JPH01219162A - Production of thin oxide film and apparatus therefor - Google Patents

Production of thin oxide film and apparatus therefor

Info

Publication number
JPH01219162A
JPH01219162A JP4221188A JP4221188A JPH01219162A JP H01219162 A JPH01219162 A JP H01219162A JP 4221188 A JP4221188 A JP 4221188A JP 4221188 A JP4221188 A JP 4221188A JP H01219162 A JPH01219162 A JP H01219162A
Authority
JP
Japan
Prior art keywords
substrate
oxygen
thin film
oxide thin
oxygen ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4221188A
Other languages
Japanese (ja)
Inventor
Kazuyuki Moriwaki
森脇 和幸
Toshiaki Murakami
敏明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4221188A priority Critical patent/JPH01219162A/en
Publication of JPH01219162A publication Critical patent/JPH01219162A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title thin oxide film having density approximating that of a bulk and having a uniform composition by depositing the vaporized raw material on a substrate, and simultaneously projecting oxygen ion beam drawn out with the energy in a specified range on the deposit. CONSTITUTION:The inside of a film forming chamber 11 is evacuated to a high vacuum, gaseous oxygen is introduced from the gas inlet 4 of an ion source 12, and K-cell vapor-deposition sources 10 and 10' or a electron beam vapor- deposition source 9 are vapor-deposited on the substrate 3. The oxygen ion generated in a plasma chamber 14 and drawn out with the energy of 10-500eV or a neutral oxygen ion beam is projected on the deposit on the substrate 3. Since a molecular beam and an oxygen ion beam can be independently and stably generated, the composition of the respective elements including oxygen can be accurately controlled. By this method, the process can be simplified, and the characteristics of the thin oxide film can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超伝導素子、光学素子、圧電素子。[Detailed description of the invention] [Industrial application field] The present invention relates to superconducting elements, optical elements, and piezoelectric elements.

表面弾性素子などに使用される各種酸化物薄膜の製造装
置および製造方法に関するものである。
The present invention relates to an apparatus and method for manufacturing various oxide thin films used in surface elastic elements and the like.

[従来の技術] 酸化物薄膜を作製する従来の最もすぐれた方法は、スパ
ッタリング法である。スパッタリング装置は第3図に示
すように対向する極板の間に放電によるプラズマを発生
させ、一方の極板上に置かれたターゲット1にイオンを
衝突させ、その際、ターゲット1よりスパッタされた原
子あるいは分子をターゲット1と対向して設置された極
板(基板ホルダ)2上の基板3に堆積させることにより
薄膜を製造する装置である。この際、Ar等のスパッタ
ガスをガス導入口4から導入し排気口5から排気する。
[Prior Art] The best conventional method for producing oxide thin films is sputtering. As shown in Fig. 3, the sputtering device generates plasma by electric discharge between opposing electrode plates, and causes ions to collide with a target 1 placed on one of the electrode plates.At this time, atoms or atoms sputtered from the target 1 are This is an apparatus for manufacturing a thin film by depositing molecules on a substrate 3 on an electrode plate (substrate holder) 2 placed opposite a target 1. At this time, a sputtering gas such as Ar is introduced from the gas inlet 4 and exhausted from the exhaust port 5.

一般にターゲット材料に所望の酸化物を用い、スパッタ
ガスのAr中に02ガスを混入させることにより酸化物
薄膜が作製される。
Generally, an oxide thin film is produced by using a desired oxide as a target material and mixing O2 gas into Ar sputtering gas.

しかし上述のスパッタ法においては酸素量の制御か酸素
分圧に依存し、また基板温度によっても大きく変わるた
め、酸素量の制御が十分でなく、またターゲット組成比
の経時変化等により再現性も十分でないという欠点があ
った。
However, in the above-mentioned sputtering method, the control of the oxygen amount depends on the oxygen partial pressure, and it also varies greatly depending on the substrate temperature, so the control of the oxygen amount is not sufficient, and the reproducibility is not sufficient due to changes in the target composition ratio over time, etc. There was a drawback that it was not.

またこのような酸素欠陥を含めた結晶欠陥が膜の密度を
低下させて、電気耐圧低下などの膜特性低下の原因とな
っていた。
Further, crystal defects including such oxygen defects reduce the density of the film, causing a reduction in film properties such as a reduction in electric breakdown voltage.

スパッタ法め他に、第4図に示すようなカウフマン型な
どのイオン源6を蒸着装置に組み込み、酸素イオン照射
を蒸着と同時に行うことによって酸化膜を得る装置が公
表されている(例えば、P、J、Martin; J、
Material 5cience、 21巻、 1−
25頁、 1985年参照)。この装置は装置内の下方
に蒸発源7を設けて極板(基板ホルダ)2に設置された
基板3に、蒸発源7からの物質を蒸着するものであり、
この際、イオン源6より酸素イオン照射を行って、酸素
欠陥のない酸化膜を製造せんとするものである。なお、
第4図において、4はガス導入口、5は排気口である。
In addition to the sputtering method, an apparatus has been published that obtains an oxide film by incorporating an ion source 6 such as a Kauffman type as shown in FIG. , J. Martin;
Material 5science, Volume 21, 1-
25, 1985). This device is provided with an evaporation source 7 at the lower part of the device, and a substance from the evaporation source 7 is evaporated onto a substrate 3 placed on an electrode plate (substrate holder) 2.
At this time, oxygen ion irradiation is performed from the ion source 6 to produce an oxide film free of oxygen defects. In addition,
In FIG. 4, 4 is a gas inlet and 5 is an exhaust port.

このような装置においてはカウフマン型イオン源6にお
いて、プラズマを発生するための熱電子放出用としてタ
ングステンなどを材料とするフィラメント8が用いられ
る。イオン源動作時の酸素ガス圧は1 x 10−’T
orrより低真空となるため、フィラメントを用いてい
るとフィラメント断線によるイオン源動作停止までの寿
命が約数時間と短く、また断線に至るまでにフィラメン
ト径が時間と共に細くなっていくため、イオン電流値の
経時変化が大きくしかも不規則である。従って第4図の
ような装置においては、酸素の照射量を十分正確に制御
することは不可能であった。
In such an apparatus, a filament 8 made of tungsten or the like is used in the Kauffman ion source 6 for emitting thermionic electrons to generate plasma. Oxygen gas pressure during ion source operation is 1 x 10-'T
Since the vacuum is lower than orr, if a filament is used, the life until the ion source stops operating due to filament breakage is short, about several hours, and the filament diameter becomes thinner with time until the filament breaks, so the ion current The change in value over time is large and irregular. Therefore, in the apparatus shown in FIG. 4, it has been impossible to control the amount of oxygen irradiation with sufficient accuracy.

また第4図のような装置は蒸発源として抵抗加熱ボート
型蒸発源または電子ビーム蒸発源を用いており、特に蒸
発分子線強度の安定化機構も設けていないため、蒸発物
形状が蒸発中に経時変化することによる蒸発分子線強度
の不安定性が大きい。従って上述した酸素量の不正確さ
と合わせて酸素以外の蒸発元素組成も不正確となるため
製作された薄■摸の元素組成を十分制御することは不可
能であった。
Furthermore, the apparatus shown in Figure 4 uses a resistance heating boat type evaporation source or an electron beam evaporation source as the evaporation source, and does not have a mechanism for stabilizing the evaporated molecular beam intensity, so the shape of the evaporated material changes during evaporation. The evaporation molecular beam intensity is highly unstable due to changes over time. Therefore, in addition to the above-mentioned inaccuracy in the amount of oxygen, the composition of evaporated elements other than oxygen is also inaccurate, making it impossible to sufficiently control the elemental composition of the produced thin paper.

[発明が解決しようとする課題] 本発明は酸素量の制御が困難であり、膜組成の再現性が
十分でなく、かつ結晶欠陥が多いという従来の欠点を解
消し、結晶欠陥がなくバルクに近い密度をもち、組成ず
れのない酸化物薄膜を製造すること、およびそのための
装置を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the conventional drawbacks of difficulty in controlling the amount of oxygen, insufficient reproducibility of film composition, and a large number of crystal defects. It is an object of the present invention to manufacture an oxide thin film having a similar density and no compositional deviation, and to provide an apparatus for the same.

[課題を解決するための手段] このような目的を達成するために、本発明装置は成膜室
内に配設された基板を支持しかつ加熱するための基板ホ
ルダと、基板上に堆積させる物質を蒸発させる蒸発源と
、プラズマを生成し、かつプラズマより引出された酸素
イオンビームを基板上に堆積する薄膜に堆積と同様に照
射するためのイオン源とを具えたことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention apparatus includes a substrate holder for supporting and heating a substrate disposed in a film forming chamber, and a material to be deposited on the substrate. and an ion source that generates plasma and irradiates the thin film to be deposited on the substrate with an oxygen ion beam extracted from the plasma in the same manner as the deposition.

本発明方法は上述した酸化物薄膜の製造装置を用いて、
I X 1O−3Torrよりも高真空中において、酸
化物を構成する原料を蒸発させ、蒸発した原料を基板上
に堆積させると同時に、基板上の堆積物に酸素イオンビ
ームまたは中性酸素ビームをlO〜500eVの範囲の
一定エネルギーに加速して、照射することを特徴とする
The method of the present invention uses the above-mentioned oxide thin film manufacturing apparatus,
In a vacuum higher than I It is characterized by irradiation with acceleration to a constant energy in the range of ~500 eV.

[作 用] 本発明による酸化物薄膜製造装置は、マイクロ波により
プラズマを生成し、そのプラズマよりlθ〜500eV
のエネルギーで酸素イオンを引出すためのイオン源を有
し、真空中で基板上に堆積する薄膜に蒸着と同時に酸素
イオンを照射できるようになっている。
[Function] The oxide thin film manufacturing apparatus according to the present invention generates plasma using microwaves, and generates a voltage of lθ to 500 eV from the plasma.
The device has an ion source that extracts oxygen ions with energy of 200 mL, and can irradiate the thin film deposited on the substrate in vacuum with oxygen ions at the same time as the deposition.

本発明によれば組成制御性がよい分子線蒸着によって基
板上に薄膜を堆積させるとともに、酸素イオンビームま
たは中性酸素ビームをlθ〜500eVのエネルギーで
基板上の堆積膜に照射するため、真空中で結晶欠陥のな
い酸化物薄膜か製造できる。このため組成制御が良好で
、結晶欠陥のない酸化物119膜を得ることができる。
According to the present invention, a thin film is deposited on a substrate by molecular beam evaporation with good composition controllability, and the deposited film on the substrate is irradiated with an oxygen ion beam or a neutral oxygen beam at an energy of lθ to 500 eV. can produce oxide thin films without crystal defects. Therefore, an oxide 119 film with good composition control and no crystal defects can be obtained.

第1図は本発明による酸化物薄膜の製造装置の−具体例
の概略図である。本発明の酸化物薄膜の製造装置は酸化
物薄1漠の原料となる薄膜原料を充填し、分子線によっ
て蒸発させるための分子線源であるクヌードセンセル(
k−セル) 10.10’  と、他の薄1漠原料を蒸
発させるための電子ヒーム蒸着源9を備えている。そし
て、マイクロ波源13で発生したマイクロ波をプラズマ
室14へ導いてプラズマ室に45いて酸素プラズマを発
生させ、10〜500eVのエネルギーで酸素イオンを
引出し基板ホルダ2上の基板3に酸素イオンを照射する
イオン源12を具えている。k−セルは2個のみを示し
たが、3個以上設けることも、もちろん可能である。
FIG. 1 is a schematic diagram of a specific example of an oxide thin film manufacturing apparatus according to the present invention. The apparatus for producing an oxide thin film of the present invention is a Knudsen cell (a molecular beam source) which is a molecular beam source for filling thin film raw materials, which are raw materials for an oxide thin film, and evaporating them using molecular beams.
k-cell) 10.10' and an electron beam evaporation source 9 for evaporating other thin materials. Then, the microwaves generated by the microwave source 13 are guided to the plasma chamber 14 to generate oxygen plasma, extract oxygen ions with an energy of 10 to 500 eV, and irradiate the substrate 3 on the substrate holder 2 with oxygen ions. The ion source 12 is equipped with an ion source 12 that performs the following steps. Although only two k-cells are shown, it is of course possible to provide three or more.

成膜室11内には分子線の強度を監視するためのモニタ
15、例えば水晶振動子またはイオンケージが備えられ
ており、またイオンをモニタするためのファラデーカッ
プ16が設けられている。
Inside the film forming chamber 11, a monitor 15, such as a crystal resonator or an ion cage, is provided to monitor the intensity of the molecular beam, and a Faraday cup 16 is provided to monitor ions.

またイオン源12のイオン照射口と基板3の間には熱電
子フィラメントなどの電子放出源17が設けられており
、基板3に絶縁膜を形成するときイオンまたは基板3に
電子を照射して、堆積された膜の帯電を防止できるよう
になっている。
Further, an electron emission source 17 such as a thermionic filament is provided between the ion irradiation port of the ion source 12 and the substrate 3, and when forming an insulating film on the substrate 3, irradiates ions or electrons to the substrate 3. It is possible to prevent the deposited film from being charged.

このような本発明による酸化物薄膜の製造装置は以下の
ように動作する。まず成膜室11をクライオポンプなど
によって高真空(1x 1O−5Torrよりも高真空
)とする。その後、イオンτ原12のガス導入口4より
酸素ガスを導入し、プラズマ室14内にプラズマを生成
するために必要なガス圧(lxlO−5からI X 1
O−3Torrまでの真空度)例えば2×10−’To
rrになるまで酸素ガスを導入する。そして酸素以外の
元素の蒸着を行う分子線蒸着においては、上述の真空(
例えば2 x 10−’Torr)中で、k−セル蒸着
源10.10’  または電子ビーム蒸着源9より基板
3に蒸着を行う。このとき分子線強度を水晶振動子また
はイオンゲージなどのモニタ15によって監視し、これ
を蒸発源にフィードバックすることによって各蒸着源へ
の入力パワーを制御することができる。
The oxide thin film manufacturing apparatus according to the present invention operates as follows. First, the film forming chamber 11 is brought to a high vacuum (higher vacuum than 1x 1O-5 Torr) using a cryopump or the like. After that, oxygen gas is introduced from the gas inlet 4 of the ion τ source 12, and the gas pressure (lxlO-5 to I
degree of vacuum up to O-3 Torr) e.g. 2×10-'Torr
Oxygen gas is introduced until the temperature reaches rr. In molecular beam evaporation, which deposits elements other than oxygen, the above-mentioned vacuum (
For example, the substrate 3 is deposited from a k-cell deposition source 10.10' or an electron beam deposition source 9 in an atmosphere of 2.times.10-'Torr). At this time, the molecular beam intensity is monitored by a monitor 15 such as a crystal oscillator or an ion gauge, and by feeding this back to the evaporation sources, the input power to each evaporation source can be controlled.

プラズマ室14て発生し、10〜500eVのエネルギ
ーで引出された酸素イオンビームは基板3に照射される
が、このとき酸素イオンビームはファラデーカップ16
によって監視されマイクロ波源にフィードバックされて
イオン電流値が制御される。このとき照射される酸素イ
オンビームはlO〜2000pA/cm2で可変である
The oxygen ion beam generated in the plasma chamber 14 and extracted with an energy of 10 to 500 eV is irradiated onto the substrate 3;
is monitored and fed back to the microwave source to control the ion current value. The oxygen ion beam irradiated at this time is variable from lO to 2000 pA/cm2.

酸素イオン照射においては、酸素イオンエネルギーの設
定が重要である。すなわちイオンエネルギーか1oke
V以上では得られた薄膜に結晶欠陥か残存し、500c
Vを超えて10keVまでの範囲ではスパッタ効果によ
る膜厚減少が著しく、また10eV未満では、エネルギ
ーが低すぎて通常の真空蒸着と同様となり、結晶欠陥の
ないバルクに近い密度をもつ酸化物薄膜が作製できない
。このため酸素イオンエネルギーはlO〜500eVに
設定される。
In oxygen ion irradiation, setting the oxygen ion energy is important. In other words, ion energy or 1oke
Above V, some crystal defects remain in the obtained thin film, and 500c
In the range exceeding V and up to 10 keV, the film thickness decreases significantly due to the sputtering effect, and below 10 eV, the energy is too low and becomes similar to normal vacuum evaporation, resulting in an oxide thin film with a density close to that of the bulk without crystal defects. Cannot be produced. Therefore, the oxygen ion energy is set to 10 to 500 eV.

このような構成により、従来のスパッタ装置および蒸着
装置にカウフマン型イオン源を付加した装置と比較し、
て、分子線および酸素イオンビームをそれぞれ独立にか
つ安定に発生できるため、酸素を含めた各元素の組成を
独立にかつ正確に制御できる。
With this configuration, compared to conventional sputtering equipment and evaporation equipment with a Kauffman type ion source added,
Since molecular beams and oxygen ion beams can be generated independently and stably, the composition of each element including oxygen can be controlled independently and accurately.

r実施例] 以下に実施例によって木発明の詳細な説明する。r Example] The wooden invention will be described in detail below with reference to examples.

実施例1 (Ba2YCu306s) 第1図のイオン源12としてECR型イオン7原を用い
ることにより、反応性の強い酸素ガスを用いてもイオン
源のメンテナンスなしに連続20時間以上の膜形成が可
能であった。イオン源12および成膜室11の真空度を
まずI X 10−’Torrまで排気後、ガス導入口
4より酸素ガスを導入し、イオン源12および成膜室1
1の真空度をI X 10−’Torrとした。このと
きプラズマ室14で生成された酸素イオンを100eV
のエネルギーで引出すと、基板3の位置で最高700μ
A/cm2のイオン電流値が得られ、しかもイオン電流
値の経時変化はlO時間連続動作中も±2%と非常に小
さかった。
Example 1 (Ba2YCu306s) By using the ECR type ion source 7 as the ion source 12 in Fig. 1, it is possible to form a film continuously for more than 20 hours without maintenance of the ion source even if highly reactive oxygen gas is used. there were. After first exhausting the degree of vacuum in the ion source 12 and the film forming chamber 11 to I x 10-' Torr, oxygen gas is introduced from the gas inlet 4, and the ion source 12 and the film forming chamber 1 are
The vacuum degree of 1 was set to I x 10-'Torr. At this time, the oxygen ions generated in the plasma chamber 14 are
When pulled out with the energy of
An ion current value of A/cm2 was obtained, and the change in ion current value over time was extremely small at ±2% even during continuous operation for 10 hours.

基板として5rTi03(110)面および(100)
面を用いた。ここであらかじめ3木用意しておいたに−
セル10にそれぞれBa、Y、Cuを充填して、Ba、
Y、CUをそれぞれ蒸発させ、基板3上に堆積した膜の
組成かBa:Y:Cu−2+1:3となるように、かつ
基板3上での蒸着レイトが0.85人/secとなるよ
うに各に一セルの温度を制御し°、同時に酸素イオンビ
ームを100cV、50μA/cm2の条件で5rTi
(h (110)面または(100)囲碁板上に照射す
ることによって、化学n論比のBa2Y(:Ll+Oa
、 sの多結晶または単結晶薄膜が得られた。特に基板
温度を400℃から800℃の間の一定温度に保持する
ことによりBa2YCu30B、 sの単結晶膜が得ら
れた。この時5rTi03(100)面上にはBa2Y
Cu306.5の(001)面が、また5rTiOs 
(110)面上にはBa2YCu30B、 5の(11
0)面がそれぞれエピタキシャル成長した。このBa2
YCu306.5 (110)面単結晶膜の蒸着後の超
伝導転移幅度Tc(抵抗がOとなる点)は第2図に示す
ように82に、と高く、超伝導転移幅も2にと小さい。
As a substrate, 5rTi03 (110) plane and (100)
I used a surface. I prepared three trees in advance here.
The cell 10 is filled with Ba, Y, and Cu, respectively, and Ba,
Y and CU were each evaporated so that the composition of the film deposited on the substrate 3 would be Ba:Y:Cu-2+1:3, and the evaporation rate on the substrate 3 would be 0.85 people/sec. At the same time, the oxygen ion beam was applied to 5rTi at 100 cV and 50 μA/cm2.
(h) By irradiating the (110) plane or the (100) Go board, the stoichiometric Ba2Y(:Ll+Oa
, s polycrystalline or single crystal thin films were obtained. In particular, by maintaining the substrate temperature at a constant temperature between 400°C and 800°C, a single crystal film of Ba2YCu30B,s was obtained. At this time, Ba2Y is present on the 5rTi03 (100) surface.
The (001) plane of Cu306.5 is also 5rTiOs
On the (110) plane, Ba2YCu30B, (11
0) surface was epitaxially grown. This Ba2
The superconducting transition width Tc (the point where the resistance becomes O) after deposition of the YCu306.5 (110) plane single crystal film is as high as 82, as shown in Figure 2, and the superconducting transition width is as small as 2. .

蒸着後アニールをしない状態でこのような従来にない高
いTCを示しているので、木発明による酸化物薄膜の製
造装置および製造方法によれは酸化物薄膜の酸素を含め
た組成が十分制御されることが実証された。
Since it shows such an unprecedentedly high TC without annealing after vapor deposition, the composition including oxygen of the oxide thin film can be sufficiently controlled by the oxide thin film manufacturing apparatus and manufacturing method according to the invention. This has been proven.

実施例2 (La2−xsrxcu04)SrTi03
 (110)而および(100)面上にLa2−xsr
)ICu04を成長させた。
Example 2 (La2-xsrxcu04)SrTi03
La2-xsr on the (110) and (100) planes
) ICu04 was grown.

実施例1と同じ方法で100eV 、50 μA/cm
2の酸素イオンビームを得た後、あらかじめに−セル3
本に充填しておいたLa、Sr、Cuをそれぞれ蒸発さ
せ、基板3上でLa:Sr:Cu−1,85+0.15
:lとなるように、かつ基゛板3上での蒸着レイトが1
.5人/secになるようにに一セル温度を制御し、同
時に酸素イオンビームを5rTi03(110)面また
は(100)而基板上に照射することによフて、化学量
論組成のLal As5ro、 +5Cu04の多結晶
または単結晶薄膜が得られた。特に基板温度を400℃
から800℃の間の一定温度に保持することにより5r
Ti(h (110)面上にはLa1a5Sro、 r
5cuOaの(103)面が、また5rTi03(10
0)面上にはLa、 a5SrolscuOaの(00
1)面単結晶膜がエピタキシャル成長した。
100 eV, 50 μA/cm in the same manner as Example 1
After obtaining the oxygen ion beam of 2, in advance - cell 3
La, Sr, and Cu filled in the book are each evaporated, and La:Sr:Cu-1,85+0.15 is heated on the substrate 3.
:l and the deposition rate on the substrate 3 is 1.
.. By controlling the temperature of one cell to 5 people/sec and simultaneously irradiating the oxygen ion beam onto the 5rTi03 (110) surface or (100) substrate, Lal As5ro with a stoichiometric composition, A polycrystalline or single crystal thin film of +5Cu04 was obtained. In particular, the substrate temperature should be increased to 400℃.
5r by holding at a constant temperature between and 800℃
Ti(h) On the (110) plane, La1a5Sro, r
The (103) plane of 5cuOa is also 5rTi03(10
0) plane is La, a5SrolscuOa (00
1) A plane single crystal film was epitaxially grown.

このLa、、 8SsrO,+5C1104単結晶膜の
Tcは30にと高く、超伝導転移幅ΔTCも1.5にと
小さい。蒸着後アニールをしない状態で、このようにほ
ぼバルクに近い高いTcを示しているので、本発明によ
る酸化物薄膜の製造装置および方法によれば酸化物薄膜
の、酸素を含めた組成が十分制御されることが実証され
た。
The Tc of this La, 8SsrO, +5C1104 single crystal film is as high as 30, and the superconducting transition width ΔTC is as small as 1.5. Since the oxide thin film exhibits a high Tc almost like that of the bulk without annealing after vapor deposition, the composition including oxygen of the oxide thin film can be sufficiently controlled by the oxide thin film manufacturing apparatus and method according to the present invention. It has been proven that

実施例3 (LiNb03) サファイヤ0面基板上にLiNbO3膜を成長させた。Example 3 (LiNb03) A LiNbO3 film was grown on a sapphire zero-sided substrate.

実施例1と同じ方法で100eV、50μA/cm2の
条件の酸素イオンビームを得た後、熱電子放出用フィラ
メント17(中和フィラメント)を通電加熱し、酸素イ
オンビームに熱電子シャワーを当てることにより、中性
の酸素ビームを得た。またに−セル10よりLiを、電
子ビーム蒸着源9よりNbを蒸発させて酸素ビームと同
時にサファイヤ0面基板上に照射することにより、Li
NbO3単結晶膜を得た。酸素イオンビームを中性化す
ることにより、絶縁体のLiNb0:+l摸でも波長6
33nmの光に対する屈折率n。
After obtaining an oxygen ion beam under the conditions of 100 eV and 50 μA/cm2 in the same manner as in Example 1, the thermionic emission filament 17 (neutralization filament) was heated by electricity, and a thermionic shower was applied to the oxygen ion beam. , a neutral oxygen beam was obtained. Furthermore, Li is evaporated from the cell 10 and Nb is evaporated from the electron beam evaporation source 9, and the sapphire zero-face substrate is irradiated with the oxygen beam at the same time.
A NbO3 single crystal film was obtained. By neutralizing the oxygen ion beam, even the insulator LiNb0:+l can be used at a wavelength of 6.
Refractive index n for 33 nm light.

(通常光)は2.:11.n、(異常光)は2.17で
バルクに近い密度のL i N b O311Aが得ら
れていることを示している。
(Normal light) is 2. :11. n, (extraordinary light) is 2.17, indicating that L i N b O311A with a density close to that of the bulk is obtained.

[発明の効果] 以上説明したように、本発明による酸化物薄膜の製造装
置および製造方法によればバルクに近い密度を有する酸
化物単結晶薄膜が、酸素を含めて十分に組成制御され、
安定して形成できる。従って高い超伝導転移温度をもつ
酸化物超伝導薄膜が、薄膜形成後の酸化のための熱処理
なしで作製できるなど、プロセスの簡素化および膜特性
向上により酸化物薄1摸の各種応用範囲が広がるという
利点かある。
[Effects of the Invention] As explained above, according to the oxide thin film manufacturing apparatus and manufacturing method of the present invention, an oxide single crystal thin film having a density close to that of a bulk can be produced by sufficiently controlling the composition including oxygen,
Can be formed stably. Therefore, oxide superconducting thin films with high superconducting transition temperatures can be fabricated without heat treatment for oxidation after thin film formation, and the range of applications for oxide thin films is expanded by simplifying the process and improving film properties. There is an advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による酸化物薄膜製造装置の一実す八個
の構成を示す断面図、 第2図は前記実施例の装置を用いて製作したII a 
2Y Cu 3065膜の温度に対する抵抗率の特性を
示す特性図、 第3図は従来のスパッタ装置の構成を示す断面図、 第4図はカウフマン型などのイオン源を組み込んだ蒸着
装置の構成を示す断面図である。 1・・・ターケラト、 2・・・基1反ホルダ、 3・・・基板、 4・・・ガス導入口、 5・・・ガス排気口、 6・・・イオン源、 7・・・蒸着源、 8・・・フィラメント、 9・・・電子ビーム蒸着源、 10、 to’ ・・・クヌードセンセル、(k−セル
)、11・・・成膜室、 12・・・イオン源、 13・・・マイクロ波源、 14・・・プラズマ室、 15・・・膜厚計またはイオンケージ、16・・・ファ
ラデーカップ、 17・・・中和用フィラメント、 18・・・基板加熱用ヒータ。 特許出願人  日本電信電話株式会社 代 理 人  弁理士 谷  義 − 1s、発明1:Jる敗イし物簿月菓の型士艷、ザZa嘴
爪を示す断m1図第1図 温 L   (K) 杏尤明r=JるBq2ycu306.51のXaf) 
渇、炭俵?B’)inす′″++支回 第2図 Jv米のスペッタ&i′の盪牟」凹 第3図 イ丈来の五着裂I0町囮図 第4図
FIG. 1 is a cross-sectional view showing eight components of the oxide thin film manufacturing apparatus according to the present invention, and FIG.
A characteristic diagram showing the resistivity characteristics with respect to temperature of the 2Y Cu 3065 film. Figure 3 is a cross-sectional view showing the configuration of a conventional sputtering device. Figure 4 shows the configuration of a vapor deposition device incorporating an ion source such as a Kauffman type. FIG. DESCRIPTION OF SYMBOLS 1... Terkerat, 2... Group 1 anti-holder, 3... Substrate, 4... Gas inlet, 5... Gas exhaust port, 6... Ion source, 7... Evaporation source , 8... Filament, 9... Electron beam evaporation source, 10, to'... Knudsen cell, (k-cell), 11... Film forming chamber, 12... Ion source, 13 ...Microwave source, 14...Plasma chamber, 15...Film thickness meter or ion cage, 16...Faraday cup, 17...Filament for neutralization, 18...Heater for heating the substrate. Patent Applicant Nippon Telegraph and Telephone Corporation Agent Patent Attorney Yoshi Tani - 1s, Invention 1: Juru defeat item book Getsuga's shape, cross section m1 showing the beak and claws Figure 1 Wen L ( K) 杏尤明r=JuruBq2ycu306.51
Thirst, charcoal bales? B')insu'''++ Figure 2: Jv rice's spetta &i''s decoy Figure 3: A five-split I0 town decoy diagram of I Jyorai Figure 4

Claims (1)

【特許請求の範囲】 1)成膜室内に配設された基板を支持しかつ加熱するた
めの基板ホルダと、 前記基板上に堆積させる物質を蒸発させる蒸発源と、 プラズマを生成し、かつ該プラズマより引出された酸素
イオンビームを前記基板上に堆積する薄膜に堆積と同様
に照射するためのイオン源とを具えたことを特徴とする
酸化物薄膜製造装置。 2)前記酸素イオンビームまたは前記基板に電子を照射
してイオンビーム電荷を中性化するための電子照射手段
を具えたことを特徴とする請求項1記載の酸化物薄膜製
造装置。 3)前記成膜室内に酸素イオン照射量測定手段および分
子線照射量測定手段を具え、それぞれの測定結果を前記
イオン源および前記蒸発源に帰還して前記酸素イオンビ
ームの強度および前記蒸発の量を制御可能であることを
特徴とする請求項1または2記載の酸化物薄膜製造装置
。 4)請求項1、2および3のいずれかに記載の酸化物薄
膜の製造装置を用いて、1×10^−^3Torrより
も高真空中において、酸化物を構成する原料を蒸発させ
、蒸発した原料を基板上に堆積させると同時に、前記基
板上の堆積物に酸素イオンビームまたは中性酸素ビーム
を10〜500eVの範囲の一定エネルギーに加速して
、照射することを特徴とする酸化物薄膜の製造方法。
[Claims] 1) A substrate holder for supporting and heating a substrate disposed in a film forming chamber; an evaporation source for evaporating a substance to be deposited on the substrate; An oxide thin film manufacturing apparatus comprising: an ion source for irradiating the thin film deposited on the substrate with an oxygen ion beam extracted from plasma in the same manner as the deposition. 2) The oxide thin film manufacturing apparatus according to claim 1, further comprising electron irradiation means for irradiating the oxygen ion beam or the substrate with electrons to neutralize the ion beam charge. 3) An oxygen ion irradiation amount measuring means and a molecular beam irradiation amount measuring means are provided in the film forming chamber, and the respective measurement results are returned to the ion source and the evaporation source to measure the intensity of the oxygen ion beam and the amount of evaporation. The oxide thin film manufacturing apparatus according to claim 1 or 2, wherein the oxide thin film manufacturing apparatus is capable of controlling. 4) Using the apparatus for producing an oxide thin film according to any one of claims 1, 2, and 3, the raw material constituting the oxide is evaporated in a vacuum higher than 1 x 10^-^3 Torr. An oxide thin film characterized in that, at the same time, the deposited material on the substrate is irradiated with an oxygen ion beam or a neutral oxygen beam accelerated to a constant energy in the range of 10 to 500 eV. manufacturing method.
JP4221188A 1988-02-26 1988-02-26 Production of thin oxide film and apparatus therefor Pending JPH01219162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4221188A JPH01219162A (en) 1988-02-26 1988-02-26 Production of thin oxide film and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4221188A JPH01219162A (en) 1988-02-26 1988-02-26 Production of thin oxide film and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH01219162A true JPH01219162A (en) 1989-09-01

Family

ID=12629690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4221188A Pending JPH01219162A (en) 1988-02-26 1988-02-26 Production of thin oxide film and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH01219162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475265A2 (en) * 1990-09-12 1992-03-18 Hitachi, Ltd. Insulator for solid state device and its fabrication method
US5478400A (en) * 1992-11-18 1995-12-26 Fujitsu Limited Apparatus for fabricating semiconductor devices
JP2006328437A (en) * 2005-05-23 2006-12-07 Shimadzu Corp Film deposition apparatus, and film deposition method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475265A2 (en) * 1990-09-12 1992-03-18 Hitachi, Ltd. Insulator for solid state device and its fabrication method
EP0475265A3 (en) * 1990-09-12 1994-05-25 Hitachi Ltd Insulator for solid state device and its fabrication method
US5478400A (en) * 1992-11-18 1995-12-26 Fujitsu Limited Apparatus for fabricating semiconductor devices
JP2006328437A (en) * 2005-05-23 2006-12-07 Shimadzu Corp Film deposition apparatus, and film deposition method

Similar Documents

Publication Publication Date Title
US5055319A (en) Controlled high rate deposition of metal oxide films
US4336277A (en) Transparent electrical conducting films by activated reactive evaporation
KR20000071541A (en) Method of forming transparent conductive film and transparent conductive film formed by the method
US4179528A (en) Method of making silicon device with uniformly thick polysilicon
Lakshmi et al. The growth of highly resistive gallium nitride films
Kim et al. Effect of ion beam energy on the electrical, optical, and structural properties of indium tin oxide thin films prepared by direct metal ion beam deposition technique
JPH01219162A (en) Production of thin oxide film and apparatus therefor
US4329418A (en) Organometallic semiconductor devices
JPS6389656A (en) Electrically conductive transparent film and its formation
US3703456A (en) Method of making resistor thin films by reactive sputtering from a composite source
JPS5850419B2 (en) Method for manufacturing piezoelectric thin film
JPS6147645A (en) Formation of thin film
JPS6210269A (en) Vacuum evaporation device and production of thin film
JP2916514B2 (en) Manufacturing method of oxide thin film
JP2907403B2 (en) Deposition film forming equipment
JPH04219301A (en) Production of oxide superconductor thin film
JPH0753634B2 (en) Oxide thin film manufacturing equipment
JPH08288273A (en) Manufacture of tin barrier film and device therefor
JPS5814503B2 (en) Nisanca vanadium
JPH01212752A (en) Apparatus for producing thin superconducting film
JPS5813006B2 (en) Sankabutsuhandoutaihakumakuno Seizouhouhou
JPH03197306A (en) Equipment for producing oxide superconducting thin film and method therefor
Swady et al. The reactive sputtering of thin films of TiN at low target voltages
JPH0243357A (en) Production of thin superconducting film
JPH02296724A (en) Manufacture of thin film superconductor