0021】この場合に、水蒸気添加量が0.01体積
%未満では成膜した透明導電膜の表面に凹凸形状が出現
しなくなるので、水蒸気添加量の下限値は0.01体積
%とする。一方、水蒸気添加量が50体積%を超えると
膜の抵抗率が1×10-3Ω・cmを超えてしまい電気的
性能が劣る膜となるので、水蒸気添加量の上限値は50
体積%とする。
In this case, if the amount of added steam is less than 0.01% by volume, no irregularities appear on the surface of the formed transparent conductive film. Therefore, the lower limit of the amount of added steam is set to 0.01% by volume. On the other hand, if the amount of added steam exceeds 50% by volume, the resistivity of the film exceeds 1 × 10 −3 Ω · cm, resulting in a film having poor electrical performance.
% By volume.

【0022】なお、水蒸気の添加と同時にさらに酸素を
添加すると透過率が一層向上する。しかし、酸素を1体
積%以上添加すると、膜の抵抗率が低下するので好まし
くない。
When oxygen is further added simultaneously with the addition of steam, the transmittance is further improved. However, if oxygen is added in an amount of 1% by volume or more, the resistivity of the film decreases, which is not preferable.

【0023】図4は上記の第1実施形態による透明導電
膜と従来の透明導電膜を備える太陽電池の短絡電流の比
較を示すグラフである。太陽電池の構成は図1に示す通
りとした。比較例として水蒸気を添加しない透明導電膜
を用いた太陽電池の短絡電流を1とすると、本研究で作
製した透明導電膜を用いた太陽電池の短絡電流Iscは
1.50と大幅に増加しており、大きな光電変換効率を
有していることが判明した。
FIG. 4 is a graph showing a comparison of short-circuit current between the transparent conductive film according to the first embodiment and a solar cell having a conventional transparent conductive film. The configuration of the solar cell was as shown in FIG. As a comparative example, assuming that the short-circuit current of the solar cell using the transparent conductive film without adding water vapor is 1, the short-circuit current Isc of the solar cell using the transparent conductive film manufactured in this study is significantly increased to 1.50. Thus, it was found to have a large photoelectric conversion efficiency.

【0024】(第2の実施形態)図5は本発明の第2の
実施形態に係る透明導電膜の製造に用いた装置を示す概
略構成図である。この第2実施形態では真空蒸着装置3
0を用いてITO透明導電膜をガラス基板上に成膜す
る。真空蒸着装置30は、図示されない真空排気装置に
よって真空排気される真空容器31を備えている。蒸発
源32には、ITOから構成される蒸発材料33が設置
されている。ここで、蒸発源32は電子ビーム加熱方
式、抵抗加熱方式、レーザ加熱方式など何れの加熱方式
のものであってもよい。真空容器31の側壁を貫通して
ガス供給管38が導入され、ガス導入口38aが真空容
器31内で開口している。このガス供給管38はプロセ
スガス供給源を備えるガス流量制御装置(図示せず)に
連通している。
(Second Embodiment) FIG. 5 is a schematic structural view showing an apparatus used for manufacturing a transparent conductive film according to a second embodiment of the present invention. In the second embodiment, the vacuum deposition device 3
Using 0, an ITO transparent conductive film is formed on a glass substrate. The vacuum vapor deposition device 30 includes a vacuum vessel 31 that is evacuated by a vacuum exhaust device (not shown). The evaporation source 32 is provided with an evaporation material 33 composed of ITO. Here, the evaporation source 32 may be of any heating method such as an electron beam heating method, a resistance heating method, or a laser heating method. A gas supply pipe 38 is introduced through the side wall of the vacuum vessel 31, and a gas inlet 38 a is opened in the vacuum vessel 31. The gas supply pipe 38 communicates with a gas flow control device (not shown) including a process gas supply source.

【0025】蒸発源32の上方には放電生成用の高周波
コイル34が、真空シール機能を備えた絶縁体35を通
じて固定されている。高周波コイル34には整合器36
を介して高周波電源37が接続されている。さらに、高
周波コイル34の上方には、ヒータ40を備えた基板ホ
ルダ電極39が設けられている。基板ホルダ電極39の
下面部には基板41が取り付け保持されている。
A high-frequency coil 34 for generating electric discharge is fixed above the evaporation source 32 through an insulator 35 having a vacuum sealing function. The high-frequency coil 34 has a matching device 36
The high frequency power supply 37 is connected via the. Further, a substrate holder electrode 39 having a heater 40 is provided above the high-frequency coil 34. A substrate 41 is attached and held on the lower surface of the substrate holder electrode 39.

【0026】上記の構成装置において、まず、無アルカ
リガラス等の基板41を有機溶剤(例えばアセトン)で
超音波洗浄を施した後に、基板ホルダ電極39に取り付
け、2×10-6Torr以下に予備排気する。ヒータ4
0により基板41を約150℃に加熱する。
In the above apparatus, first, the substrate 41 made of non-alkali glass or the like is subjected to ultrasonic cleaning with an organic solvent (for example, acetone), and then attached to the substrate holder electrode 39. The substrate 41 is kept at 2 × 10 −6 Torr or less. Exhaust. Heater 4
0 heats the substrate 41 to about 150 ° C.

【0027】さらに、真空容器31内にガス導入口38
aを介してプロセスガスを導入する。このプロセスガス
は、90体積%の酸素ガス(O2)に、10体積%の水
蒸気(H2O)を添加したものである。真空ポンプによ
る排気量とガス供給装置によるガス導入量とを制御し、
真空容器31の内圧を8×10-4Torrに調整する。
Further, a gas inlet 38 is provided in the vacuum vessel 31.
A process gas is introduced via a. This process gas is obtained by adding 10% by volume of steam (H 2 O) to 90% by volume of oxygen gas (O 2 ). Controlling the amount of exhaust by the vacuum pump and the amount of gas introduced by the gas supply device,
The internal pressure of the vacuum vessel 31 is adjusted to 8 × 10 −4 Torr.

【0028】次に、蒸発源32によりITOから構成さ
れる蒸発材料33を加熱し、蒸発させ、それと同時に整
合器36を介して、高周波電源37より高周波をコイル
34に印加し、放電プラズマ43を生成させ、成膜成分
を基板41上に堆積させる。これにより透明導電膜とし
てのITO膜42が基板41上に形成される。得られた
ITO膜42は、膜厚が50〜1000nm(0.05
〜1μm)の範囲にあり、その抵抗率は6×10-4Ω・
cmであった。この抵抗率の値は従来法で成膜されたも
のと実質的に同等である。
Next, the evaporating material 33 composed of ITO is heated and evaporated by the evaporating source 32, and at the same time, a high frequency is applied to the coil 34 from the high frequency power source 37 through the matching unit 36, and the discharge plasma 43 is generated. Then, the film forming components are deposited on the substrate 41. Thus, an ITO film 42 as a transparent conductive film is formed on the substrate 41. The obtained ITO film 42 has a thickness of 50 to 1000 nm (0.05
11 μm), and its resistivity is 6 × 10 −4 Ω ·
cm. This value of the resistivity is substantially equal to that of the film formed by the conventional method.

【0029】第6図(a)は上述したようにして形成し
た本発明の第2実施形態に係る透明導電膜を走査型電子
顕微鏡(SEM)により観察し撮影した顕微鏡写真であ
る。このように半球形状の結晶粒が多数形成され、透明
導電膜の表面は凹凸形状を呈していることが判明した。
これに対して、図6の(b)はガス導入口38aより水
蒸気無しの酸素ガス100体積%のみを導入(他の条件
は同じ)して形成した透明導電膜をSEMにより観察し
撮影した顕微鏡写真である。このように従来の膜の表面
は平滑であり凹凸形状は呈していない。両者の比較か
ら、プロセスガスに水蒸気を添加して成膜すると、透明
導電膜の表面が凹凸形状となり、ここで入射光が全反射
されて外へ行かない割合が増加するので、結果として発
電効率が向上することが判明した。
FIG. 6 (a) is a photomicrograph of the transparent conductive film according to the second embodiment of the present invention formed as described above, observed and photographed by a scanning electron microscope (SEM). Thus, it was found that a large number of hemispherical crystal grains were formed, and that the surface of the transparent conductive film had an uneven shape.
On the other hand, FIG. 6B shows a microscope in which a transparent conductive film formed by introducing only 100% by volume of oxygen gas without water vapor from the gas inlet 38a (other conditions are the same) was observed and photographed by SEM. It is a photograph. As described above, the surface of the conventional film is smooth and has no uneven shape. From the comparison between the two, when the film is formed by adding water vapor to the process gas, the surface of the transparent conductive film becomes uneven, and the proportion of incident light that is totally reflected and does not go outside increases, resulting in power generation efficiency. Was found to improve.

【0030】この場合に、水蒸気添加量が0.01体積
%未満では成膜した透明導電膜の表面に凹凸形状が出現
しなくなるので、水蒸気添加量の下限値は0.01体積
%とする。一方、水蒸気添加量が50体積%を超えると
膜の抵抗率が1×10-3Ω・cmを超えてしまい電気的
性能が劣る膜となるので、水蒸気添加量の上限値は50
体積%とする。
In this case, if the amount of steam addition is less than 0.01% by volume, no irregularities appear on the surface of the formed transparent conductive film, so the lower limit of the amount of steam addition is 0.01% by volume. On the other hand, if the amount of added steam exceeds 50% by volume, the resistivity of the film exceeds 1 × 10 −3 Ω · cm, resulting in a film having poor electrical performance.
% By volume.

【0031】図7は上記の第2実施形態による透明導電
膜と従来の透明導電膜を備える太陽電池の短絡電流の比
較を示すグラフである。太陽電池の構成は図1に示す通
りとした。比較例として水蒸気を添加しない透明導電膜
を用いた太陽電池の短絡電流を1とすると、本研究で作
製した透明導電膜を用いた太陽電池の短絡電流Iscは
1.45と大幅に増加しており、大きな光電変換効率を
有していることが判明した。
FIG. 7 is a graph showing a comparison of the short-circuit current of the solar cell having the transparent conductive film according to the second embodiment and a conventional transparent conductive film. The configuration of the solar cell was as shown in FIG. As a comparative example, assuming that the short-circuit current of a solar cell using a transparent conductive film to which water vapor is not added is 1, the short-circuit current Isc of the solar cell using the transparent conductive film manufactured in this study is significantly increased to 1.45. Thus, it was found to have a large photoelectric conversion efficiency.

【0032】[0032]

【発明の効果】上述したように本発明によれば、150
℃以下の基板温度で表面に凹凸構造をもつ透明導電膜を
形成することができ、IV族半導体発電層に熱的損傷を生
じることなく、得られた透明導電膜は高透過率を示し、
かつ低抵抗である。このような本発明の透明導電膜を用
いた太陽電池は大きな短絡電流Iscが得られ、光電変換
効率が著しく向上する。
As described above, according to the present invention, 150
A transparent conductive film having a concavo-convex structure on the surface can be formed at a substrate temperature of not more than ℃, without causing thermal damage to the group IV semiconductor power generation layer, the obtained transparent conductive film shows high transmittance,
And low resistance. Such a solar cell using the transparent conductive film of the present invention can obtain a large short-circuit current Isc and significantly improve photoelectric conversion efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】IV族半導体太陽電池の構造の一例を示す断面
図。
FIG. 1 is a sectional view showing an example of a structure of a group IV semiconductor solar cell.

【図2】本発明の第1の実施形態に係る透明導電膜の製
造に用いられるスパッタリング装置を示す概略構成図。
FIG. 2 is a schematic configuration diagram showing a sputtering apparatus used for manufacturing a transparent conductive film according to the first embodiment of the present invention.

【図3】(a)は本発明の第1の実施形態に係る透明導
電膜を示す顕微鏡写真、(b)は従来の透明導電膜を示
す顕微鏡写真である。
3A is a micrograph showing a transparent conductive film according to the first embodiment of the present invention, and FIG. 3B is a micrograph showing a conventional transparent conductive film.

【図4】第1実施形態の透明導電膜を備える太陽電池と
従来の透明導電膜を備える太陽電池とにつき短絡電流を
比較して示すグラフ。
FIG. 4 is a graph showing a comparison between short-circuit currents of a solar cell including the transparent conductive film according to the first embodiment and a solar cell including a conventional transparent conductive film.

【図5】本発明の第2の実施形態に係る透明導電膜の製
造に用いられる真空蒸着装置を示す概略構成図。
FIG. 5 is a schematic configuration diagram showing a vacuum evaporation apparatus used for manufacturing a transparent conductive film according to a second embodiment of the present invention.

【図6】(a)は本発明の第2の実施形態に係る透明導
電膜を示す顕微鏡写真、(b)は従来の透明導電膜を示
す顕微鏡写真である。
FIG. 6A is a micrograph showing a transparent conductive film according to a second embodiment of the present invention, and FIG. 6B is a micrograph showing a conventional transparent conductive film.

【図7】第2実施形態の透明導電膜を備える太陽電池と
従来の透明導電膜を備える太陽電池とにつき短絡電流を
比較して示すグラフ。
FIG. 7 is a graph showing a comparison between short-circuit currents of a solar cell including a transparent conductive film according to the second embodiment and a solar cell including a conventional transparent conductive film.

【符号の説明】[Explanation of symbols]

1…基板、2…SnO2透明導電膜、3…IV族半導体発
電層(a−Si層)、4…ITO透明導電膜、5…アル
ミニウム電極膜、6…アルミニウム電極(集電電極)、
10…スパッタリング装置、11…真空容器、12…ス
パッタ源、13…ターゲット、14…磁石、15…ター
ゲットホルダ電極、16…シールド、17…絶縁体、1
8…整合器、19…高周波電源、20…基板、21…ヒ
ータ、22…基板ホルダ電極、23…絶縁体、24…I
TO透明導電膜、25…ガス供給管、25a…ガス導入
口、26…排気口、30…真空蒸着装置、31…真空容
器、32…蒸発源、33…蒸発材料、34…高周波コイ
ル、35…絶縁体、36…整合器、37…高周波電源、
38…ガス供給管、38a…ガス導入口、39…基板ホ
ルダ電極、40…ヒータ、41…基板、42…ITO透
明導電膜、43…プラズマ、46…排気口。
1 ... substrate, 2 ... SnO 2 transparent conductive film, 3 ... IV group semiconductor power layer (a-Si layer), 4 ... ITO transparent conductive film, 5 ... aluminum electrode film, 6 ... aluminum electrode (collecting electrode),
DESCRIPTION OF SYMBOLS 10 ... Sputtering apparatus, 11 ... Vacuum container, 12 ... Sputter source, 13 ... Target, 14 ... Magnet, 15 ... Target holder electrode, 16 ... Shield, 17 ... Insulator, 1
8 Matching device 19 High frequency power supply 20 Substrate 21 Heater 22 Substrate holder electrode 23 Insulator 24 I
TO transparent conductive film, 25 gas supply pipe, 25a gas inlet, 26 exhaust port, 30 vacuum evaporation device, 31 vacuum container, 32 evaporation source, 33 evaporation material, 34 high frequency coil, 35 Insulator, 36 matching device, 37 high frequency power supply,
38: gas supply pipe, 38a: gas inlet, 39: substrate holder electrode, 40: heater, 41: substrate, 42: ITO transparent conductive film, 43: plasma, 46: exhaust port.

フロントページの続き (72)発明者 森田 章二 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社基盤技術研究所内 (72)発明者 高野 暁己 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 Fターム(参考) 4K029 AA06 AA09 BA45 BA47 BA50 BB01 BB02 BC09 BD00 CA01 CA05 DB18 DB20 DB21 DC05 EA01 EA05 EA08 FA06 5G307 FA01 FA03 FB01 FC09 FC10 5G323 BA02 BB05 Continued on the front page (72) Inventor Shoji Morita 1-8-1 Koura, Kanazawa-ku, Yokohama-shi Inside the Basic Technology Research Laboratory Mitsubishi Heavy Industries, Ltd. (72) Inventor Akemi Takano 5-717-1 Fukahori-cho, Nagasaki-shi, Nagasaki Prefecture No. F-term (reference) in Nagasaki Research Laboratory, Nagasaki R & D Co., Ltd. 4K029 AA06 AA09 BA45 BA47 BA50 BB01 BB02 BC09 BD00 CA01 CA05 DB18 DB20 DB21 DC05 EA01 EA05 EA08 FA06 5G307 FA01 FA03 FB01 FC09 FC10 5G323 BA02 BB05

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 IV族半導体発電層の上に積層される透明
導電膜であって、前記IV族半導体発電層に熱的損傷を及
ぼさない150℃以下の温度域で、酸化インジウム・酸
化錫複合酸化物の蒸気とともに水蒸気を作用させて成膜
され、凹凸形状の表面を有することを特徴とする透明導
電膜。
1. A transparent conductive film laminated on a group IV semiconductor power generation layer, wherein the indium oxide / tin oxide composite is used in a temperature range of 150 ° C. or less so as not to thermally damage the group IV semiconductor power generation layer. A transparent conductive film, which is formed by applying water vapor together with the vapor of an oxide to form a film and has an uneven surface.
【請求項2】 さらに、酸化インジウム・酸化錫複合酸
化物の蒸気および水蒸気とともに酸素を作用させて成膜
されたことを特徴とする請求項1記載の透明導電膜。
2. The transparent conductive film according to claim 1, further comprising a film formed by applying oxygen together with vapor and water vapor of the indium oxide / tin oxide composite oxide.
【請求項3】 アルゴンガスを50〜99.99体積
%、水蒸気を50〜0.01体積%、酸素ガスを0〜1
体積%それぞれ含有する混合ガスを作用させて成膜され
たことを特徴とする請求項1または2のいずれかに記載
の透明導電膜。
3. An amount of 50 to 99.99% by volume of argon gas, 50 to 0.01% by volume of water vapor and 0 to 1% by volume of oxygen gas.
The transparent conductive film according to claim 1, wherein the film is formed by applying a mixed gas containing each volume%.
【請求項4】 酸素ガスを50〜99.99体積%、水
蒸気を50〜0.01体積%それぞれ含有する混合ガス
を作用させて成膜されたことを特徴とする請求項2記載
の透明導電膜。
4. The transparent conductive film according to claim 2, wherein a film is formed by applying a mixed gas containing 50 to 99.99% by volume of oxygen gas and 50 to 0.01% by volume of water vapor. film.
【請求項5】 三角形状の結晶粒が多数並ぶことにより
表面の凹凸形状が形成されることを特徴とする請求項1
記載の透明導電膜。
5. The surface irregularities formed by arranging a large number of triangular crystal grains.
The transparent conductive film according to the above.
【請求項6】 半球形状の結晶粒が多数並ぶことにより
表面の凹凸形状が形成されることを特徴とする請求項1
記載の透明導電膜。
6. A surface irregularity formed by arranging a large number of hemispherical crystal grains.
The transparent conductive film according to the above.
【請求項7】 膜厚が50〜1000nmの範囲にある
ことを特徴とする請求項1記載の透明導電膜。
7. The transparent conductive film according to claim 1, wherein the thickness is in the range of 50 to 1000 nm.
【請求項8】 IV族半導体発電層の上に積層される透明
導電膜の製造方法において、 (a)IV族半導体発電層を有する基板を真空容器内に搬
入する工程と、 (b)IV族半導体発電層に熱的損傷を及ぼさない150
℃以下の温度域に基板を温度調整する工程と、 (c)膜材料となる酸化インジウム・酸化錫複合酸化物
の蒸気またはスパッタ粒子を前記真空容器内で生成する
とともに、水蒸気を前記真空容器内に導入し、水蒸気の
共存下で酸化インジウム・酸化錫複合酸化物の蒸気また
はスパッタ粒子を前記IV族半導体発電層の上に堆積さ
せ、凹凸形状の表面を有する酸化インジウム・酸化錫複
合酸化物の膜を積層形成する工程と、を具備することを
特徴とする透明導電膜の製造方法。
8. A method for producing a transparent conductive film laminated on a group IV semiconductor power generation layer, comprising: (a) carrying a substrate having a group IV semiconductor power generation layer into a vacuum vessel; 150 that does not thermally damage the semiconductor power generation layer
(C) generating vapor or sputtered particles of indium oxide / tin oxide composite oxide as a film material in the vacuum vessel, and distributing water vapor in the vacuum vessel. And vapor or sputtered particles of indium oxide / tin oxide composite oxide are deposited on the group IV semiconductor power generation layer in the presence of water vapor to form an indium oxide / tin oxide composite oxide having an uneven surface. A method of manufacturing a transparent conductive film, comprising: forming a film by lamination.
【請求項9】 上記工程(c)では、さらに酸素ガスを
前記真空容器内に導入することを特徴とする請求項8記
載の透明導電膜の製造方法。
9. The method according to claim 8, wherein in the step (c), an oxygen gas is further introduced into the vacuum vessel.
【請求項10】 上記工程(c)では、真空容器内にア
ルゴンガスと水蒸気と酸素ガスとを導入し、膜材料とな
る酸化インジウム・酸化錫複合酸化物ターゲットと基板
との間に高周波を印可して放電を生じさせ、水蒸気およ
び酸素ガスの共存下でターゲット表面から酸化インジウ
ム・酸化錫複合酸化物のスパッタ粒子を飛び出させるこ
とにより、凹凸形状の表面を有する酸化インジウム・酸
化錫複合酸化物の膜をIV族半導体発電層の上に積層形成
することを特徴とする請求項8または9のいずれかに記
載の透明導電膜の製造方法。
10. In the step (c), an argon gas, water vapor and an oxygen gas are introduced into a vacuum vessel, and a high frequency is applied between an indium oxide / tin oxide composite oxide target to be a film material and the substrate. Discharge, and sputter particles of indium oxide / tin oxide composite oxide fly out of the target surface in the coexistence of water vapor and oxygen gas, thereby forming an indium oxide / tin oxide composite oxide having an uneven surface. The method for producing a transparent conductive film according to claim 8, wherein the film is formed on the group IV semiconductor power generation layer.
【請求項11】 アルゴンガスを50〜99.99体積
%、水蒸気を50〜0.01体積%、酸素ガスを0〜1
体積%それぞれ含有する混合ガスを作用させることを特
徴とする請求項8乃至10のいずれか1に記載の透明導
電膜の製造方法。
11. An argon gas of 50 to 99.99% by volume, a water vapor of 50 to 0.01% by volume, and an oxygen gas of 0 to 1%.
The method for producing a transparent conductive film according to any one of claims 8 to 10, wherein a mixed gas containing each volume% is applied.
【請求項12】 上記工程(c)では、膜材料となる酸
化インジウム・酸化錫複合酸化物を蒸発源で加熱し、蒸
発させて蒸気を生成し、さらに水蒸気および酸素ガスを
前記真空容器内に導入し、前記蒸発源と基板とで挟まれ
た領域に放電を生じさせ、前記酸化インジウム・酸化錫
複合酸化物蒸気、水蒸気、酸素ガスをプラズマ化するこ
とにより、凹凸形状の表面を有する酸化インジウム・酸
化錫複合酸化物の膜をIV族半導体発電層の上に積層形成
することを特徴とする請求項8記載の透明導電膜の製造
方法。
12. In the step (c), indium oxide / tin oxide composite oxide serving as a film material is heated by an evaporation source and evaporated to generate steam, and steam and oxygen gas are further introduced into the vacuum vessel. Introduced, a discharge is generated in a region sandwiched between the evaporation source and the substrate, and the indium oxide / tin oxide composite oxide vapor, water vapor, and oxygen gas are turned into plasma, thereby forming an indium oxide having an uneven surface. 9. The method for producing a transparent conductive film according to claim 8, wherein a film of a tin oxide composite oxide is laminated on the group IV semiconductor power generation layer.
【請求項13】 酸素ガスが50〜99.99体積%、
水蒸気が50〜0.01体積%であることを特徴とする
請求項12記載の透明導電膜の製造方法。
13. An oxygen gas comprising 50 to 99.99% by volume,
The method for producing a transparent conductive film according to claim 12, wherein the water vapor is 50 to 0.01% by volume.
JP23399699A 1999-08-20 1999-08-20 Transparent conductive film and method for manufacturing the same Expired - Fee Related JP3453329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23399699A JP3453329B2 (en) 1999-08-20 1999-08-20 Transparent conductive film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23399699A JP3453329B2 (en) 1999-08-20 1999-08-20 Transparent conductive film and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001059157A true JP2001059157A (en) 2001-03-06
JP3453329B2 JP3453329B2 (en) 2003-10-06

Family

ID=16963927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23399699A Expired - Fee Related JP3453329B2 (en) 1999-08-20 1999-08-20 Transparent conductive film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3453329B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143232A1 (en) * 2007-05-22 2008-11-27 Nippon Electric Glass Co., Ltd. Transparent electrode
JP2011187640A (en) * 2010-03-08 2011-09-22 Sumitomo Heavy Ind Ltd Deposition substrate, method for manufacturing the deposition substrate, and deposition device
JP2013001991A (en) * 2011-06-21 2013-01-07 Ulvac Japan Ltd Deposition method
CN103451605A (en) * 2013-09-12 2013-12-18 昆山奥德鲁自动化技术有限公司 ITO (Indium Tin Oxides) coarsening type evaporation method
JP2019183209A (en) * 2018-04-05 2019-10-24 株式会社アルバック Sputtering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143232A1 (en) * 2007-05-22 2008-11-27 Nippon Electric Glass Co., Ltd. Transparent electrode
JP2011187640A (en) * 2010-03-08 2011-09-22 Sumitomo Heavy Ind Ltd Deposition substrate, method for manufacturing the deposition substrate, and deposition device
JP2013001991A (en) * 2011-06-21 2013-01-07 Ulvac Japan Ltd Deposition method
CN103451605A (en) * 2013-09-12 2013-12-18 昆山奥德鲁自动化技术有限公司 ITO (Indium Tin Oxides) coarsening type evaporation method
JP2019183209A (en) * 2018-04-05 2019-10-24 株式会社アルバック Sputtering device

Also Published As

Publication number Publication date
JP3453329B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
US5977477A (en) Photovoltaic device
CN108470834B (en) A kind of large area perovskite solar battery and preparation method thereof
CN101294272A (en) Method for sputtering and depositing tin indium oxide transparent electroconductive film on flexible substrate at room temperature
JPH07297421A (en) Manufacture of thin film semiconductor solar battery
JPS6091626A (en) Method of producing amorphous silicon pin semiconductor device
JP3697190B2 (en) Solar cell
CN109841691A (en) A kind of Electrochromic Molybdenum Oxide Coatings preparation method and using Electrochromic Molybdenum Oxide Coatings as the silicon heterojunction solar battery of hole transmission layer
CN101497992A (en) Method for preparing pile face zinc oxide transparent conductive film coating glass by plasma bombardment
JP2003105533A (en) Method of producing transparent electroconductive film and transparent electroconductive film
JP6979938B2 (en) Conductive transparent aluminum-doped zinc oxide sputtered film
JP2002363744A (en) Multi-layered film manufacturing apparatus, and manufacturing method thereof
JP2001059157A (en) Transparent electrically conductive film and its production
JP2001176334A (en) Transparent conductive film and its manufacturing method
CN106893984A (en) The preparation method of the tin-doped indium oxide based coextruded film of enhancing visible light wave range transmission
JP2008077924A (en) Photoelectric converter
CN108511535A (en) A kind of solar battery sheet and preparation method thereof
JP4397451B2 (en) Transparent conductive thin film and method for producing the same
JP2003253435A (en) Method of depositing rugged film and method of manufacturing photoelectric converter
JPH08153882A (en) Production of thin film solar cell
JP2004165080A (en) Substrate with ito transparent conductive film used for dye sensitizing solar battery
JP2000022181A (en) Transparent electrode substrate for optoelectric conversion element and its machining method
JP2726323B2 (en) Thin-film solar cell fabrication method
JP2841213B2 (en) Method for manufacturing solar cell substrate
CN112941479B (en) Method for adjusting thickness of silver layer by tin dioxide/silver/tin dioxide transparent conductive film and application
CN112853309B (en) Preparation method of ITO film suitable for HIT battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees