JP2633340B2 - Method for forming transparent conductive film - Google Patents

Method for forming transparent conductive film

Info

Publication number
JP2633340B2
JP2633340B2 JP809889A JP809889A JP2633340B2 JP 2633340 B2 JP2633340 B2 JP 2633340B2 JP 809889 A JP809889 A JP 809889A JP 809889 A JP809889 A JP 809889A JP 2633340 B2 JP2633340 B2 JP 2633340B2
Authority
JP
Japan
Prior art keywords
film
substrate
coated
coating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP809889A
Other languages
Japanese (ja)
Other versions
JPH02189816A (en
Inventor
繁喜 長坂
庸 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP809889A priority Critical patent/JP2633340B2/en
Publication of JPH02189816A publication Critical patent/JPH02189816A/en
Application granted granted Critical
Publication of JP2633340B2 publication Critical patent/JP2633340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマディプレイ、エレクトロルミネッ
センスディスプレイ、液晶ディスプレイさらにはタッチ
入力システムのタッチパネルなどの電子ディスプレイに
必要な透明電極用の膜の形成方法に関し、さらに詳述す
れば酸化錫を含む酸化インジウムの加圧焼結体をターゲ
ットとして、マグネトロンスパッタ法により低抵抗率の
酸化錫を含む酸化インジウム膜(以下ITO膜という)を
基体上に形成する方法に関する。
The present invention relates to a method for forming a film for a transparent electrode required for an electronic display such as a plasma display, an electroluminescence display, a liquid crystal display, and a touch panel of a touch input system. More specifically, an indium oxide film containing tin oxide having a low resistivity (hereinafter referred to as an ITO film) is formed on a substrate by magnetron sputtering using a pressure sintered body of indium oxide containing tin oxide as a target. About the method.

〔従来の技術〕[Conventional technology]

従来、スパッタリング法により透明なITO膜を基体上
に形成する方法としては、インジウム錫合金をターゲッ
トとする方法と酸化錫を含む酸化インジウムの焼結体を
ターゲットとする方法がある。前者の方法としては、減
圧されたアルゴンと酸素の混合ガスからなるスパッタリ
ングガスにより、加熱しない基体の上に低級酸化物を主
とする半透明膜を被覆し、その後該膜を大気またはN2
如き中性ガスまたは水素を含む還元性ガス中で加熱して
透明化する方法がある。一方、後者の方法としては、基
体をあらかじめ真空槽内で加熱し、加熱された基体上に
少量の酸素を含むアルゴンガスによるスパッタリングに
より透明な膜を直接形成する方法がある。
Conventionally, as a method for forming a transparent ITO film on a substrate by a sputtering method, there are a method using an indium tin alloy as a target and a method using a sintered indium oxide containing tin oxide as a target. As the former method, the sputtering gas comprising a mixed gas of reduced pressure argon and oxygen, a semi-transparent film comprising mainly lower oxides on a substrate unheated coated, then the membrane of the air or N 2 For example, there is a method in which heating is performed in a neutral gas or a reducing gas containing hydrogen to make the gas transparent. On the other hand, as the latter method, there is a method in which a substrate is heated in advance in a vacuum chamber and a transparent film is directly formed on the heated substrate by sputtering with an argon gas containing a small amount of oxygen.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前者のインジウム錫合金のターゲット
をスパッタリングして得られる膜は、膜の構造が緻密で
あるため酸によるエッチングスピードが遅く、微細な透
明電極のパタニングを寸法精度良く短時間に実施するこ
とが困難であるという欠点を有する。一方、後者の酸化
錫を適量に含む酸化インジウムの焼結体をターゲットに
用いて、加熱された基体に被覆された膜は、抵抗率が1.
8〜2.0×10-4Ωcm程度であり、大面積で高精細な表示に
必要な面積抵抗を確保するには前者の方法と同様に膜厚
を大きくしなければならないという欠点を有する。
However, the former film obtained by sputtering an indium-tin alloy target has a slow film etching speed due to the dense structure of the film, so that patterning of a fine transparent electrode can be performed in a short time with high dimensional accuracy. It has the disadvantage of being difficult. On the other hand, the film coated on the heated substrate using the latter sintered body of indium oxide containing an appropriate amount of tin oxide as a target has a resistivity of 1.
It is about 8 to 2.0 × 10 −4 Ωcm, and has a drawback that the film thickness must be increased similarly to the former method in order to secure the sheet resistance required for a large area and high definition display.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記した従来のITO膜を基体に形成する方
法が有する欠点を克服するためになされたもので、従来
の方法で得られるITO膜の抵抗率よりも低い抵抗率を有
するITO透明導電膜を基体上に形成する方法を提供する
ものである。
The present invention has been made to overcome the above-mentioned drawbacks of the conventional method of forming an ITO film on a substrate, and has a transparent conductive film having a lower resistivity than the ITO film obtained by the conventional method. A method for forming a film on a substrate is provided.

本発明にかかるITO透明導電膜を基体上へ形成する方
法は、減圧されたアルゴンの如き不活性ガスまたは不活
性ガスと酸素との混合ガスを含む雰囲気内において、焼
結した酸化錫を含む酸化インジウムをターゲットとし、
200℃以下に維持された基体上に、膜厚が3〜30nmの第
1層の膜をマグネトロンスパッタ法で被覆し、その後該
基体を300℃以上に減圧下で加熱し、300℃以上に加熱さ
れた該基体の該第1層の膜の上に、アルゴンの如き不活
性ガスと酸素との混合ガスからなる減圧された雰囲気内
のマグネトロンスパッタ法により第2層の膜を被覆し、
膜の被覆を完了後該基体を冷却して、真空槽内に気体を
導入することからなる方法であって、膜の被覆を200℃
以下の比較的低い基体温度で行う第1層の被覆と、300
℃以上の比較的高い基体温度で行う第2層の被覆を含む
方法である。第1層の膜を被覆するときの雰囲気ガスと
しては、アルガンの如き不活性ガスまたはアルゴンと少
量の酸素との混合ガスを用いることができ、通常マグネ
トロンスパッタ法で用いられる全圧力は1×10-3〜1×
10-2Torrに調節される。また被覆するときの基体温度が
200℃を越えると粒子の成長が著るしくなり、抵抗率を
小さくするために必要な第2層の膜の自由電子のホール
易動度を向上させることができなくなるので、200℃以
下に維持する。さらに基体の温度を100℃以下に維持す
ることが第2層の膜の抵抗率を低くする上で好ましい。
第1層の膜は比較的低い温度で被覆されるため高い抵抗
率を有するので、第1層の膜を30nmを越えて被覆するこ
とは、膜全体の抵抗率をむしろ高くしてしまう。
The method for forming an ITO transparent conductive film on a substrate according to the present invention comprises the steps of: using an oxide containing sintered tin oxide in an atmosphere containing an inert gas such as decompressed argon or a mixed gas of an inert gas and oxygen. Targeting indium,
A first layer having a thickness of 3 to 30 nm is coated on a substrate maintained at a temperature of 200 ° C. or less by a magnetron sputtering method. A second layer film is coated on the first layer film of the substrate by magnetron sputtering in a reduced-pressure atmosphere composed of a mixed gas of an inert gas such as argon and oxygen,
After completion of coating the film, the substrate is cooled, and a gas is introduced into the vacuum chamber.
Coating the first layer at a relatively low substrate temperature,
A method that includes coating a second layer at a relatively high substrate temperature of at least C. As an atmosphere gas for coating the film of the first layer, an inert gas such as argan or a mixed gas of argon and a small amount of oxygen can be used. The total pressure usually used in the magnetron sputtering method is 1 × 10 -3 to 1x
Adjusted to 10 -2 Torr. Also, the substrate temperature when coating
If the temperature exceeds 200 ° C., the growth of particles becomes remarkable, and it becomes impossible to improve the hole mobility of free electrons in the second layer film required for reducing the resistivity. I do. Further, it is preferable to keep the temperature of the substrate at 100 ° C. or lower in order to lower the resistivity of the film of the second layer.
Coating the first layer film beyond 30 nm would rather increase the overall film resistivity, since the first layer film is coated at a relatively low temperature and therefore has a high resistivity.

一方膜厚が3nmより小さいと第2層の膜の自由電子の
ホール易動度を大きくできないので、第1層の膜の厚み
は3〜30nmの範囲でなければならない。また第1層の膜
を被覆した基体を少くとも300℃以上に加熱するときの
雰囲気は第1層の膜の抵抗率を低くするために減圧下で
おこなう。ここで減圧した雰囲気中の酸素分圧は1×10
-4Torr以下であることが好ましい。第2層の膜の被覆に
際しては、基体温度は300℃以上の高温に維持される。
基体温度が300℃以下では被覆される膜の結晶性が十分
でなく、膜中の自由電子のホール易動度が小さくなるの
で抵抗率が大きくなる。また第2層の膜を被覆するとき
の雰囲気中の酸素分圧は5×10-6〜1×10-4Torrの範囲
が好ましい。酸素分圧が5×10-6Torr以下では膜が堆積
されるときに粒子成長が著しくなり、自由電子のホール
易動度が小さくなり、また酸素分圧が1×10-4Torrより
大きいと膜中の酸素欠陥が減少し、その結果自由電子の
密度が減少する。したがって低い抵抗率を得るには酸素
分圧が5×10-6〜1×10-4Torrが好ましく、さらに1×
10-5〜5×10-5Torrが最も好ましい。また上記した酸素
分圧を得るために、雰囲気ガスの全ガス圧力はマグネト
ロンスパッタで通常用いられる1×10-3〜1×10-2Torr
に調節される。
On the other hand, if the film thickness is smaller than 3 nm, the mobility of holes of free electrons in the film of the second layer cannot be increased, so the thickness of the film of the first layer must be in the range of 3 to 30 nm. The atmosphere when the substrate coated with the first layer film is heated to at least 300 ° C. is performed under reduced pressure in order to lower the resistivity of the first layer film. The oxygen partial pressure in the reduced atmosphere is 1 × 10
It is preferably at most -4 Torr. In coating the second layer film, the substrate temperature is maintained at a high temperature of 300 ° C. or higher.
At a substrate temperature of 300 ° C. or lower, the crystallinity of the film to be coated is not sufficient, and the hole mobility of free electrons in the film becomes small, so that the resistivity becomes large. Further, the oxygen partial pressure in the atmosphere when coating the second layer film is preferably in the range of 5 × 10 −6 to 1 × 10 −4 Torr. When the oxygen partial pressure is 5 × 10 −6 Torr or less, the particle growth becomes remarkable when the film is deposited, the hole mobility of free electrons decreases, and when the oxygen partial pressure is higher than 1 × 10 −4 Torr. Oxygen vacancies in the film are reduced and consequently the density of free electrons is reduced. Therefore, to obtain a low resistivity, the oxygen partial pressure is preferably 5 × 10 −6 to 1 × 10 −4 Torr, and more preferably 1 × 10 −4 Torr.
10 -5 to 5 × 10 -5 Torr is most preferred. Further, in order to obtain the above-mentioned oxygen partial pressure, the total gas pressure of the atmospheric gas is set to 1 × 10 −3 to 1 × 10 −2 Torr normally used in magnetron sputtering.
Is adjusted to

本発明の第2層の膜の厚みは必要とする透明電極の面
積抵抗から決められるが、20〜400nmの範囲であること
が好ましい。膜厚が400nmを越えて大きくなると第1層
の下地層が第2層の膜の堆積に及ぼす影響が希薄になり
膜全体の抵抗率が低下しにくくなる。また膜厚が20nm以
下では連続した一様な膜にならないので、低い抵抗率を
得ることが困難となる。
The thickness of the film of the second layer of the present invention is determined by the required sheet resistance of the transparent electrode, and is preferably in the range of 20 to 400 nm. When the film thickness exceeds 400 nm, the influence of the first underlayer on the deposition of the second layer film is diminished, and the resistivity of the entire film is hardly reduced. If the film thickness is less than 20 nm, a continuous and uniform film is not obtained, so that it is difficult to obtain a low resistivity.

また、第2層の膜を被覆後、減圧された雰囲気におい
て基体を冷却し、外部より空気を導入するときの基体の
温度は250℃以下とする。さらに200℃以下が最も好まし
い。基体の温度が250℃以上のときに空気を導入する
と、空気中の酸素により被覆されたITO膜が酸化され、
抵抗率が大きくなるので好ましくない。
After coating the second layer film, the substrate is cooled in a reduced-pressure atmosphere, and the temperature of the substrate when air is introduced from the outside is set to 250 ° C. or less. Further, the temperature is most preferably 200 ° C. or lower. When air is introduced when the temperature of the substrate is 250 ° C. or higher, the ITO film coated with oxygen in the air is oxidized,
It is not preferable because the resistivity increases.

本発明において使用されるターゲットとしては、酸化
錫の微粉末を酸化インジウムの微粉末と十分に混合し所
定の形状にプレス成型したものを、高温たとえば1000〜
1500℃で焼成して焼結したものを使用することができ
る。そして酸化錫は酸化インジウム膜に電導性を与える
ための添加物として加えられるもので、5重量%〜15重
量%程度加えるのが適当である。
As the target used in the present invention, a target obtained by sufficiently mixing a fine powder of tin oxide with a fine powder of indium oxide and press-molding it into a predetermined shape, at a high temperature of, for example, 1000 to
What was fired and sintered at 1500 ° C. can be used. Tin oxide is added as an additive for imparting electrical conductivity to the indium oxide film, and is suitably added in an amount of about 5 to 15% by weight.

本発明を実施する方法としては、バッチ型のマグネト
ロンスパッタ装置においては、第1から第3までの工程
をスパッタ装置の真空を破らずに連続して真空槽内で実
施できることはもちろん、開閉可能なゲートバルブによ
り隔離、連続が行える複数の真空槽からなるインライン
型マグネトロンスパッタ装置においては、第1〜第3の
各工程を連続する真空槽で順次実施することができる。
As a method for carrying out the present invention, in a batch type magnetron sputtering apparatus, the first to third steps can be performed continuously in a vacuum chamber without breaking the vacuum of the sputtering apparatus, and can be opened and closed. In an in-line type magnetron sputtering apparatus including a plurality of vacuum chambers that can be isolated and connected continuously by a gate valve, the first to third steps can be sequentially performed in a continuous vacuum chamber.

〔作 用〕(Operation)

本発明にかかる第1層の膜は、比較的低温の基体に被
覆されるため主として非晶質から構成される膜になり、
被覆後減圧下で加熱することにより緻密な膜となる。こ
の第1層の下地膜は、高温で被覆される第2層の膜の粒
界が緻密になるように作用し、膜中の粒界における自由
電子の移動に対するエネルギー障壁を小さくする。した
がって膜の電気伝導度に関係する自由電子の易動度を大
きくし、被覆した膜全体の抵抗率を低くする。
The film of the first layer according to the present invention is a film mainly composed of amorphous because it is coated on a relatively low-temperature substrate,
By heating under reduced pressure after coating, a dense film is formed. The first underlayer film acts so that the grain boundaries of the second layer film to be coated at a high temperature become dense, and reduces the energy barrier to the movement of free electrons at the grain boundaries in the film. Therefore, the mobility of free electrons related to the electrical conductivity of the film is increased, and the resistivity of the entire coated film is reduced.

〔実施例〕〔Example〕

以下に実施例で本発明を説明する。第1図は、本発明
により得られる透明導電膜を被覆した基体の1実施例の
断面図で、1はガラス板、2は第1の被覆工程により被
覆された膜、3は第2の被覆工程により被覆された膜で
ある。第2図は従来の方法により得られた透明導電膜を
被覆した基体の断面図で、4は透明導電膜である。
Hereinafter, the present invention will be described with reference to Examples. FIG. 1 is a cross-sectional view of one embodiment of a substrate coated with a transparent conductive film obtained by the present invention, wherein 1 is a glass plate, 2 is a film coated by a first coating step, and 3 is a second coating. It is a film coated by the process. FIG. 2 is a sectional view of a substrate coated with a transparent conductive film obtained by a conventional method, and 4 is a transparent conductive film.

実施例1 ソーダライムガラス基体(寸法50mm×50mm×3mm)を
中性洗剤で洗浄し、水洗いフレオン蒸気で乾燥した。こ
のガラス基体をマグネトロンスパッタ装置のスパッタ槽
内にターゲットとの距離が50mmとなるように配置した。
該ターゲットとしては、酸化錫を10重量%添加した酸化
インジウムを加圧成形して焼成したものを用いた。マグ
ネトロンスパッタ装置の槽内を真空排気ポンプにより7
×10-6Torr以下にした後、槽内にアルゴン98.5体積%、
酸素1.5体積%の混合ガスを導入し、該スパッタ槽内を
3.0×10-3Torrの圧力に維持した。ガラス基体温度を20
℃とし、スパッタ電流2Aを直流電源からターゲットが貼
つけられたマグネトロンカソードに印加して、第1層の
膜厚が15nmになるように所定時間スパッタした。その後
導入ガスを停止し、ガラス基体を300℃に加熱し、基体
加熱ヒーターの温度調節機構により300〜310℃に維持し
た。再度該混合ガスを導入してスパッタ槽内を3.0×10
-3Torrとし、スパッタ電流2Aで放電させ第2層の膜厚が
140nmになるように所定時間スパッタした。電圧印加お
よびガス導入を停止し、ガラス基体が250℃になるまで
冷却した。その後真空バルブを開いて空気を真空槽内に
導入し、2つの被覆工程によりITO膜を被覆したサンプ
ル1を得た。
Example 1 A soda-lime glass substrate (dimensions: 50 mm × 50 mm × 3 mm) was washed with a neutral detergent and washed with water and dried with Freon steam. This glass substrate was placed in a sputtering tank of a magnetron sputtering apparatus so that the distance to the target was 50 mm.
As the target, a target obtained by subjecting indium oxide to which tin oxide was added by 10% by weight to pressure molding and firing was used. The inside of the tank of the magnetron sputtering device is set to 7
After reducing the pressure to 10-6 Torr or less, 98.5% by volume of argon
A mixed gas of 1.5% by volume of oxygen was introduced, and the inside of the sputtering tank was
The pressure was maintained at 3.0 × 10 −3 Torr. Glass substrate temperature 20
° C, a sputtering current of 2 A was applied from a DC power supply to the magnetron cathode to which the target was attached, and sputtering was performed for a predetermined time so that the thickness of the first layer was 15 nm. Thereafter, the introduction gas was stopped, the glass substrate was heated to 300 ° C., and the temperature was maintained at 300 to 310 ° C. by the temperature control mechanism of the substrate heater. The mixed gas was introduced again, and the inside of the sputtering tank was 3.0 × 10
-3 Torr, and discharge at a sputter current of 2 A to make the thickness of the second layer
Sputtering was performed for a predetermined time so that the thickness became 140 nm. The application of the voltage and the gas introduction were stopped, and the glass substrate was cooled to 250 ° C. Thereafter, the vacuum valve was opened and air was introduced into the vacuum chamber, and a sample 1 coated with an ITO film in two coating steps was obtained.

サンプル1の膜厚、面積抵抗を測定し抵抗率を算出し
た。ホール係数の測定を行い、膜の自由電子の濃度およ
び易動度を求め、比較サンプル2の膜の自由電子の濃度
および易動度に対する相対値を算出した。結果を第1表
に示す。
The film thickness and the sheet resistance of Sample 1 were measured, and the resistivity was calculated. The Hall coefficient was measured to determine the concentration and mobility of free electrons in the film, and a relative value to the concentration and mobility of free electrons in the film of Comparative Sample 2 was calculated. The results are shown in Table 1.

実施例2 第1層の膜を被覆するときのガラス基体の温度を種々
変えたほかは実施例1と同様の方法で、2つの被覆工程
によりITO膜を被覆したサンプル2〜5を得た。サンプ
ル2〜5についてそれぞれ膜厚、面積抵抗を測定し抵抗
率を算出した。またホール係数の測定を行い、膜の自由
電子の濃度および易動度を求め、比較サンプル2の膜の
自由電子の濃度および易動度に対する相対値を算出し
た。結果を第1表に示す。
Example 2 Samples 2 to 5 coated with an ITO film by two coating steps were obtained in the same manner as in Example 1 except that the temperature of the glass substrate when coating the first layer film was variously changed. For each of Samples 2 to 5, the film thickness and the sheet resistance were measured, and the resistivity was calculated. The Hall coefficient was also measured to determine the concentration and mobility of free electrons in the film, and the relative values to the concentration and mobility of free electrons in the film of Comparative Sample 2 were calculated. The results are shown in Table 1.

実施例3 第1層の膜の厚みを、スパッタ時間を変更することに
より種々変えたほかは実施例1と同様の方法で、2つの
被覆工程によりITO膜を被覆したサンプル6〜11を得
た。サンプル6〜11についてそれぞれ膜厚、面積抵抗を
測定し抵抗率を算出した。またホール係数の測定を行
い、膜の自由電子の濃度および易動度を求め、比較サン
プル2の膜の自由電子の濃度および易動度に対する相対
値を算出した。結果を第2表に示す。
Example 3 In the same manner as in Example 1, except that the thickness of the film of the first layer was variously changed by changing the sputtering time, samples 6 to 11 coated with an ITO film by two coating steps were obtained. . For each of Samples 6 to 11, the film thickness and the sheet resistance were measured, and the resistivity was calculated. The Hall coefficient was also measured to determine the concentration and mobility of free electrons in the film, and the relative values to the concentration and mobility of free electrons in the film of Comparative Sample 2 were calculated. The results are shown in Table 2.

実施例4 第1層を被覆するときの雰囲気ガスの組成をアルゴン
のみとしたことおよび第2層の膜の厚みと第2層の膜を
被覆するときのガラス基体の温度を種々変えたほかは、
実施例3と同様の方法で、2つの被覆工程によりITO膜
を被覆したサンプル12〜14を得た。サンプル12〜14につ
いてそれぞれ膜厚、面積抵抗を測定し抵抗率を算出し
た。またホール係数の測定を行い膜の自由電子の濃度お
よび易動度を求め比較サンプル3の膜の自由電子の濃度
および易動度に対する相対値を算出した。結果を第3表
に示す。
Example 4 Except that the composition of the atmosphere gas when coating the first layer was only argon, and the thickness of the film of the second layer and the temperature of the glass substrate when coating the film of the second layer were variously changed, ,
In the same manner as in Example 3, samples 12 to 14 coated with an ITO film by two coating steps were obtained. For each of Samples 12 to 14, the film thickness and the sheet resistance were measured, and the resistivity was calculated. The Hall coefficient was measured to determine the concentration and mobility of free electrons in the film, and the relative value to the concentration and mobility of free electrons in the film of Comparative Sample 3 was calculated. The results are shown in Table 3.

比較例1 第1層の膜を被覆するときのガラス基体の温度を250
℃としたことのほかは実施例1と同様の方法で、2つの
被覆工程によりITO膜を被覆した比較サンプル1を得
た。このサンプルの膜厚、面積抵抗を測定し抵抗率を算
出した。またホール係数の測定を行い、膜の自由電子の
濃度および易動度を求め、比較サンプル2の膜の自由電
子の濃度および易動度に対する相対値を算出した。結果
を第1表に示す。
Comparative Example 1 The temperature of the glass substrate when coating the film of the first layer was 250
A comparative sample 1 coated with an ITO film by two coating steps was obtained in the same manner as in Example 1 except that the temperature was changed to ° C. The film thickness and the sheet resistance of this sample were measured, and the resistivity was calculated. The Hall coefficient was also measured to determine the concentration and mobility of free electrons in the film, and the relative values to the concentration and mobility of free electrons in the film of Comparative Sample 2 were calculated. The results are shown in Table 1.

比較例2 ソーダライムガラス基体(寸法50mm×50mm×3mm)を
中性洗剤で洗浄し、水洗後フレオン蒸気で乾燥した。こ
のガラス基体を実施例1と同じマグネトロンスパッタ装
置のスパッタ槽内にターゲットの距離が50mmとなるよう
に配置した。ターゲットとしては実施例1と同じものを
用いた。マグネトロンスパッタ装置の槽内を真空排気ポ
ンプにより7×10-6Torrまで排気しながらガラス基体を
加熱し、基体加熱ヒーターの温度調節によりガラス基体
の温度を300〜310℃に維持した。槽内にアルゴン98.5体
積%酸素1.5体積%の混合ガスを導入し、該スパッタ槽
内を3.0×10-3Torrの圧力に維持した。スパッタ電流2A
をマグネトロンカソードに印加し膜厚が140nmになるよ
うに所定時間スパッタした。電圧の印加およびガス導入
を停止し、ガラス基体を200℃になるまで冷却し、その
後空気を真空槽内に導入し、1つの被覆工程によりITO
膜を被覆した比較サンプル2を得た。このサンプルの膜
厚、面積抵抗を測定し抵抗率を測定した。またホール係
数の測定を行い、膜の自由電子の濃度および易動度を算
出し、実施例1、実施例2、比較例1の自由電子の濃度
および易動度の規準値とした。結果を第2表に示す。
Comparative Example 2 A soda-lime glass substrate (dimensions 50 mm × 50 mm × 3 mm) was washed with a neutral detergent, washed with water, and dried with Freon steam. This glass substrate was placed in the same magnetron sputtering apparatus as in Example 1 so that the target distance was 50 mm. The same target as in Example 1 was used as the target. The glass substrate was heated while evacuation of the inside of the tank of the magnetron sputtering apparatus to 7 × 10 −6 Torr by a vacuum exhaust pump, and the temperature of the glass substrate was maintained at 300 to 310 ° C. by adjusting the temperature of the substrate heating heater. A mixed gas of 98.5% by volume of argon and 1.5% by volume of oxygen was introduced into the tank, and the inside of the sputtering tank was maintained at a pressure of 3.0 × 10 −3 Torr. Sputter current 2A
Was applied to a magnetron cathode and sputtered for a predetermined time so that the film thickness became 140 nm. The application of voltage and gas introduction were stopped, and the glass substrate was cooled down to 200 ° C., and then air was introduced into the vacuum chamber.
Comparative sample 2 coated with the film was obtained. The film thickness and sheet resistance of this sample were measured, and the resistivity was measured. Further, the Hall coefficient was measured, and the concentration and mobility of free electrons in the film were calculated, and were used as reference values for the concentration and mobility of free electrons in Example 1, Example 2, and Comparative Example 1. The results are shown in Table 2.

比較例3 膜を被覆するときのガラス基体の温度を400℃とした
ことのほかには比較例2と同様の方法で、1つの被覆工
程によりITO膜を被覆した比較サンプル3を得た。この
サンプルの膜厚、面積抵抗を測定し、抵抗率を算出し
た。またホール係数の測定を行い膜の自由電子の濃度お
よび易動度を求め、実施例3のサンプルの自由電子の濃
度および易動度の規準値とした。結果を第3表に示す。
Comparative Example 3 A comparative sample 3 coated with an ITO film by one coating step was obtained in the same manner as in Comparative Example 2 except that the temperature of the glass substrate when coating the film was 400 ° C. The film thickness and sheet resistance of this sample were measured, and the resistivity was calculated. The Hall coefficient was measured to determine the concentration and mobility of free electrons in the film, which were used as reference values for the concentration and mobility of free electrons in the sample of Example 3. The results are shown in Table 3.

〔発明の効果〕〔The invention's effect〕

本発明により得られるITO透明導電膜は、抵抗率が従
来の方法によるものよりも小さいので、電子ディスプレ
ーの透明電極として所定の面積抵抗を確保するのにより
膜厚が薄くてよい。膜をより薄膜化できることは透明電
極のパターン加工が容易になるので、本発明にかかるIT
O透明導電膜により大面積かつ高精細表示に必要な透明
電極の微細パターン加工を歩留り良くかつ迅速に実施す
ることができる。
Since the ITO transparent conductive film obtained by the present invention has a lower resistivity than that obtained by the conventional method, the film thickness may be thinner to ensure a predetermined sheet resistance as a transparent electrode of an electronic display. The ability to make the film thinner facilitates pattern processing of the transparent electrode, so the IT according to the present invention
O transparent conductive film enables fine pattern processing of a transparent electrode required for a large area and high definition display to be quickly performed with good yield.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる透明導電膜付ガラスの断面模式
図、第2図は従来の方法の透明導電膜付ガラスの断面図
である。 1……ガラス、2……第1の被覆工程により被覆された
層、3……第2の被覆工程により被覆された層、4……
1層からなる透明導電膜。
FIG. 1 is a schematic cross-sectional view of a glass with a transparent conductive film according to the present invention, and FIG. 2 is a cross-sectional view of a glass with a transparent conductive film according to a conventional method. 1 ... glass, 2 ... layer coated in the first coating step, 3 ... layer coated in the second coating step, 4 ...
A transparent conductive film consisting of one layer.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化錫を含む酸化インジウムを焼結したタ
ーゲットを用い、減圧された不活性ガスまたは不活性ガ
スと酸素とを含む雰囲気内でのマグネトロンスパッタ法
により、200℃以下に維持された基体表面に膜厚が3〜3
0nmの少量の酸化錫を含む酸化インジウムの膜を被覆す
る第1工程と、該ターゲットを用い減圧された不活性ガ
スと酸素とを含む雰囲気内でのマグネトロンスパッタ法
により、少くとも300℃以上に加熱された該基体の該膜
上に少量の酸化錫を含む酸化インジウムの膜を被覆する
第2工程と、該基体を減圧された雰囲気中で250℃以下
に冷却後該雰囲気を大気圧にする第3工程とからなる透
明な酸化錫を含む酸化インジウム膜の形成方法
1. A magnetron sputtering method using a target obtained by sintering indium oxide containing tin oxide in an atmosphere containing a reduced pressure of an inert gas or an inert gas and oxygen. Film thickness of 3 to 3 on substrate surface
A first step of coating a film of indium oxide containing a small amount of tin oxide of 0 nm, and magnetron sputtering in an atmosphere containing a reduced pressure of inert gas and oxygen using the target to at least 300 ° C. A second step of coating a film of indium oxide containing a small amount of tin oxide on the film of the heated substrate, and cooling the substrate to a temperature of 250 ° C. or less in a reduced pressure atmosphere, and then setting the atmosphere to atmospheric pressure. A method for forming a transparent indium oxide film containing tin oxide comprising a third step
【請求項2】該第2工程において5×10-6〜1×10-4To
rrの酸素分圧で膜を被覆する特許請求の範囲第1項記載
の方法
2. The method according to claim 1, wherein in the second step, 5 × 10 -6 to 1 × 10 -4 To
2. A method according to claim 1, wherein the membrane is coated at an oxygen partial pressure of rr.
【請求項3】該第2工程で被覆される膜の厚みが20〜40
0nmである特許請求の範囲第1項又は第2項記載の方法
3. The film coated in the second step has a thickness of 20 to 40.
3. The method according to claim 1, wherein the thickness is 0 nm.
JP809889A 1989-01-17 1989-01-17 Method for forming transparent conductive film Expired - Fee Related JP2633340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP809889A JP2633340B2 (en) 1989-01-17 1989-01-17 Method for forming transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP809889A JP2633340B2 (en) 1989-01-17 1989-01-17 Method for forming transparent conductive film

Publications (2)

Publication Number Publication Date
JPH02189816A JPH02189816A (en) 1990-07-25
JP2633340B2 true JP2633340B2 (en) 1997-07-23

Family

ID=11683833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP809889A Expired - Fee Related JP2633340B2 (en) 1989-01-17 1989-01-17 Method for forming transparent conductive film

Country Status (1)

Country Link
JP (1) JP2633340B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071414A1 (en) * 2001-03-07 2002-09-12 Ueyama Electric Co., Ltd. Substrate with deposited transparent condcutive film and method for fabricating color filter
DE10327897B4 (en) * 2003-06-20 2010-04-01 Applied Materials Gmbh & Co. Kg Process for the preparation of smooth indium tin oxide layers on substrates, and substrate coating of indium tin oxide and organic light emitting diode
JP4516296B2 (en) * 2003-10-14 2010-08-04 パナソニック株式会社 Transparent thin film electrode manufacturing method, film forming apparatus, plasma display panel manufacturing method, and plasma display apparatus manufacturing method
JP5829014B2 (en) * 2010-09-30 2015-12-09 シャープ株式会社 Method for manufacturing compound semiconductor light emitting device

Also Published As

Publication number Publication date
JPH02189816A (en) 1990-07-25

Similar Documents

Publication Publication Date Title
EP1636397B1 (en) Method for forming transparent conductive oxides
US4424101A (en) Method of depositing doped refractory metal silicides using DC magnetron/RF diode mode co-sputtering techniques
EP0403936B1 (en) Method for producing a conductive oxide pattern
JP2633340B2 (en) Method for forming transparent conductive film
JP3780932B2 (en) Sintered target for producing transparent conductive thin film and method for producing the same
JPH0772346B2 (en) Method for producing low resistance transparent conductive film
JP2002042582A (en) Manufacturing method of substrate with transparent conductive film, and the substrate manufactured by the method, and touch panel using the substrate
KR100189218B1 (en) Formation of ito transparent conductive film
JPH02101160A (en) Ion plating method
JPH11335815A (en) Substrate with transparent conductive film and deposition apparatus
KR100862593B1 (en) Transparent conductive thin film and method of fabricating thereof
JPH1088332A (en) Sputtering target, transparent conductive coating and its production
Karim et al. Deposition of tin-doped indium oxide films by a modified reactive magnetron sputtering process
JP2688999B2 (en) Method for producing transparent conductive film
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JP2628591B2 (en) Method for forming transparent conductive film
JP2002012964A (en) Transparent electroconductive film, its manufacturing method, and sputtering target
JPH0723532B2 (en) Method for forming transparent conductive film
JP3355610B2 (en) Method for increasing resistance of tin-doped indium oxide film
JPH07224374A (en) Method for making tin doped indium oxide film high resistant
JPH0765167B2 (en) Sputtering target for ITO transparent conductive film
JPH09118544A (en) Transparent electrically conductive film, its production and material for production
JPH03123845A (en) Gas sensor
JP4255655B2 (en) Method for forming high resistance tin-doped indium oxide film
JPH0336703A (en) Film resistor and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees