JP2008077924A - Photoelectric converter - Google Patents

Photoelectric converter Download PDF

Info

Publication number
JP2008077924A
JP2008077924A JP2006254444A JP2006254444A JP2008077924A JP 2008077924 A JP2008077924 A JP 2008077924A JP 2006254444 A JP2006254444 A JP 2006254444A JP 2006254444 A JP2006254444 A JP 2006254444A JP 2008077924 A JP2008077924 A JP 2008077924A
Authority
JP
Japan
Prior art keywords
film
oxide
transparent conductive
photoelectric conversion
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006254444A
Other languages
Japanese (ja)
Inventor
Akira Fujisawa
章 藤沢
Masahiro Hirata
昌宏 平田
Shozo Yanagida
祥三 柳田
Jiangbin Xia
江濱 夏
Shigehiko Masaki
成彦 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006254444A priority Critical patent/JP2008077924A/en
Publication of JP2008077924A publication Critical patent/JP2008077924A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converter capable of preventing counter electron transfer from a transparent electrode and improving photoelectric conversion efficiency. <P>SOLUTION: A dye sensitized solar cell 100 comprises: two flat, transparent soda lime glass substrates 10a, 10b that are 5 cm square and 3 mm thick; transparent conductive films 20a, 20b that are formed on respective glass substrates 10a, 10b and are made of tin oxide that is as thick as 750 nm while fluorine is added; a niobium oxide (Nb<SB>2</SB>O<SB>5</SB>) film 25 formed on the transparent conductive film 20a; a semiconductor fine particle layer 30 made of titanium oxide formed on the niobium oxide (Nb<SB>2</SB>O<SB>5</SB>) film 25; an electrolyte solution 40 formed on the semiconductor fine particle layer 30; and a counter electrode 50 made of platinum formed between the transparent conductive film 20b and the electrolyte solution 40. The transparent conductive film 20a and the niobium oxide (Nb<SB>2</SB>O<SB>5</SB>) film 25 form a transparent electrode 60. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光電変換装置に関し、特に、透明電極を備える光電変換装置に関する。   The present invention relates to a photoelectric conversion device, and more particularly to a photoelectric conversion device including a transparent electrode.

近年のエネルギー問題および環境問題を解決する手段として、太陽電池に代表される光電変換装置が注目を集めている。この光電変換装置の中でも、特に、色素増感太陽電池は、製造工程において、高温処理する必要がなかったり、真空装置内の処理を行う必要がなかったり、不足しているシリコン基板を用いる必要がないことから、製造コストが低減された安価な太陽電池として期待が高まっている。この色素増感太陽電池は、ガラス等の透明基板に酸化錫等の透明導電膜を形成した後、酸化チタン等の半導体微粒子を形成し、この半導体微粒子にルテニウム錯体色素を担持させ、白金等を形成した対向電極を貼り合わせることによって製造される(例えば、非特許文献1及び特許文献1参照)。   As means for solving energy problems and environmental problems in recent years, photoelectric conversion devices represented by solar cells have attracted attention. Among the photoelectric conversion devices, in particular, the dye-sensitized solar cell does not need to be subjected to high temperature processing in the manufacturing process, does not need to perform processing in the vacuum device, or needs to use a deficient silicon substrate. Therefore, there is an increasing expectation for an inexpensive solar cell with reduced manufacturing costs. In this dye-sensitized solar cell, a transparent conductive film such as tin oxide is formed on a transparent substrate such as glass, and then semiconductor fine particles such as titanium oxide are formed. It is manufactured by bonding the formed counter electrode (see, for example, Non-Patent Document 1 and Patent Document 1).

上記色素増感太陽電池は、電解質中に溶解した色素分子が光を吸収することにより色素分子の電子が励起され、この励起された電子が酸化チタン電極中に注入されるという原理であり、酸化チタン等の半導体微粒子にルテニウム錯体色素を担持させた後に電解質が注入されることにより製造される。   The dye-sensitized solar cell is based on the principle that dye molecules dissolved in an electrolyte absorb light to excite the electrons of the dye molecules, and the excited electrons are injected into the titanium oxide electrode. It is manufactured by injecting an electrolyte after supporting a ruthenium complex dye on semiconductor fine particles such as titanium.

また、上記色素増感太陽電池において、ガラス基板上に酸化錫膜から成る透明導電膜が透明電極として光が入射する側に設けられている。   In the dye-sensitized solar cell, a transparent conductive film made of a tin oxide film is provided on a glass substrate on the side where light enters as a transparent electrode.

さらに、透明導電膜及び半導体微粒子間に下引き層を形成した光電変換素子が提案されている(例えば、特許文献2参照)。
Brian O’ Regan および Michael Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, United Kingdom, Nature Publishing Group, 1991年, vol.353, p.737-740 特開平1−220380号公報 特開2001−143771号公報
Furthermore, a photoelectric conversion element in which an undercoat layer is formed between a transparent conductive film and semiconductor fine particles has been proposed (see, for example, Patent Document 2).
Brian O 'Regan and Michael Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, United Kingdom, Nature Publishing Group, 1991, vol.353, p.737-740 Japanese Patent Laid-Open No. 1-220380 JP 2001-143771 A

しかしながら、酸化錫膜のみを透明電極として用いた場合に、光を吸収することにより励起された色素分子の電子が、酸化チタン等の半導体微粒子を通って酸化錫膜に移動した後に、電解質液に接した酸化錫膜の表面から電解質液側に逆電子移動を起こして、得られる電力を低減してしまうという問題があった。   However, when only the tin oxide film is used as the transparent electrode, the electrons of the dye molecules excited by absorbing light move to the tin oxide film through the semiconductor fine particles such as titanium oxide, and then into the electrolyte solution. There has been a problem that reverse electron transfer is caused from the surface of the contacted tin oxide film to the electrolyte solution side to reduce the electric power obtained.

透明導電膜と半導体微粒子との間に下引き層を形成することにより上記問題を解決することもできるが、特許文献2において提案されている光電変換素子によっては十分に高い光電変換効率を得ることができなかった。   Although the above problem can be solved by forming an undercoat layer between the transparent conductive film and the semiconductor fine particles, a sufficiently high photoelectric conversion efficiency can be obtained depending on the photoelectric conversion element proposed in Patent Document 2. I could not.

本発明の目的は、透明電極からの逆電子移動を防ぐと共に光電変換効率を向上することができる光電変換装置を提供することにある。   The objective of this invention is providing the photoelectric conversion apparatus which can improve the photoelectric conversion efficiency while preventing the reverse electron transfer from a transparent electrode.

上述の目的を達成するために、請求項1記載の光電変換装置は、ガラス基板と、前記ガラス基板上に形成された主として酸化錫から成る透明導電膜、及び、前記透明導電膜上に形成され、酸化ニオブ(Nb)、酸化マグネシウム(MgO)、酸化アルミニウム(Al)の群から選択される少なくとも1つから成る酸化物膜を有する透明電極とを備える光電変換装置であって、前記酸化物膜は膜厚が0.4〜70nmであることを特徴とする。 In order to achieve the above object, a photoelectric conversion device according to claim 1 is formed on a glass substrate, a transparent conductive film mainly made of tin oxide formed on the glass substrate, and the transparent conductive film. A transparent electrode having an oxide film made of at least one selected from the group consisting of niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), and aluminum oxide (Al 2 O 3 ). The oxide film has a thickness of 0.4 to 70 nm.

請求項2記載の光電変換装置は、請求項1記載の光電変換装置において、前記酸化物膜は膜厚が3〜5nmの酸化ニオブ(Nb)から成ることを特徴とする。 The photoelectric conversion device according to claim 2 is the photoelectric conversion device according to claim 1, wherein the oxide film is made of niobium oxide (Nb 2 O 5 ) having a thickness of 3 to 5 nm.

請求項3記載の光電変換装置は、請求項2記載の光電変換装置において、光電変換効率が4.4%以上であることを特徴とする。   The photoelectric conversion device according to claim 3 is the photoelectric conversion device according to claim 2, wherein the photoelectric conversion efficiency is 4.4% or more.

請求項4記載の光電変換装置は、請求項1乃至3のいずれか1項に記載の光電変換装置において、前記光電変換装置は色素増感太陽電池であることを特徴とする。   The photoelectric conversion device according to claim 4 is the photoelectric conversion device according to any one of claims 1 to 3, wherein the photoelectric conversion device is a dye-sensitized solar cell.

請求項1記載の光電変換装置によれば、ガラス基板と、ガラス基板上に形成された主として酸化錫から成る透明導電膜、及び、透明導電膜上に形成され、酸化ニオブ(Nb)、酸化マグネシウム(MgO)、酸化アルミニウム(Al)の群から選択される少なくとも1つから成る酸化物膜を有する透明電極とを備え、酸化物膜は膜厚が0.4〜70nmであるので、透明導電膜への電子の移動を妨げることなく、透明導電膜から電解質液側への逆電子移動を防ぐことができ、もって光電変換効率を向上することができる。 According to the photoelectric conversion device of claim 1, a glass substrate, a transparent conductive film mainly made of tin oxide formed on the glass substrate, and niobium oxide (Nb 2 O 5 ) formed on the transparent conductive film. And a transparent electrode having an oxide film made of at least one selected from the group consisting of magnesium oxide (MgO) and aluminum oxide (Al 2 O 3 ), the oxide film having a thickness of 0.4 to 70 nm Therefore, the reverse electron transfer from the transparent conductive film to the electrolyte solution side can be prevented without hindering the movement of electrons to the transparent conductive film, and the photoelectric conversion efficiency can be improved.

請求項2記載の光電変換装置によれば、酸化物膜は膜厚が3〜5nmの酸化ニオブ(Nb)から成るので、光電変換効率を4.4%以上に向上することができる。 According to the photoelectric conversion device of claim 2, since the oxide film is made of niobium oxide (Nb 2 O 5 ) having a thickness of 3 to 5 nm, the photoelectric conversion efficiency can be improved to 4.4% or more. .

本明細書において、用語「主として」とは50重量%以上を占めることを意味する。   In the present specification, the term “mainly” means 50% by weight or more.

以下、本発明の実施の形態に係る光電変換装置を図面を参照しながら詳述する。   Hereinafter, a photoelectric conversion device according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態に係る光電変換装置としての色素増感太陽電池の構成を概略的に示す図である。   FIG. 1 is a diagram schematically showing a configuration of a dye-sensitized solar cell as a photoelectric conversion device according to an embodiment of the present invention.

図1において、色素増感太陽電池100は、大きさ5cm角、厚さ3mmの板状の透明な2枚のソーダライムガラス基板10a,10bと、各ガラス基板10a,10bの上に形成された厚さ750nmのフッ素添加の酸化錫から成る透明導電膜20a,20bと、透明導電膜20a上に形成された酸化ニオブ(Nb)膜25と、酸化ニオブ(Nb)膜25上に形成された酸化チタンから成る半導体微粒子層30と、半導体微粒子層30上に形成された電解質液40と、透明導電膜20b及び電解質液40間に形成された白金から成る対向電極50とを備える。上記透明導電膜20a及び酸化ニオブ(Nb)膜25が透明電極60を形成する。なお、板ガラス製造ライン上でガラス基板10a,10bを形成すると同時に,ガラスリボンのもつ熱エネルギーを利用して成膜を行うオンラインCVD法により、ガラス基板10a,10b上に透明導電膜20a,20bを形成することが好ましい。これにより、大面積のガラスへの生産性よく透明導電膜20a,20bを形成することができる。 In FIG. 1, a dye-sensitized solar cell 100 is formed on two transparent soda-lime glass substrates 10a and 10b each having a size of 5 cm square and a thickness of 3 mm, and the glass substrates 10a and 10b. Transparent conductive films 20a and 20b made of fluorine-added tin oxide having a thickness of 750 nm, a niobium oxide (Nb 2 O 5 ) film 25 formed on the transparent conductive film 20a, and a niobium oxide (Nb 2 O 5 ) film 25 A semiconductor fine particle layer 30 made of titanium oxide formed thereon, an electrolyte solution 40 formed on the semiconductor fine particle layer 30, and a counter electrode 50 made of platinum formed between the transparent conductive film 20b and the electrolyte solution 40. Prepare. The transparent conductive film 20 a and the niobium oxide (Nb 2 O 5 ) film 25 form the transparent electrode 60. The transparent conductive films 20a and 20b are formed on the glass substrates 10a and 10b by the on-line CVD method in which the glass substrates 10a and 10b are formed on the plate glass production line and at the same time the film is formed using the thermal energy of the glass ribbon. It is preferable to form. Thereby, the transparent conductive films 20a and 20b can be formed with high productivity on a large-area glass.

透明導電膜20a上に形成された酸化ニオブ(Nb)膜25の替わりに、酸化マグネシウム(MgO)又は酸化アルミニウム(Al)から成る被膜を用いてもよい。ここで、酸化ニオブ(Nb)膜25、酸化マグネシウム(MgO)膜、又は酸化アルミニウム(Al)膜は、膜厚が0.4〜70nmの範囲内であることが好ましい。即ち、これらの酸化ニオブ(Nb)膜25、酸化マグネシウム(MgO)膜、又は酸化アルミニウム(Al)膜の膜厚が0.4nm以上であれば、被膜が十分に形成され、逆電子移動を防止する効果がより確実となる。一方、これらの酸化ニオブ(Nb)膜25、酸化マグネシウム(MgO)膜、又は酸化アルミニウム(Al)膜の膜厚が70nm以下であれば、酸化チタンから成る半導体微粒子層30を経由してきた電子を、より確実に、フッ素添加の酸化錫から成る透明導電膜20a側に移動することができ、もって電力をより十分に得ることができる。 Instead of the niobium oxide (Nb 2 O 5 ) film 25 formed on the transparent conductive film 20a, a film made of magnesium oxide (MgO) or aluminum oxide (Al 2 O 3 ) may be used. Here, the niobium oxide (Nb 2 O 5 ) film 25, the magnesium oxide (MgO) film, or the aluminum oxide (Al 2 O 3 ) film preferably has a thickness in the range of 0.4 to 70 nm. That is, if the thickness of these niobium oxide (Nb 2 O 5 ) film 25, magnesium oxide (MgO) film, or aluminum oxide (Al 2 O 3 ) film is 0.4 nm or more, a coating film is sufficiently formed. The effect of preventing reverse electron transfer is more certain. On the other hand, when the film thickness of these niobium oxide (Nb 2 O 5 ) film 25, magnesium oxide (MgO) film, or aluminum oxide (Al 2 O 3 ) film is 70 nm or less, the semiconductor fine particle layer 30 made of titanium oxide. The electrons that have passed through can be moved to the transparent conductive film 20a side made of fluorine-added tin oxide more reliably, so that sufficient electric power can be obtained.

上記酸化ニオブ(Nb)膜25、酸化マグネシウム(MgO)膜、又は酸化アルミニウム(Al)膜の形成方法としては、スパッタリング法、イオンプレーティング法、真空蒸着法、電子ビーム蒸着法、化学的堆積法(CVD法)、スプレーパイロリシス法等が挙げられる。 As a method for forming the niobium oxide (Nb 2 O 5 ) film 25, the magnesium oxide (MgO) film, or the aluminum oxide (Al 2 O 3 ) film, a sputtering method, an ion plating method, a vacuum evaporation method, an electron beam evaporation method can be used. Method, chemical deposition method (CVD method), spray pyrolysis method and the like.

フッ素添加の酸化錫から成る透明導電膜20a,20bは、電極として用いることができるという観点から、シート抵抗は1〜500Ω/□の範囲であることが望ましい。また、透明導電膜20a,20bの膜厚としては10〜2000nmの範囲内であることが好ましい。透明導電膜20a,20bの膜厚が10nm以上であれば、より十分に低いシート抵抗が得られ、透明導電膜20a,20bの膜厚が2000nm以下であれば、透明導電膜20a,20bの光吸収がより十分に低くなって光の透過率が十分に高くなるので、半導体微粒子層30における半導体微粒子に担持された色素に十分に光が届くようになる。   From the viewpoint that the transparent conductive films 20a and 20b made of fluorine-added tin oxide can be used as electrodes, the sheet resistance is preferably in the range of 1 to 500Ω / □. The film thickness of the transparent conductive films 20a and 20b is preferably in the range of 10 to 2000 nm. If the film thickness of the transparent conductive films 20a and 20b is 10 nm or more, a sufficiently lower sheet resistance can be obtained. If the film thickness of the transparent conductive films 20a and 20b is 2000 nm or less, the light of the transparent conductive films 20a and 20b is obtained. Since the absorption becomes sufficiently lower and the light transmittance becomes sufficiently high, the light can sufficiently reach the dye supported on the semiconductor fine particles in the semiconductor fine particle layer 30.

また、酸化チタンから成る半導体微粒子層30の厚さとしては1000〜50000nmの範囲内であることが好ましい。半導体微粒子層30の厚さが1000nm以上であれば、半導体微粒子に担持された色素の量が十分に多いので、電子が十分に発生する。一方、半導体微粒子層30の厚みが50000nm以下であれば、より生産性が高くなる。   The thickness of the semiconductor fine particle layer 30 made of titanium oxide is preferably in the range of 1000 to 50000 nm. If the thickness of the semiconductor fine particle layer 30 is 1000 nm or more, the amount of the dye supported on the semiconductor fine particles is sufficiently large, so that electrons are sufficiently generated. On the other hand, when the thickness of the semiconductor fine particle layer 30 is 50000 nm or less, the productivity becomes higher.

本実施の形態によれば、ガラス基板10と、ガラス基板10上に形成された主として酸化錫から成る透明導電膜20a、及び、透明導電膜20a上に形成された上に形成された酸化ニオブ(Nb)膜25を有する透明電極60とを備え、酸化ニオブ膜25は膜厚が0.4〜70nmであるので、酸化チタンから成る半導体微粒子層30から透明導電膜20aへの電子の移動を妨げることなく、透明導電膜20aから電解質液40側への逆電子移動を防ぐことができ、もって光電変換効率を向上することができる。 According to the present embodiment, the glass substrate 10, the transparent conductive film 20a mainly made of tin oxide formed on the glass substrate 10, and the niobium oxide formed on the transparent conductive film 20a ( Nb 2 O 5 ) film 25 and transparent electrode 60, and niobium oxide film 25 has a thickness of 0.4 to 70 nm. Therefore, electrons from semiconductor fine particle layer 30 made of titanium oxide to transparent conductive film 20 a The reverse electron transfer from the transparent conductive film 20a to the electrolyte solution 40 side can be prevented without hindering the movement, and the photoelectric conversion efficiency can be improved.

本実施の形態では、ガラス基板10a,10bとしてソーダライムガラスを用いているが、これに限定されるものではなく、低アルカリガラス、無アルカリガラス、石英ガラス等を用いてもよい。   In the present embodiment, soda lime glass is used as the glass substrates 10a and 10b, but is not limited to this, and low alkali glass, non-alkali glass, quartz glass, or the like may be used.

本実施の形態では、ガラス基板10aの上にフッ素添加の酸化錫から成る透明導電膜20aが形成されているが、これに限定されるものではなく、ガラス基板10aと透明導電膜20aとの間にアルカリバリア膜としての酸化シリコン膜を設けてもよい。この酸化シリコン膜は5〜100nmの範囲内であることが好ましい。酸化シリコン膜の膜厚が5nm以上であればアルカリバリア性能がより確実であり、酸化シリコン膜の膜厚が100nm以下であれば生産性が良くなる。   In the present embodiment, the transparent conductive film 20a made of fluorine-added tin oxide is formed on the glass substrate 10a. However, the present invention is not limited to this, and the gap between the glass substrate 10a and the transparent conductive film 20a is not limited thereto. Alternatively, a silicon oxide film as an alkali barrier film may be provided. This silicon oxide film is preferably in the range of 5 to 100 nm. When the thickness of the silicon oxide film is 5 nm or more, the alkali barrier performance is more reliable, and when the thickness of the silicon oxide film is 100 nm or less, the productivity is improved.

本実施の形態では、光電変換装置として色素増感太陽電池100を用いているが、これに限定されるものではなく、アモルファスSi、微結晶Si等の薄膜シリコン太陽電池を用いてもよい。   In this embodiment, the dye-sensitized solar cell 100 is used as the photoelectric conversion device, but the present invention is not limited to this, and a thin-film silicon solar cell such as amorphous Si or microcrystalline Si may be used.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
本発明者は、まず、厚さ3mmの板状の透明なソーダライムガラス基板を準備し、このソーダライムガラス基板上に厚さ30nmの酸化シリコン膜を熱CVD法により形成し、この酸化シリコン膜上に厚さ750nmのフッ素添加酸化錫膜を熱CVD法により形成し、このフッ素添加酸化錫膜上に厚さ3nmの酸化ニオブ(Nb)膜をスパッタリング法(Ar及びOがモル比で4:1の混合ガスを使用、圧力0.5Pa、電力50W)により形成し、この酸化ニオブ(Nb)膜上にSolaronix製の酸化チタンから成る厚さ5500nmの酸化チタン微粒子層を形成し、酸化チタン微粒子にZ−907色素を沈着させ、モル比が1:0.5のプロピルメチルイミダゾリウムアイオダイド(PMImI)及びエチルメチルイミダゾリウムジシアノアミド (EMIm−DCA)、0.5モルのヨウ素(I)、0.5モルのtert-ブチルピリジン(TBP)、及び0.1モルのヨウ化リチウムから成る電解質液で構成される層を形成し、この電解質液で構成される層に、ソーダライムガラス基板、ソーダライムガラス基板上に形成された酸化錫膜、及び酸化錫膜の上に形成された白金から成る対向電極を貼り合せて、色素増感太陽電池を得た。得られた色素増感太陽電池の出力特性(開放電圧、短絡電流、曲線因子、変換効率)及びセル面積を図2に実施例1として示す。
(Example 1)
The inventor first prepared a plate-shaped transparent soda lime glass substrate having a thickness of 3 mm, and formed a silicon oxide film having a thickness of 30 nm on the soda lime glass substrate by a thermal CVD method. A fluorine-added tin oxide film having a thickness of 750 nm is formed thereon by a thermal CVD method, and a niobium oxide (Nb 2 O 5 ) film having a thickness of 3 nm is formed on the fluorine-added tin oxide film by a sputtering method (Ar and O 2 are in a molar ratio). A 4: 1 ratio gas mixture, pressure 0.5 Pa, power 50 W), and a titanium oxide fine particle layer having a thickness of 5500 nm made of Solaronix titanium oxide on the niobium oxide (Nb 2 O 5 ) film. Z-907 dye is deposited on titanium oxide fine particles, and propylmethylimidazolium iodide (PMImI) and ethyl having a molar ratio of 1: 0.5 are formed. Chill imidazolium dicyanamide (EMIm-DCA), 0.5 mole of iodine (I 2), 0.5 mol of tert- butylpyridine (TBP), and composed of an electrolyte solution consisting of 0.1 moles of lithium iodide A counter electrode comprising a soda lime glass substrate, a tin oxide film formed on the soda lime glass substrate, and platinum formed on the tin oxide film. Were bonded together to obtain a dye-sensitized solar cell. The output characteristics (open-circuit voltage, short-circuit current, fill factor, conversion efficiency) and cell area of the obtained dye-sensitized solar cell are shown as Example 1 in FIG.

(実施例2)
酸化ニオブ(Nb)膜の膜厚を5nmとした以外は実施例1と同じである色素増感太陽電池を得た。得られた色素増感太陽電池の出力特性及びセル面積を図2に実施例2として示す。
(Example 2)
A dye-sensitized solar cell was obtained which was the same as Example 1 except that the thickness of the niobium oxide (Nb 2 O 5 ) film was 5 nm. The output characteristics and cell area of the obtained dye-sensitized solar cell are shown in FIG.

(実施例3)
膜厚3nmの酸化ニオブ(Nb)膜の替わりに膜厚7nmの酸化マグネシウム(MgO)膜を用いた以外は実施例1と同じである色素増感太陽電池を得た。得られた色素増感太陽電池の出力特性及びセル面積を図2に実施例3として示す。
(Example 3)
A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that a 7 nm-thick magnesium oxide (MgO) film was used instead of the 3 nm-thick niobium oxide (Nb 2 O 5 ) film. The output characteristics and cell area of the obtained dye-sensitized solar cell are shown in FIG.

(実施例4)
膜厚3nmの酸化ニオブ(Nb)膜の替わりに膜厚0.4nmの酸化アルミニウム(Al)膜を用いた以外は実施例1と同じである色素増感太陽電池を得た。得られた色素増感太陽電池の出力特性及びセル面積を図2に実施例4として示す。
Example 4
A dye-sensitized solar cell is obtained which is the same as that of Example 1 except that a 0.4 nm-thick aluminum oxide (Al 2 O 3 ) film is used instead of the 3 nm-thick niobium oxide (Nb 2 O 5 ) film. It was. The output characteristics and cell area of the obtained dye-sensitized solar cell are shown as Example 4 in FIG.

(比較例1)
酸化ニオブ(Nb)膜を形成せずに、フッ素添加酸化錫膜に酸化チタン微粒子層を直接形成した以外は実施例1と同じである色素増感太陽電池を得た。得られた色素増感太陽電池の出力特性及びセル面積を図2に比較例1として示す。
(Comparative Example 1)
A dye-sensitized solar cell was obtained which was the same as in Example 1 except that the titanium oxide fine particle layer was directly formed on the fluorine-added tin oxide film without forming the niobium oxide (Nb 2 O 5 ) film. The output characteristics and cell area of the obtained dye-sensitized solar cell are shown as Comparative Example 1 in FIG.

(比較例2)
酸化ニオブ(Nb)膜の膜厚を80nmとした以外は実施例1と同じである色素増感太陽電池を得た。得られた色素増感太陽電池の出力特性及びセル面積を図2に比較例2として示す。
(Comparative Example 2)
A dye-sensitized solar cell was obtained which was the same as Example 1 except that the thickness of the niobium oxide (Nb 2 O 5 ) film was 80 nm. The output characteristics and cell area of the obtained dye-sensitized solar cell are shown in FIG.

図2より、膜厚が0.4〜70nmの範囲内である酸化ニオブ(Nb)膜、酸化マグネシウム(MgO)膜、又は酸化アルミニウム(Al)膜を酸化物膜として用いると、開放電圧を691mV以上、短絡電流を8.00mA以上、光電変換効率を3.78%以上にすることができることが分かった。特に、膜厚が3〜5nmの範囲内である酸化ニオブ(Nb)膜を酸化物膜として用いると、開放電圧を710mV以上、短絡電流を9.22mA以上、変換効率を4.46(%)以上にすることができることが分かった。 As shown in FIG. 2, a niobium oxide (Nb 2 O 5 ) film, a magnesium oxide (MgO) film, or an aluminum oxide (Al 2 O 3 ) film having a thickness in the range of 0.4 to 70 nm is used as the oxide film. It was found that the open circuit voltage can be 691 mV or more, the short circuit current can be 8.00 mA or more, and the photoelectric conversion efficiency can be 3.78% or more. In particular, when a niobium oxide (Nb 2 O 5 ) film having a thickness of 3 to 5 nm is used as the oxide film, the open circuit voltage is 710 mV or more, the short circuit current is 9.22 mA or more, and the conversion efficiency is 4.46. It turned out that it can be made more than (%).

本発明の実施の形態に係る光電変換装置としての色素増感太陽電池の構成を概略的に示す図である。It is a figure which shows schematically the structure of the dye-sensitized solar cell as a photoelectric conversion apparatus which concerns on embodiment of this invention. 本発明の実施例及び比較例に係る色素増感太陽電池の出力特性及びセル面積を示す図である。It is a figure which shows the output characteristic and cell area of the dye-sensitized solar cell which concern on the Example and comparative example of this invention.

符号の説明Explanation of symbols

10a ガラス基板
10b ガラス基板
20a 透明導電膜
20b 透明導電膜
25 酸化ニオブ(Nb)膜
30 半導体微粒子層
40 電解質液
50 対向電極
60 透明電極
100 色素増感太陽電池
10a glass substrate 10b glass substrate 20a transparent conductive film 20b transparent conductive film 25 niobium oxide (Nb 2 O 5 ) film 30 semiconductor fine particle layer 40 electrolyte solution 50 counter electrode 60 transparent electrode 100 dye-sensitized solar cell

Claims (4)

ガラス基板と、前記ガラス基板上に形成された主として酸化錫から成る透明導電膜、及び、前記透明導電膜上に形成され、酸化ニオブ(Nb)、酸化マグネシウム(MgO)、酸化アルミニウム(Al)の群から選択される少なくとも1つから成る酸化物膜を有する透明電極とを備える光電変換装置であって、前記酸化物膜は膜厚が0.4〜70nmであることを特徴とする光電変換装置。 A glass substrate, a transparent conductive film mainly made of tin oxide formed on the glass substrate, and niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), aluminum oxide ( And a transparent electrode having an oxide film made of at least one selected from the group of Al 2 O 3 ), wherein the oxide film has a thickness of 0.4 to 70 nm. A featured photoelectric conversion device. 前記酸化物膜は膜厚が3〜5nmの酸化ニオブ(Nb)から成ることを特徴とする請求項1記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein the oxide film is made of niobium oxide (Nb 2 O 5 ) having a thickness of 3 to 5 nm. 光電変換効率が4.4%以上であることを特徴とする請求項2記載の光電変換装置。   The photoelectric conversion device according to claim 2, wherein the photoelectric conversion efficiency is 4.4% or more. 前記光電変換装置は色素増感太陽電池であることを特徴とする請求項1乃至3のいずれか1項に記載の光電変換装置。   The photoelectric conversion device according to any one of claims 1 to 3, wherein the photoelectric conversion device is a dye-sensitized solar cell.
JP2006254444A 2006-09-20 2006-09-20 Photoelectric converter Pending JP2008077924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006254444A JP2008077924A (en) 2006-09-20 2006-09-20 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006254444A JP2008077924A (en) 2006-09-20 2006-09-20 Photoelectric converter

Publications (1)

Publication Number Publication Date
JP2008077924A true JP2008077924A (en) 2008-04-03

Family

ID=39349775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254444A Pending JP2008077924A (en) 2006-09-20 2006-09-20 Photoelectric converter

Country Status (1)

Country Link
JP (1) JP2008077924A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199228A (en) * 2011-03-09 2012-10-18 Osaka Gas Co Ltd All solid photosensitive solar cell
JP2015118873A (en) * 2013-12-19 2015-06-25 積水化学工業株式会社 Photoelectrode, manufacturing method of the same, and dye-sensitized solar cell
JP6058190B1 (en) * 2016-05-12 2017-01-11 株式会社昭和 Dye-sensitized solar cell with high conversion efficiency
JP6104446B1 (en) * 2016-10-07 2017-03-29 株式会社昭和 Dye-sensitized solar cell module
US10727001B2 (en) 2014-04-16 2020-07-28 Ricoh Company, Ltd. Photoelectric conversion element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199228A (en) * 2011-03-09 2012-10-18 Osaka Gas Co Ltd All solid photosensitive solar cell
JP2015118873A (en) * 2013-12-19 2015-06-25 積水化学工業株式会社 Photoelectrode, manufacturing method of the same, and dye-sensitized solar cell
US10727001B2 (en) 2014-04-16 2020-07-28 Ricoh Company, Ltd. Photoelectric conversion element
EP3975278A1 (en) 2014-04-16 2022-03-30 Ricoh Company, Ltd. Photoelectric conversion element
US11069485B2 (en) 2014-04-16 2021-07-20 Ricoh Company, Ltd. Photoelectric conversion element
JP6058190B1 (en) * 2016-05-12 2017-01-11 株式会社昭和 Dye-sensitized solar cell with high conversion efficiency
WO2017195648A1 (en) 2016-05-12 2017-11-16 株式会社昭和 Dye-sensitized solar cell having high conversion efficiency
JP2017204585A (en) * 2016-05-12 2017-11-16 株式会社昭和 Dye-sensitized solar battery having high conversion efficiency
KR20190008063A (en) 2016-05-12 2019-01-23 가부시키가이샤 쇼와 Dye-sensitized solar cell with high conversion efficiency
JP2018060972A (en) * 2016-10-07 2018-04-12 株式会社昭和 Dye sensitization solar cell module
CN109791848A (en) * 2016-10-07 2019-05-21 株式会社昭和 Dye-sensitized solar cell module
WO2018066497A1 (en) * 2016-10-07 2018-04-12 株式会社昭和 Dye-sensitized solar cell module
JP6104446B1 (en) * 2016-10-07 2017-03-29 株式会社昭和 Dye-sensitized solar cell module

Similar Documents

Publication Publication Date Title
Guchhait et al. Over 20% efficient CIGS–perovskite tandem solar cells
Liu et al. Nano-structured electron transporting materials for perovskite solar cells
Li et al. Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours
Fan et al. The progress of interface design in perovskite‐based solar cells
Wang et al. W (Nb) Ox-based efficient flexible perovskite solar cells: From material optimization to working principle
Lang et al. Perovskite solar cells with large-area CVD-graphene for tandem solar cells
JP7048785B2 (en) A transparent electrode, a manufacturing method thereof, and an electronic device using the transparent electrode.
US20080115824A1 (en) Dye-sensitized solar cell module having vertically stacked cells and method of manufacturing the same
US20230335344A1 (en) Perovskite solar cell configurations
JP6554300B2 (en) Method for manufacturing photoelectric conversion device
JPWO2012153803A1 (en) Window glass plate
US20220181569A1 (en) Transparent electrode, method of producing transparent electrode, and electronic device
Li et al. Robust and recyclable substrate template with an ultrathin nanoporous counter electrode for organic-hole-conductor-free monolithic perovskite solar cells
JP2008077924A (en) Photoelectric converter
CN114784198A (en) Efficient perovskite solar cell, cell module, cell device and preparation method thereof
Anscombe Solar cells that mimic plants
Gao et al. Flexible and highly durable perovskite solar cells with a sandwiched device structure
JP5641981B2 (en) Photoelectric conversion element that can be manufactured by a method suitable for mass production
Wang et al. Recent advances in the functionalization of perovskite solar cells/photodetectors
US20230019802A1 (en) Solar cell
US11942575B2 (en) Transparent electrode, method of producing transparent electrode, and electronic device
WO2023098038A1 (en) Method for preparing columnar electrode structure of perovskite solar cell
Fang et al. Charge transport materials for monolithic perovskite-based tandem solar cells: A review
Talbanova et al. The buffer–Free semitransparent perovskite solar cells with ion-beam sputtered back electrode
Lou et al. Designed multi-layer buffer for high-performance semitransparent wide-bandgap perovskite solar cells