JPH03232959A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPH03232959A
JPH03232959A JP3004290A JP3004290A JPH03232959A JP H03232959 A JPH03232959 A JP H03232959A JP 3004290 A JP3004290 A JP 3004290A JP 3004290 A JP3004290 A JP 3004290A JP H03232959 A JPH03232959 A JP H03232959A
Authority
JP
Japan
Prior art keywords
thin film
sputtering
discharge
target
laba
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3004290A
Other languages
Japanese (ja)
Inventor
Toshiro Kajiwara
利郎 梶原
Goroku Kobayashi
小林 伍六
Ko Sano
耕 佐野
Youjirou Yano
矢野 陽児郎
Takahiro Urakabe
隆浩 浦壁
Keiji Fukuyama
福山 敬二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3004290A priority Critical patent/JPH03232959A/en
Publication of JPH03232959A publication Critical patent/JPH03232959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a thin film excellent in heat resistance and secondary emission ratio by subjecting a target consisting of (LaBa)B6 containing specific amounts of Ba to high frequency magnetron sputtering at specific discharge input voltage in a specific discharge gas atmosphere. CONSTITUTION:A thin film is produced on a substrate by using a high frequency magnetron sputtering method. In the method for manufacturing the above thin film, Ar having 6X10<-4>-2X10<-2>Torr pressure and >=about 99.9% purity is used as the discharge gas atmosphere at the time of sputtering. Further, as a material for sputtering target, an (LaBa)B6 sintered compact containing 0.01-30mole% Ba is used. Moreover, discharge input to the target at the time of sputtering is regulated to 1-4W/cm<2> energy density. By this method, the thin film excellent in electric properties and mechanical properties can be obtained. This thin film can be formed into a cathode material for electric discharge excellent in heat resistance and ion bombardment resistance and having high secondary emission ratio.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、耐熱性および耐イオン衝撃性に優れた高二
次電子放出率を必要とする放電用陰極材料薄膜の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a thin film of a cathode material for discharge, which requires a high secondary electron emission rate with excellent heat resistance and ion bombardment resistance.

[従来の技術] 従来よりL a B eを薄膜電極として用いた例とし
て、J、J、Appl、Phys、2B(10)p、1
722−p、1726(’ 87)のように電子ビーム
蒸着法によって薄膜を形成した場合、電気抵抗が5X1
0’Ω・Cm(膜厚≧600nm)、その時のLaの重
量比は69.9%(LaB5.5に相当)で、放電特性
も第2図に示したように通常の陰極(Ni)よりも低い
電圧で大きな電流を取り出せるかなり優れた特性が得ら
れることが報告されている。また、L a B eは結
晶構造により二次電子放出率が異なり、電子ビーム蒸着
法により形成された薄膜は最も二次電子放出率の高い[
100]結晶配向になることも報告されている(仕事関
数:2.4−3.9eV)。L a B eはこのよう
に元来優れた電子物性を有しているうえ、耐薬品性およ
び耐熱性(融点: 2700°C)に優れた性質を備え
ている事が知られている。
[Prior art] As an example of conventionally using L a B e as a thin film electrode, J, J, Appl, Phys, 2B(10)p, 1
722-p, 1726 ('87), when a thin film is formed by electron beam evaporation, the electrical resistance is 5X1.
0'Ω・Cm (film thickness ≧ 600 nm), the weight ratio of La at that time is 69.9% (equivalent to LaB5.5), and the discharge characteristics are also better than the normal cathode (Ni) as shown in Figure 2. It has also been reported that it has quite excellent characteristics, allowing a large current to be extracted at low voltage. In addition, the secondary electron emission rate of L a B e differs depending on the crystal structure, and the thin film formed by electron beam evaporation has the highest secondary electron emission rate [
100] crystal orientation (work function: 2.4-3.9 eV). L a B e inherently has excellent electronic properties as described above, and is also known to have excellent chemical resistance and heat resistance (melting point: 2700°C).

また、焼結L a B eをターゲットとして用い、ス
パッタリング蒸着法でL a B e薄膜を形成すると
原理上イオンを用いた高エネルギー(電子温度)蒸着法
であることから電子ビーム蒸着法で形成した膜より付着
力のすぐれた薄膜が得られることは一般的に知られてい
る。
In addition, when a sintered L a B e is used as a target and a L a B e thin film is formed by sputtering vapor deposition, it is in principle a high energy (electron temperature) vapor deposition method using ions, so it was formed by electron beam vapor deposition. It is generally known that thin films with superior adhesion can be obtained.

次に、従来形成されたL a B e薄膜の作用につい
て説明する。
Next, the action of the conventionally formed L a B e thin film will be explained.

電極材料は一般に通電によって材料固有の抵抗に基づく
ジュール熱が発生するため、電極における熱損失を小さ
くする意味からまず低抵抗であること、次に発熱に対し
て長寿命を保証する目的から耐熱性に優れていること、
そして基板との剥離などによる断線を避ける意味から基
板との付着力が大きいこと、さらに種々のプロセスに耐
える目的から耐薬品性に優れた材料が最適であるとされ
てきた。また、放電用電極材料としては、初期電子に基
づく放電によって形成されたイオンによって雪崩的に二
次電子が増殖されるように作用しなければならず、従っ
て一般の電極材料の条件にさらに耐イオン衝撃性及び二
次電子放出率の高い材料等の要求が付加される。L a
 B eは正にこれらの条件をすべて満足した理想的な
材料である。
Electrode materials generally generate Joule heat based on the material's inherent resistance when energized, so first they must have low resistance to reduce heat loss in the electrode, and second, they must be heat resistant to ensure long life against heat generation. be excellent at;
Materials that have strong adhesion to the substrate to avoid disconnection due to peeling from the substrate, and materials that have excellent chemical resistance to withstand various processes have been considered optimal. In addition, as a discharge electrode material, it must act in such a way that secondary electrons are multiplied like an avalanche by ions formed by discharge based on initial electrons, and therefore it must have even higher ion resistance than the conditions of general electrode materials. There are additional requirements for materials with high impact resistance and secondary electron emission rate. La
Be is an ideal material that satisfies all of these conditions.

このように元来数々の特徴を有したL a B eを電
極として使用するためには、基板上に電流密度に応じた
厚さの金属導体パターン上にあるいは基板上に直接印刷
法あるいは蒸着法によりパターンニング形成する方法が
一般的にとられている。このようにして形成された電極
パターンに通電することにより、単なる電極として作用
し、また電極が放電空間にある場合には先に述べたイオ
ンの接近に伴い二次電子を効率よく放出する陰極として
作用する。第2図(a)は、電子ビーム蒸着により基板
を300℃に加熱してNiパターン上に600nm以上
の膜厚に形成した陰極とNi陽極間でXe放電ガス圧力
pと陰極・陽極間距離dの積がITorr−cmになる
ような条件で放電させた結果を示したもので、第2図(
b)にLaB6を蒸着しないNiのみの同様の特性を示
したが、L a B eを蒸着した電極のほうがはるか
に優れた特性を示すことが報告されている(J、J。
In order to use L a B e, which originally has a number of characteristics as described above, as an electrode, it is necessary to print it directly on a metal conductor pattern with a thickness that corresponds to the current density on the substrate, or on the substrate using a direct printing method or vapor deposition method. A method of patterning is generally used. By energizing the electrode pattern formed in this way, it acts as a simple electrode, and when the electrode is in the discharge space, it acts as a cathode that efficiently releases secondary electrons as the ions approach. act. Figure 2 (a) shows the Xe discharge gas pressure p and the cathode-anode distance d between the cathode and Ni anode, which were formed on a Ni pattern with a film thickness of 600 nm or more by heating the substrate to 300°C by electron beam evaporation. Figure 2 shows the results of discharging under conditions such that the product of ITorr-cm
b) showed similar characteristics with only Ni without LaB6 deposited, but it has been reported that the electrode with LaBe deposited has much better characteristics (J, J.

Appl、Phys、2B(10)P、1722−17
28(’ 87) )。
Appl, Phys, 2B(10)P, 1722-17
28 ('87)).

なお、上記の蒸着法で薄膜を形成した場合は、結晶配向
[100]がかなりの割合で形成されるので仕事関数も
一層小さくなり放電用電極として好ましいことも報告さ
れている。
It has also been reported that when a thin film is formed by the above-mentioned vapor deposition method, a considerable proportion of the crystal orientation [100] is formed, so that the work function is further reduced, making it preferable as a discharge electrode.

また、特開昭64−81143号公報及び特開昭64−
89242号公報には、L a B eに所定量のBa
を添加してスパッタリング蒸着法によって形成すること
により、化学的にも安定な特性を有することが開示され
ている。
Also, JP-A-64-81143 and JP-A-64-
No. 89242 discloses that a predetermined amount of Ba is added to L a B e.
It is disclosed that chemically stable properties can be obtained by forming the film by sputtering vapor deposition with the addition of .

[発明が解決しようとする課題] しかしながら、従来の印刷法でL a B 6を形成す
る場合は、下地との付着力を維持するために微量のガラ
スフリットをL a B e粉末に添加してガラスフリ
ットの溶融温度で焼き付ける処理が必要になる。この方
法の場合、印刷面が平坦になりにくく二次電子の脱出深
さ(数10人)まで表面研磨しなければならないという
問題があった。この他、焼成条件によりL a B e
膜の抵抗が増加するなどかなり取扱が難しいという問題
もあった。
[Problems to be Solved by the Invention] However, when forming L a B 6 using the conventional printing method, a small amount of glass frit is added to the L a B e powder to maintain adhesion to the substrate. A baking process is required at the melting temperature of the glass frit. In the case of this method, there was a problem in that the printed surface was difficult to become flat and the surface had to be polished to the depth of escape of secondary electrons (several tens of people). In addition, depending on the firing conditions, L a B e
There was also the problem that it was quite difficult to handle, such as the resistance of the membrane increasing.

他方、電子ビーム蒸着法で形成する場合、ビームは収束
性があるという性質上、量産性や均質大面積薄膜の作成
が困難であるという問題点があった。さらに、この方法
で形成する場合には化学量論的組成比を制御する場合に
おいて、二元系蒸着(La、B各々の材料を用意して同
時に蒸着させる)しなければならず、材料自身の化学的
安定性(Laは水蒸気、酸素との反応性が高い)及び蒸
着面全体の膜の均質性が悪いなどといった成膜上の問題
点もあった。
On the other hand, when forming by electron beam evaporation, there are problems in that it is difficult to mass-produce and to form a homogeneous large-area thin film due to the convergence nature of the beam. Furthermore, when forming with this method, binary system vapor deposition (preparing and simultaneously vapor depositing each material of La and B) is required to control the stoichiometric composition, and the material itself must be vaporized. There were also problems in film formation, such as chemical stability (La is highly reactive with water vapor and oxygen) and poor uniformity of the film over the entire deposition surface.

また、この問題を無視して単一蒸着源(LaB6を直接
使用)で電子ビーム蒸着すると、化学量論的組成比が十
分に制御されない結果も報告されている。
Furthermore, it has been reported that when this problem is ignored and electron beam evaporation is performed using a single evaporation source (directly using LaB6), the stoichiometric composition ratio is not sufficiently controlled.

さらに、このような問題点を解消するために、特開昭6
4−81143号公報や特開昭6489242号公報に
開示されているようにスパッタリング蒸着法を採用して
成膜した場合には、量産性および大面積薄膜の形成を可
能にするとともに、化学量論的組成比も制御可能にする
ことはできるものの、材料固有の二次電子放出率の観点
からはまだ十分なレベルに達していない問題があった。
Furthermore, in order to solve these problems,
When a sputtering vapor deposition method is used to form a film as disclosed in JP-A-4-81143 and JP-A-6489242, mass production and formation of a large-area thin film are possible, and the stoichiometric Although it is possible to control the chemical composition ratio, there is still a problem in that it has not reached a sufficient level from the viewpoint of the secondary electron emission rate inherent to the material.

この発明は以上の問題点をすべて解消するためになされ
たもので、ターゲットとして上記の物性を損うことなく
一層すぐれた二次電子放出特性を持つ(L a B a
) B+3ターゲツトを使用し、スパッタリング法を用
いて成膜することにより耐熱性、二次電子放出率および
基板との付着力などすべての点で従来より優れた電極を
形成することができる製造方法を提供することを目的と
する。
This invention was made in order to solve all of the above problems, and the target has even better secondary electron emission characteristics (L a B a ) without impairing the above physical properties.
) We developed a manufacturing method that uses a B+3 target and forms a film using the sputtering method to form an electrode that is superior to conventional electrodes in all respects, including heat resistance, secondary electron emission rate, and adhesion to the substrate. The purpose is to provide.

[課題を解決するための手段] この発明に係る(LaBa)Be薄膜の製造方法は、高
周波(RF)マグネトロンスパッタリング法において、
Baが0.01乃至30m。
[Means for Solving the Problems] A method for producing a (LaBa)Be thin film according to the present invention includes the steps of a radio frequency (RF) magnetron sputtering method.
Ba is 0.01 to 30m.

1%の範囲で添加された(L a B a) Beター
ゲットを用い、純度99.9%以上のArガス雰囲気中
で放電人力1乃至4W/cm2に設定し、かつその時の
Ar圧力を6X10=乃至2X10−2Torrにした
ものである。
Using a (L a B a) Be target doped in a range of 1%, a discharge power of 1 to 4 W/cm2 was set in an Ar gas atmosphere with a purity of 99.9% or higher, and the Ar pressure at that time was set to 6X10= or 2×10 −2 Torr.

[作用] この発明における(L a B a) Be薄膜の製造
方法は、RFマグネトロンスパッタリング法を用いて放
電人力1乃至4W/am2の範囲でArガス雰囲気中で
蒸着することにより他の形成方法に比べ均質で一様な厚
さの膜が形成される上、蒸着4 時のArの雰囲気を6×10 乃至2X10=の範囲に
制御することにより、第1図に示したように原子比B/
(LaBa)が6近傍に制御され、また第2図(c)の
斜線部として示したように(LaBa)BeにおいてB
aの添加量をo、  。
[Function] The method for producing the (L a B a) Be thin film in this invention is similar to other forming methods by depositing in an Ar gas atmosphere at a discharge power of 1 to 4 W/am2 using the RF magnetron sputtering method. In addition, a film with a more homogeneous and uniform thickness is formed, and by controlling the Ar atmosphere during vapor deposition 4 in the range of 6×10 to 2×10, the atomic ratio B/
(LaBa) is controlled to be near 6, and as shown as the shaded area in FIG. 2(c), B in (LaBa)Be
The amount of a added is o.

1〜30mol%の範囲に限定することにより極めて二
次電子放出率の高い高電流密度薄膜陰極を形成すること
が可能となる。
By limiting the content to a range of 1 to 30 mol %, it becomes possible to form a high current density thin film cathode with an extremely high secondary electron emission rate.

[実施例コ 以下、この発明の一実施例を図に基づき説明する。第1
図において、横軸として(L a B a)Beターゲ
ットを用いてRFマグネトロンスパッタリング法により
蒸着する際の放電Arガス圧力を10〜10−4の範囲
に設定して形成した場合1 における薄膜の組成比B/(LaBa)を縦軸に選んで
測定点を記した図である。
[Example 1] Hereinafter, an example of the present invention will be described based on the drawings. 1st
In the figure, the horizontal axis indicates the composition of the thin film in case 1 when the discharge Ar gas pressure is set in the range of 10 to 10-4 during vapor deposition by RF magnetron sputtering using a (L a B a) Be target. It is a diagram in which the ratio B/(LaBa) is selected as the vertical axis and measurement points are shown.

図において、薄膜の原子比B (L a B a)が6
に近いほど耐熱性、耐イオン衝撃性および二次電子放出
特性に優れた特性を示し、また原子比が6から遠くなる
ほど余剰原子が酸化物を形成して粒界に析出するため電
気抵抗が上昇し、陰極としての性能が低下する。そして
、この傾向は原子比が6より小さい領域で一層顕著に現
れることがわかる。このような観点から第1図を見ると
、原子比B/(LaBa)が5.8ないし6.5の範囲
に実用可能な領域が存在し、その時のRFマグネトロン
スパッタリング蒸着法に用いるArガス圧力は6X10
’乃至2X10−2Torrであることがわかる。
In the figure, the atomic ratio B (L a B a) of the thin film is 6.
The closer the atomic ratio is to 6, the better the properties are in heat resistance, ion bombardment resistance, and secondary electron emission characteristics.The further the atomic ratio is from 6, the more excess atoms form oxides and precipitate at grain boundaries, increasing the electrical resistance. However, the performance as a cathode deteriorates. It can be seen that this tendency is more pronounced in the region where the atomic ratio is smaller than 6. Looking at Figure 1 from this perspective, there is a practical range in which the atomic ratio B/(LaBa) is in the range of 5.8 to 6.5, and the Ar gas pressure used in the RF magnetron sputtering deposition method at that time exists. is 6X10
' to 2×10 −2 Torr.

次に一具体例を示す。蒸着雰囲気であるArの圧力が1
0−3〜10’Torrの範囲においてターゲットに対
する放電エネルギー密度として1〜4W/cm2で蒸着
された(LaBa)B  薄膜の物性として、薄膜の組
成はほぼ一様になり電気抵抗率は大気中でも安定して極
小値(10’のオーダー)を示し、薄膜の組成はB/(
LaBa)−6になり、電極物質として優れた特性の薄
膜を得ることができた。
Next, a specific example will be shown. The pressure of Ar, which is the vapor deposition atmosphere, is 1
The physical properties of the (LaBa)B thin film deposited at a discharge energy density of 1 to 4 W/cm2 to the target in the range of 0-3 to 10' Torr are that the composition of the thin film is almost uniform and the electrical resistivity is stable even in the atmosphere. shows a minimum value (on the order of 10'), and the composition of the thin film is B/(
LaBa)-6, and a thin film with excellent properties as an electrode material could be obtained.

同様の実証をスパッタリング蒸着のAr圧力を6X10
−’〜2X10−.2Torrの範囲で変えながら実験
を行った結果、余剰の金属が大気中で酸化されることな
く実用の範囲内で同様の傾向を得ることができることを
確認した。
A similar demonstration was carried out using Ar pressure of 6X10 for sputtering deposition.
-'~2X10-. As a result of conducting experiments while changing the pressure within a range of 2 Torr, it was confirmed that the same tendency could be obtained within a practical range without excess metal being oxidized in the atmosphere.

なお、本実施例においては蒸着雰囲気と薄膜の電気抵抗
および組成比について述べたが、上記実施例の範囲で蒸
着された薄膜は基板への付着力も最大になるうえ、薄膜
の内部応力も減少する傾向にあり、多くの優れた物性を
示す。
In this example, we have described the deposition atmosphere, the electrical resistance and composition ratio of the thin film, but the thin film deposited within the range of the above example has maximum adhesion to the substrate, and the internal stress of the thin film is also reduced. and exhibits many excellent physical properties.

また、第2図(C)に示したようにRFスパッタリング
蒸着法において、Arガス圧力を6×4 10 〜2X10−2To r rの範囲に限定し、(
L a B a ) B eターゲット中のBa添加量
を変えて実験したところ、Baの増加にともない二次電
子放出量は増加して第2図(c)に示す特性となるが、
Baの添加量がQ、Q1mol%未満であると添加効果
は認められず゛、また30mol%を超えると膜として
の付着力が低下するうえ大気中での酸化に対する安定性
が低下するためBaの添加量としては0.01〜30m
ol%が適性範囲であることがわかった。
Furthermore, as shown in FIG. 2(C), in the RF sputtering vapor deposition method, the Ar gas pressure is limited to the range of 6×4 10 to 2×10 −2 Torr, and (
When experiments were conducted by changing the amount of Ba added in the L a B a ) B e target, the amount of secondary electron emission increased as the amount of Ba increased, resulting in the characteristics shown in Figure 2 (c).
If the amount of Ba added is less than 1 mol% of Q, no addition effect will be observed, and if it exceeds 30 mol%, the adhesion as a film will decrease and the stability against oxidation in the atmosphere will decrease. Addition amount is 0.01~30m
It was found that ol% was within the appropriate range.

以上、本実施例においては薄膜の電極材料について説明
したが、Baを添加した薄膜は金色を示し、また耐薬品
性、耐熱性、伝導性などに優れていることから金よりも
装飾および電子拐料として優れている一面があり、これ
らの分野への応用も可能である。
In this example, the thin film electrode material has been described. The thin film containing Ba has a golden color and is superior in chemical resistance, heat resistance, conductivity, etc. It has some advantages as a material, and can be applied to these fields.

[発明の効果] 以上のように、この発明によればスパッタリング蒸着法
において、ターゲットとしてのBaの添加量が0.01
〜30mol%の範囲に限定された( L a B a
 ) B e焼結体を用い、Ar圧力を6X10 〜2
X10−2Torrの範囲で導入す4 ることにより、電気物性および力学物性に優れた薄膜を
得ることができる効果がある。
[Effects of the Invention] As described above, according to the present invention, in the sputtering vapor deposition method, the amount of Ba added as a target is 0.01
~30 mol% (L a B a
) Using Be sintered body, Ar pressure was set to 6X10~2
By introducing in the range of X10-2 Torr, it is possible to obtain a thin film with excellent electrical and mechanical properties.

【図面の簡単な説明】[Brief explanation of drawings]

1 第1図はこの発明の一実施例によるRFスパッタリング
蒸着時のAr圧力と蒸着された薄膜の原子比B/(La
Ba)の関係を示した図、第2図は物性評価の説明図で
ある。 なお、図中、同一符号は同一または相当部分を示す。
1 Figure 1 shows the relationship between the Ar pressure during RF sputtering deposition and the atomic ratio B/(La
Figure 2, which shows the relationship between Ba), is an explanatory diagram of physical property evaluation. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 高周波マグネトロンスパッタリング法を用いて基板上に
薄膜を作成する薄膜の製造方法において、スパッタリン
グ時の放電ガス雰囲気として6×10^−^4乃至2×
10^−^2Torrの圧力を有するArを用い、 スパッタリングターゲットの材料としてBaを0.01
乃至30mol%含む(LaBa)_9_4B_6(原
子比)を用い、かつ スパッタリング時の前記ターゲットへの放電入力電圧を
1乃至4W/cm^2 とすることを特徴とする薄膜の製造方法。
[Claims] In a thin film manufacturing method for forming a thin film on a substrate using high frequency magnetron sputtering method, the discharge gas atmosphere during sputtering is 6×10^-^4 to 2×
Using Ar with a pressure of 10^-^2 Torr, 0.01% Ba was used as the sputtering target material.
A method for manufacturing a thin film, characterized in that (LaBa)_9_4B_6 (atomic ratio) containing 30 mol% to 30 mol% is used, and the discharge input voltage to the target during sputtering is 1 to 4 W/cm^2.
JP3004290A 1990-02-08 1990-02-08 Production of thin film Pending JPH03232959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004290A JPH03232959A (en) 1990-02-08 1990-02-08 Production of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004290A JPH03232959A (en) 1990-02-08 1990-02-08 Production of thin film

Publications (1)

Publication Number Publication Date
JPH03232959A true JPH03232959A (en) 1991-10-16

Family

ID=12292767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004290A Pending JPH03232959A (en) 1990-02-08 1990-02-08 Production of thin film

Country Status (1)

Country Link
JP (1) JPH03232959A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256747A (en) * 2008-04-18 2009-11-05 Canon Anelva Corp Magnetron sputtering system, and method of manufacturing thin film
JP2009270158A (en) * 2008-05-08 2009-11-19 Canon Anelva Corp Magnetron sputtering system and thin film production method
JP2009280863A (en) * 2008-05-22 2009-12-03 Canon Anelva Corp Magnetron sputtering apparatus and method for manufacturing thin film
JP2013152948A (en) * 2013-04-03 2013-08-08 Tohoku Univ Method of producing cathode body for magnetron

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256747A (en) * 2008-04-18 2009-11-05 Canon Anelva Corp Magnetron sputtering system, and method of manufacturing thin film
JP2009270158A (en) * 2008-05-08 2009-11-19 Canon Anelva Corp Magnetron sputtering system and thin film production method
JP2009280863A (en) * 2008-05-22 2009-12-03 Canon Anelva Corp Magnetron sputtering apparatus and method for manufacturing thin film
US8663430B2 (en) 2008-05-22 2014-03-04 Canon Anelva Corporation Magnetron sputtering apparatus and method for manufacturing thin film
JP2013152948A (en) * 2013-04-03 2013-08-08 Tohoku Univ Method of producing cathode body for magnetron

Similar Documents

Publication Publication Date Title
TWI494678B (en) Materials and device stack for market viable electrochromic devices
EP0385475A2 (en) Method of forming a transparent conductive film
US7431808B2 (en) Sputter target based on titanium dioxide
JP2000040429A (en) Manufacturing of zinc oxide transparent conductive film
EP0227467B1 (en) Titanium nitride electrodes for thermoelectric generators
JPH08236105A (en) Manufacture of lithium secondary battery positive electrode
KR100189218B1 (en) Formation of ito transparent conductive film
JPH03232959A (en) Production of thin film
JPH02101160A (en) Ion plating method
JPH03101033A (en) Manufacture of thin film
JP2001326071A (en) Manufacturing method of passivation film for organic led element
JP4170507B2 (en) Method for producing transparent conductive film
JP3555711B2 (en) AC plasma display panel and method of manufacturing the same
JPS5850419B2 (en) Method for manufacturing piezoelectric thin film
JPH0329216A (en) Formation of transparent conductive film
JP4915890B2 (en) Glass plate with electrodes made of conductive material
JPH09194232A (en) Substrate formed with ito film and formation of ito film
JP2633340B2 (en) Method for forming transparent conductive film
JPH06101252B2 (en) Method for forming transparent conductive metal oxide film
JPH0273963A (en) Formation of thin film on low-temperature substrate
JP2000226653A (en) Production of manganese oxide thin film and lithium battery using the manganese oxide thin film
JP2688999B2 (en) Method for producing transparent conductive film
Pan et al. 29.1: MgO Coating by Reactive Magnetron Sputtering for Large‐Screen Plasma Display Panels
JPH0146855B2 (en)
KR830000680B1 (en) Oxide cathode for electron tube