WO2002071414A1 - Substrate with deposited transparent condcutive film and method for fabricating color filter - Google Patents

Substrate with deposited transparent condcutive film and method for fabricating color filter Download PDF

Info

Publication number
WO2002071414A1
WO2002071414A1 PCT/JP2002/002135 JP0202135W WO02071414A1 WO 2002071414 A1 WO2002071414 A1 WO 2002071414A1 JP 0202135 W JP0202135 W JP 0202135W WO 02071414 A1 WO02071414 A1 WO 02071414A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
inert gas
film
substrate
layer
Prior art date
Application number
PCT/JP2002/002135
Other languages
French (fr)
Japanese (ja)
Inventor
Takuma Kobayashi
Hiroshi Fukada
Takeharu Hirooka
Eiji Kamijo
Yoshifumi Aoi
Susumu Tsubota
Takashi Imamichi
Kunihiko Sakayama
Muneo Sasaki
Original Assignee
Ueyama Electric Co., Ltd.
Ryukoku University
Shiga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueyama Electric Co., Ltd., Ryukoku University, Shiga Prefecture filed Critical Ueyama Electric Co., Ltd.
Publication of WO2002071414A1 publication Critical patent/WO2002071414A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Definitions

  • the present invention relates to a method for manufacturing a transparent conductive film laminated substrate and a color filter.
  • TFT displays which are the mainstream of displays for notebook computers and desktop computers, are configured so that light from a light source passes through TFTs, liquid crystal molecules, and color filters to form an image on a substrate.
  • the color filter 1 has a light-shielding film, a color resist film, and an indium-tin-oxide (ITO) conductive film formed on a transparent substrate.
  • ITO indium-tin-oxide
  • Japanese Unexamined Patent Publication (Kokai) No. 63-197703 discloses a method in which a glass substrate on which a light-shielding film and a color resist film are formed is heated to 180 ° and a target comprising a tin-indium oxide sintered body Sputtering on a glass substrate on which a light-shielding film and a color resist film have been formed by reactive sputtering in an argon atmosphere containing oxygen. It discloses a method for forming a film.
  • the ITO conductive film obtained by the method described in Japanese Patent Application Laid-Open No. 63-197703 is composed of a single layer and has a low conductivity (that is, a large specific resistance).
  • a disadvantage that.
  • In order to improve the conductivity of the ITO conductive film it is necessary to increase the thickness of the conductive film.
  • the thickness of the ITO conductive film is increased, the transparency of the conductive film is impaired. Inevitable. Therefore, the ITO conductive film obtained by this method does not satisfy both high conductivity and transparency.
  • JP-A-6-28932 discloses a method for forming an ITO conductive film on the surface of an organic resin formed on a color resist film.
  • This method comprises the steps of (a) direct current magnetron sputtering on an organic resin surface using a tin-indium oxide sintered body as a target in an atmosphere of argon gas or a mixed gas of argon and oxygen containing 3% by volume of oxygen. Covers the 3 to 30 nm thick crystal nucleation layer (first layer) (B) a step of growing crystal nuclei by annealing at a temperature at which the organic resin of at least 100 is not deteriorated in an atmosphere in which the crystal nucleation layer is depressurized, and (c) crystal nucleation.
  • magnetron sputtering is performed on the first layer of the substrate heated to 30 or more to form a second layer of ITO film.
  • the method described in the above-mentioned Japanese Patent Application Laid-Open No. 6-28932 is also applicable to a method for preparing a capacitor in an IT conductive film.
  • the purpose is to increase the rear mobility and consequently lower the specific resistance of the ITO conductive film, that is, to improve the conductivity.
  • the above method has a disadvantage that the substrate used is limited because the substrate is exposed to a high temperature of 300 ° C. or more.
  • the method includes a step of cooling the substrate to 250 ° C. or lower in a reduced-pressure atmosphere and then returning the atmosphere to atmospheric pressure.
  • the substrate heated to 300 ° C. or more is returned to atmospheric pressure at that temperature, the substrate heated to 300 ° C. or more comes into contact with oxygen and is oxidized. Necessary to prevent degradation. 'Therefore, the method disclosed in JP-A-6-28932 requires a complicated operation of heating or cooling the substrate to a high temperature, and is not practical.
  • An object of the present invention is to provide a method for manufacturing a substrate on which a conductive film having high conductivity and excellent transparency is laminated.
  • Another object of the present invention is to provide a method for producing a color filter having high conductivity and excellent transparency.
  • the inventor has conducted various studies to achieve the above object.
  • a specific power source is used as a power source for forming the ITO film of each layer, and a specific sputtering is performed.
  • sputtering in a gas atmosphere, it is possible to increase the carrier concentration in the ITO film, and thus to obtain a substrate having a high conductivity and a laminated conductive film with excellent transparency. Came out.
  • a color filter having high conductivity and excellent transparency can be obtained. I found something to be done.
  • a target of an indium-tin-tin oxide sintered body is formed by using a DC (direct current) power supply or a DC + RF (high frequency) power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen. Sputtering to form an ITO film, and
  • At least one target selected from the group consisting of indium monotin oxide sintered compact and indium oxide sinter sintered compact is treated with a DC power supply, an RF power supply or a DC + RF power supply using an inert gas.
  • the present invention provides a method for manufacturing a transparent conductive film laminated substrate including:
  • the present invention provides: (1) sputtering of a target of an indium-tin-tin oxide sintered body using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen; Process of forming the first layer IT ⁇ film,
  • the present invention provides a method for manufacturing a transparent conductive film laminated substrate including:
  • the present invention provides a transparent conductive film laminated substrate manufactured by the above various methods.
  • the present invention relates to a method for manufacturing a color filter in which a light-shielding film, a color resist film, and at least two conductive films are sequentially formed on a transparent substrate, wherein the conductive film forming step is performed.
  • the target of the indium tin oxide sintered body was sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen using a 0 ⁇ power supply or a 1 ⁇ ⁇ + 1 power supply, and the IT ⁇ forming a film, and
  • a method for producing a color filter comprising:
  • the present invention relates to a method for producing a color filter in which a light-shielding film, a color resist film, and at least three conductive films are sequentially formed on a transparent substrate, wherein the conductive film forming step comprises the steps of: Forming a first ITO film on a substrate by sputtering the first substrate using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen.
  • the present invention provides a color filter manufactured by the above various methods.
  • the transparent conductive film laminated substrate of the present invention is manufactured by forming at least two layers of an ITO film or at least one ITO film and at least one indium oxide film on the substrate. Is done.
  • the number of ITO films formed on the substrate may be two, three, four, five or more. Further, the indium oxide film may have one layer, two layers or more. Each of these ITO films and the like is formed on a substrate by a known method.
  • ITO film or an oxide film by sputtering a target of the sintered body or indium oxide sintered body in an inert gas atmosphere using a DC power supply, an RF power supply or a DC + RF power supply. I have.
  • the carrier density in the conductive film is increased, the mobility of the carrier is hardly reduced, and the conductive film is formed under some sputtering conditions. Since the carrier density is high and the carrier mobility is high, the conductive film has high conductivity. .
  • the transparent conductive film laminated substrate of the present invention is manufactured by, for example, the following methods I to C. Method A:
  • the target of the indium-tin-tin oxide sintered body is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form a target on the substrate.
  • the substrate may be any of known substrates, for example, a glass substrate, a glass epoxy resin substrate, a ceramic substrate, an alumina substrate, a silicon substrate, an aluminum nitride substrate, a metal substrate, an IMS substrate, a metal core substrate, an enamel substrate, and a resin.
  • Substrates are examples.
  • the resin material of the resin substrate include polycarbonate, polyether sulfone, polyimide, acrylic resin, cyclic polyolefin (eg, Zeonor resin manufactured by Zeon Corporation), polyarylenit, polyethylene naphthalate (PEN), and polyethylene. Telephone rate (PET).
  • a glass substrate is preferable.
  • a glass substrate for a color filter can be widely used, and specifically, a soda lime glass substrate and the like can be exemplified.
  • the size, thickness, and the like of the substrate can be appropriately selected depending on the purpose of use of the transparent conductive film laminated substrate.
  • the target used in Method A is an indium tin oxide sintered body.
  • This sintered body is publicly known, for example, a material obtained by sufficiently mixing fine powdered tin oxide and fine powdered oxide and press-molding it into a predetermined shape, for example, firing at a high temperature of about 1000 to about 1500. Can be used.
  • the content of tin oxide in the sintered body is not limited, but is usually about 3 to about 30% by weight, preferably about 5 to about 15% by weight.
  • First step first, using a sintered body of indium monotin oxide as a target, this is sputtered on a substrate to form a first layer of ITO film on the substrate (hereinafter, this step is referred to as "First step").
  • the sputtering conditions in this first step are as follows.
  • the power supply should be DC power supply or DC + RF power supply.
  • the power supply is a DC power supply.
  • the conditions such as the applied power vary depending on the size of the target and cannot be unconditionally determined. However, assuming that the target has a size of 5 inches ⁇ 15 inches, it is as follows.
  • the applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply.
  • the power of the DC power supply is usually about 0.1 to about 1 kW, preferably about 0.2 to about 0.6 kW;
  • the power of the F power supply is usually about 0.1 to about 3 kW , Preferably from about 0.2 to about 0.6 KW.
  • the DCZRF power ratio should be appropriately adjusted within the range of about 0.1 to about 10.
  • the frequency is usually about 6.78 to about 27.12 MHz, preferably about 13.56 MHz.
  • the temperature of the substrate varies depending on the type of the substrate. For example, when a glass substrate is used, the temperature is usually around room temperature to less than 300, preferably about 140 to about 250.
  • the sputtering gas is an inert gas or a mixed gas of an inert gas and oxygen, preferably a mixed gas of an inert gas and oxygen.
  • inert gas known inert gases can be widely used, and typical examples thereof include argon gas.
  • the gas pressure is usually about 0.1 to about 1 Pa, preferably about 0.2 to about 1 Pa. 0.8 Pa.
  • the oxygen content in the mixed gas is about 1% by volume or less, preferably about 0.6% by volume or less.
  • the thickness of the ITO film formed as the first layer on the substrate by the first step is generally about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 0.15 to about 50 nm. It is.
  • an indium-tin oxide sintered body is used as a target, which is then sputtered on the first layer formed on the substrate, and a second layer of ITO film is formed on the first layer. (Hereinafter, this step is referred to as “second step”).
  • the sputtering conditions in this second step are as follows.
  • the type of power supply can be DC power, RF power or DC to: F power.
  • the power supply is an RF power supply.
  • the applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply.
  • the power of the RF power supply is usually about 0.1 to about 3 kW, preferably about 1 to about 1.8 kW.
  • the power of the DC power supply is usually about 0.1 to about 1 kW, preferably about 0.2 to about 0.6 kW, and the power of the RF power supply is usually about 0.1 to about 3 kW, preferably Is about 0.2 to about 0.6 KW.
  • the DC / RF power ratio may be appropriately adjusted within a range of about 0.1 to about 10.
  • the frequency is typically about 6.78 to about 27.12 MHz, preferably about
  • the temperature of the substrate on which the first layer is formed is usually around room temperature to less than 300 ", preferably about 140 to about 250 ° C.
  • the sputtering gas is an inert gas.
  • inert gas known inert gases can be widely used, and typical examples thereof include argon gas.
  • the gas pressure is usually from about 0.1 to about 1 Pa, preferably from about 0.2 to about 0.8 Pa.
  • the thickness of the ITO film formed as the second layer on the first layer by the second step is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 30 to about 70 nm. It is about 70 nm.
  • two sputterings can be performed while maintaining the substrate temperature at about 140 to about 250 ° C. to form a two-layer ITO film on the substrate.
  • the substrate temperature is sufficiently low, even if the atmosphere around the substrate is immediately returned to the atmospheric pressure, there is no possibility that the substrate is deteriorated. Cooling can be completed in a short time, on the order of minutes.
  • Method A includes the following embodiments.
  • At least one type of target selected from the group consisting of an indium tin oxide sintered body and an indium oxide sintered body is placed in an inert gas atmosphere using a DC power source, an RF power source, or a DC + RF power source.
  • a method for producing a transparent conductive film laminated substrate comprising:
  • (A-2) The method for producing a transparent conductive film laminated substrate according to (A-1), wherein the power supply in the step (1) is a DC power supply, and the power supply in the step (2) is an RF power supply.
  • A-3 The sputtering in (1) is performed in a mixed gas atmosphere of inert gas and oxygen, and the sputtering in (2) is performed in an inert gas atmosphere.
  • step (1) The sputtering in step (1) is performed in a mixed gas atmosphere of inert gas and oxygen, and the sputtering in step (2) is performed in an inert gas atmosphere.
  • step (2) The method according to (A-7), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step ⁇ ) is about 1% by volume or less.
  • A-10) The method for producing a transparent conductive film laminated substrate according to (A-1), wherein the power supply in the step (1) is a DC + RF power supply, and the power supply in the step (2) is an RF power supply.
  • A-11) The method for producing a transparent conductive film laminated substrate according to (A-10), wherein the sputtering in the step (1) is performed in an inert gas atmosphere.
  • the substrate and target used in this method are the same as in method A.
  • method B first, an indium-tin oxide sintered body is used as a target, which is sputtered on a substrate to form a first layer of ITO film on the substrate (hereinafter, this step is referred to as “ The first step ”).
  • the sputtering conditions in this first step are as follows.
  • the power supply shall be DC power supply or DC + RF power supply.
  • the power supply is a DC power supply.
  • the conditions such as the applied power and the like vary depending on the size of the get per night, etc., and cannot be determined unconditionally. However, assuming that the target has a size of 5 inches ⁇ 15 inches, it is as follows.
  • the applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply.
  • the power of the DC power supply is usually about 0.1 to about 1KW, preferably about 0.2 to about 0.6_KW, and the power of the RF power supply is usually about 0.1 to about 3KW , Preferably from about 0.2 to about 0.6 KW.
  • the DCZRF power ratio should be appropriately adjusted within the range of about 0.1 to about 10. If an RF power supply is used, the frequency is typically about 6.78 to about 27.12 MHz, preferably about 13.56 MHz.
  • the temperature of the substrate varies depending on the type of the substrate. For example, when a glass substrate is used, the temperature is usually around room temperature to less than 300 ° C, preferably about 140 to about 250 ° C.
  • the sputtering gas is an inert gas or a mixed gas of an inert gas and oxygen.
  • inert gas known inert gases can be widely used, and typical examples thereof include argon gas.
  • the gas pressure is usually about 0.1 to about 1 Pa, preferably about 0.2 to about 0.8 Pa.
  • the oxygen content in the mixed gas is about 1% by volume or less, preferably about 0.6% by volume or less.
  • the oxygen content in the mixed gas is about 0.6% by volume or less, preferably about 0.4% by volume or less, more preferably about 0.2% by volume or less.
  • the thickness of the ITO film formed as the first layer on the substrate by the first step is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 15 to about 50 nm. .
  • an indium-tin oxide sintered body is used as a target, which is sputtered on the first layer formed on the substrate, and the second layer of the ITO film is formed on the first layer. (Hereinafter, this step is referred to as “second step”).
  • the sputtering conditions in this second step are as follows.
  • the type of power supply shall be DC power supply, RF power supply or DC + RF power supply.
  • the applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply.
  • the power of the RF power supply is usually about 0.1 to about 3 kW, preferably about 1 to about 1.8 kW.
  • the power of the DC power supply is usually about 0.1 to about 1 kW, preferably about 0.2 to about 0.6 kW, and the power of the RF power supply is usually about 0.1 to about 3 kW, preferably Is about 0.2 to about 0.6 KW.
  • the DC / RF power ratio may be appropriately adjusted within a range of about 0.1 to about 10.
  • the frequency is usually about 6.78 to about 27.12 MHz, preferably about
  • the temperature of the substrate on which the first layer is formed is usually around room temperature to less than 300X, preferably about 140 to about 250 ° C.
  • the sputtering gas is an inert gas.
  • inert gas known inert gases can be widely used, and typical examples thereof include argon gas. Can be.
  • the gas pressure is usually from about 0.1 to about 1 Pa, preferably from about 0.2 to about 0.8 Pa.
  • the thickness of the ITO film formed as the second layer on the first layer by the second step is usually about 5 to about 150 nm, preferably about 10 to about 100 nm, and particularly preferably about 20 to about 70 nm. nm.
  • an indium-tin oxide sintered body is used as a target, and this is applied to the second layer formed on the substrate in an atmosphere of an inert gas or a mixed gas of an inert gas and oxygen.
  • a third layer of IT ⁇ film is formed on the second layer by sputtering (hereinafter, this step is referred to as “third step”).
  • the sputtering conditions in the third step may be the same as the sputtering conditions in the first step.
  • the sputtering conditions in the third step are as follows.
  • the power supply type is DC power supply or DC + RF power supply.
  • the applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply.
  • the power of the DC power supply is usually about 0.1 to about 1 kW, preferably about 0.2 to about 0.6 kW
  • the power of the RF power supply is usually about 0.1 to about 3 kW, Preferably it is from about 0.2 to about 0.6 KW.
  • the DCZRF power ratio should be appropriately adjusted within the range of about 0.1 to about 10.
  • the frequency is typically about 6.78 to about 27.12 MHz, preferably about
  • the temperature of the substrate is usually around room temperature to less than 300 ° C, preferably about 140 to about 250.
  • the sputtering gas is a mixed gas of an inert gas and oxygen.
  • inert gas known inert gases can be widely used, and typical examples thereof include argon gas.
  • the gas pressure is usually about 0.1 to about 1 Pa, preferably about 0.2 to about 0.8 Pa.
  • the acid in the mixed gas of inert gas and oxygen is about 1% by volume or less, preferably about 0.6% by volume or less, and in the case of a DC + RF power supply, the oxygen content in the mixed gas is about 0.6% by volume or less, preferably about 0.4% by volume or less.
  • the thickness of the ITO film formed as the third layer on the second layer by the third step is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, particularly preferably about 1 to about 100 nm. 5 to about 50 nm.
  • the sputtering in the first step and the third step may be performed under exactly the same conditions, or the sputtering in the first step and the third step may be performed by appropriately changing the sputtering conditions. .
  • the power supplies in the steps (1), (2) and (3) be DC power supplies.
  • the steps (1) and (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen
  • the step (2) is performed in an atmosphere of an inert gas.
  • the oxygen content in the mixed gas of the inert gas and oxygen in the steps (1) and (3) is about 1% by volume or less, preferably about 0.2 to about 0.6% by volume. .
  • the power supply in the steps (1) and (3) is a DC power supply
  • the power supply in the step (2) is an RF power supply.
  • the steps (1) and (3) are preferably performed in an atmosphere of a mixed gas of an inert gas and oxygen
  • the step (2) is preferably performed in an atmosphere of an inert gas.
  • the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) and the step (3) should be about 1% by volume or less, preferably about 0.1 to about 0.6% by volume. .
  • the power supply in the steps (1) and (3) is a DC + RF power supply
  • the power supply in the step (2) is an RF power supply.
  • the step (3) is preferably performed in an atmosphere of an inert gas or a mixed gas of an inert gas and oxygen
  • the step (2) is preferably performed in an atmosphere of an inert gas.
  • the oxygen content in the mixed gas of the inert gas and oxygen in the step is preferably about 0.2% by volume or less.
  • both the power supplies in the steps (1) and (3) are DC power supplies, and the power supply in the step (2) is DC + RF power supplies.
  • (Step D and Step (3) are preferably performed in an atmosphere of a mixed gas of an inert gas and oxygen, and Step (2) is preferably performed in an atmosphere of an inert gas.
  • the oxygen content in the solution is from about 0.1 to about 0.6% by volume.
  • the fourth layer made of the ITO film may be formed on the third layer by sputtering under the same sputtering conditions as in the second step.
  • the transparent conductive film laminated substrate on which the four-layered IT layer is laminated is particularly preferable in terms of high conductivity and transparency.
  • the fifth layer made of the ITO film is formed by sputtering under the same sputtering conditions as in the first step or the third step. May be.
  • one or more ITO films may be further formed on the fifth layer by alternately repeating the same sputtering conditions as in the second step and the same sputtering conditions as in the first step.
  • method B three or more times of sputtering are performed while maintaining the substrate temperature at about 140 to about 25 (TC, to form an ITO film composed of three or more layers on the substrate.
  • the temperature of the substrate is sufficiently low, so that even if the atmosphere around the substrate is immediately returned to the atmospheric pressure, there is no risk that the substrate will be degraded. can do.
  • Method B includes the following embodiments.
  • the target of the indium-tin-tin oxide sintered body is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form a target on the substrate.
  • a method for manufacturing a transparent conductive film laminated substrate comprising:
  • step (1) and the step (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is performed in an atmosphere of an inert gas. the method of.
  • step (1) and the step (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is performed in an atmosphere of an inert gas. the method of.
  • step (1) and the step (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is performed in an atmosphere of an inert gas. the method of.
  • Step (1) and step (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and step (2) is performed in an atmosphere of an inert gas. the method of.
  • the target of the indium oxide sintered body was sputtered in an inert gas or a mixed gas atmosphere of inert gas and oxygen using a DC power supply, RF power supply or DC + RF power supply, and the target was placed on the first layer.
  • the target used in the step (1) is an indium-tin-tin oxide sintered body
  • the target used in the step (2) is an indium-tin-oxide sintered body.
  • the power supply in the step (1) is preferably a DC power supply
  • the power supply in the step (2) is preferably an RF power supply.
  • step (1) is preferably performed in an atmosphere of a mixed gas of an inert gas and oxygen
  • step (2) is preferably performed in an atmosphere of an inert gas.
  • the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is preferably about 1% by volume or less, and more preferably about 0.6% by volume or less.
  • the thickness of the ITO film formed as the first layer on the substrate by the step (1) is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 150 nm. ⁇ 50 nm.
  • the thickness of the indium oxide film formed as the second layer on the first layer is usually about 5 to about 150 nm, preferably about 10 to about 10 O nm, particularly Preferably it is about 20 to about 70 nm.
  • the sputtering is performed twice while maintaining the substrate temperature at about 140 to about 25 to form an I ⁇ film and an indium oxide film on the substrate.
  • the substrate temperature is sufficiently low, even if the atmosphere around the substrate is immediately returned to the atmospheric pressure, there is no possibility that the substrate is deteriorated. Cooling can be completed in a matter of minutes.
  • Method C includes the following embodiments.
  • a target of indium tin oxide sintered body is sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen by using a power source of 0 or 13 ⁇ + 11 1.
  • a method for manufacturing a transparent conductive film laminated substrate comprising:
  • the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is about 1% by volume or less.
  • the target of the indium-tin oxide sintered body is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen, and the target is put on a substrate.
  • the substrate and target used in this method are the same as in method A.
  • the oxygen content in the mixed gas of the inert gas and oxygen in the step (2) is The oxygen content in the mixed gas of the inert gas and oxygen in step (1) and step (3) is preferably equal to or lower than the oxygen content in the mixed gas in step (1).
  • the content is about 1% by volume or less, preferably about 0.2 to about 0.6% by volume, and the oxygen content in the mixed gas of the inert gas and oxygen in step (2) is about 0.3% by volume or less. It is preferably about 0.2% by volume or less.
  • the thickness of the ITO film formed as the first layer on the substrate by the step (1) is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 15 to about 50 nm. is there. .
  • the thickness of the ITO film formed as the second layer on the first layer is usually about 5 to about 150 nm, preferably about: I0 to about 100 nm, and particularly preferably about 20 to about 100 nm. ⁇ 70 nm.
  • the thickness of the IT film formed as the third layer on the second layer is about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 15 to about 70 nm. It is about 50 nm.
  • the fourth layer made of the ITO film may be formed on the third layer by sputtering under the same sputtering conditions as in the step (2). Further, a fifth layer made of an ITO film may be formed on the fourth layer by sputtering under the same sputtering conditions as in step () or (3).
  • one or more ITO films may be further formed on the fifth layer by alternately repeating the sputtering conditions similar to the step (2) and the sputtering conditions similar to the step (1). Good.
  • the substrate temperature is maintained at about 140 to about 250 ° C three times or Can perform more sputtering to form a TO.TO film composed of three or more layers on the substrate.
  • the substrate temperature is sufficiently low, even if the atmosphere around the substrate is immediately returned to the atmospheric pressure, there is no possibility that the substrate is deteriorated. Cooling can be completed in a short time, on the order of minutes.
  • Method D includes the following embodiments.
  • the target of the indium-tin oxide sintered body was sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen using a 0 power source or a 0 + 1 power source. Forming a first 'layer IT ⁇ film thereon,
  • the above target is sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen using a 0 ° power source or a 0 ° + power source to form a third layer ITO film on the second layer.
  • a method for manufacturing a transparent conductive film laminated substrate comprising:
  • the oxygen content in the mixed gas of the inert gas and oxygen in the steps (1) and (3) is about 0.1% by volume or less, and in the mixed gas of the inert gas and the oxygen in the step (2).
  • the method according to the above (D-3), wherein the oxygen content of the compound is not more than about 0.3% by volume.
  • the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) and the step (3) is about 0.2 to about 0.6% by volume;
  • Steps (i) and (3) are performed in an inert gas atmosphere.
  • the sputtering in the above methods A to D includes known sputtering, for example, magnetron sputtering, reactive sputtering, ECR sputtering and the like. Manufacture of color filters
  • the color filter of the present invention is obtained by forming a light-shielding film, a color resist film, and an ITO conductive film on a transparent substrate.
  • An overcoat layer may be formed between the color resist film and the ITO conductive film.
  • the transparent substrate is not limited, and a transparent substrate usually used in this kind of field can be widely used.
  • the transparent substrate include, for example, glass plates such as alkali glass and non-alkali glass, and resin plates such as polycarbonate and polymethacrylate. Of these, alkali-free glass is preferred.
  • the size and thickness of the transparent substrate can be appropriately selected according to the purpose of use of the color filter.
  • a light-shielding film forming material generally used in this field can be widely used.
  • the light-shielding film forming material include metals, metal oxides, and resins in which pigments are dispersed.
  • the metal include chromium, molybdenum, tantalum, and aluminum.
  • the metal oxide include chromium oxide and aluminum oxide.
  • the resin in which the pigment is dispersed include a carbon dispersed resin and a black pigment dispersed resin.
  • metal chromium, chromium oxide, resin dispersed in carbon black, resin dispersed in black pigment, and the like are preferable from the viewpoints of light-shielding properties and film-forming properties.
  • the material used to form the color resist film is a color resin commonly used in this field.
  • a wide variety of dist film forming materials can be used.
  • the color resist film forming material include an acrylic resin, a polyester resin, a polyvinyl alcohol resin, a polyimide resin, or a mixture of these resins in which a red, green, or blue colorant is dispersed. . .
  • a resin commonly used in this field can be widely used, and examples thereof include an epoxy resin, an acrylic resin, and a polyimide resin.
  • a known light-shielding film forming method, a color resist film forming method, and an overcoat film forming method can be widely used. .
  • At least two ITO conductive films are formed on a transparent substrate on which a light-shielding film, a color resist film, and, if necessary, an overcoat film are further formed.
  • the color filter of the present invention comprises, for example, a method of forming a light-shielding film and a color resist film on a transparent substrate by a known method, and further forming an overcoat film as necessary. It is manufactured by forming a conductive film according to the conductive film forming method described above.
  • the carrier (free electron) density in the conductive film can be increased, and the carrier mobility can be hardly reduced, or the carrier mobility can be maintained or increased. Therefore, a transparent conductive film laminated substrate having high conductivity can be obtained.
  • the conductive film formed on the substrate has high conductivity, it is not necessary to increase the film thickness, and excellent transparency can be secured.
  • the method of the present invention it is possible to manufacture a transparent conductive film laminated substrate having high conductivity, that is, having a small specific resistance value. ADVANTAGE OF THE INVENTION According to the method of this invention, the transparent conductive film laminated substrate excellent in transparency can be manufactured.
  • the substrate temperature it is not necessary to maintain the substrate temperature at a temperature of 300 ° C. or higher, and in some cases, even at a relatively low temperature of 140 ° C. to 250 ° C.
  • Guidance An electrolytic film can be formed. Therefore, there is no restriction on the type of substrate used.
  • the method of the present invention is practical because it is not necessary to cool from a high temperature of 300 ° C. or more under vacuum to 25 Ot: or less.
  • a desired ITO film can be formed on a substrate only by changing the type of power supply and the sputtering gas at the time of sputtering, which is industrially advantageous.
  • the method of the present invention does not require a special treatment of annealing treatment, and is extremely practical.
  • a color filter having an ITO conductive film having high conductivity, that is, having a small specific resistance value can be manufactured.
  • a power filter having excellent transparency can be manufactured.
  • the following is an example of manufacturing a transparent conductive film laminated substrate.
  • a glass substrate (20 Ommx26 Omm, thickness 0.7 mm) is placed in a preheating zone and preheated to a predetermined temperature for 60 minutes under high vacuum.
  • a gas is introduced so that the argon gas and oxygen have a predetermined ratio, and the total pressure (sputter pressure) is adjusted to 0.7 Pa, and then the gas is introduced. Apply a predetermined power to the target and start discharging.
  • the preheated substrate is moved during the discharge at a moving speed of 1.O m / min. Is formed. Reciprocate on the target until the film thickness reaches the specified value.
  • a gas is introduced so that the argon gas and the oxygen have a predetermined ratio, and the total pressure is adjusted to a predetermined pressure, and then applied to the target using a predetermined power supply to start discharging. .
  • the preheated substrate After confirming that the glow discharge on the target has stabilized, the preheated substrate is moved at a speed of 1.O mZ during the discharge, and a second layer of transparent material of a predetermined thickness is placed on the substrate. A conductive film is formed. Reciprocate on the target until the film thickness reaches the specified value.
  • the same operation as that for forming the first transparent conductive film is repeated. return.
  • the same operation as the operation of forming the second layer of the transparent conductive film is repeated.
  • the glass substrate after film formation was moved to a vacuum chamber, and allowed to cool for 3 minutes. Then, the vacuum chamber was replaced with nitrogen gas, and the glass substrate on which the transparent conductive film was formed was taken out.
  • Indium-tin oxide sintered body (tin oxide content 10% by weight, the same applies hereinafter) in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa)
  • the target was sputtered using a DC power supply (power 0.5 KW) to form a first layer (thickness 438.8 A) of an ITO film on a glass substrate maintained at 200.
  • the indium-tin oxide sintered target was sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz), A second layer (thickness: 438.8 A) made of an ITO film was formed on the first layer to obtain a transparent conductive film laminated substrate of the present invention.
  • an indium monotin oxide sintered target was sputtered using an RF power supply (power 1.5 KW, frequency 13.56 MHz) to 200.
  • a first layer (thickness: 553.9A) consisting of an ITO film was formed on the maintained glass substrate.
  • the indium-tin oxide sintered body target was connected to a DC power supply (power supply). 0.5 KW) to form a second layer (thickness: 553.9 A) of an ITO film on the first layer to obtain a conductive film laminated substrate.
  • the sheet resistance of the transparent conductive film laminated substrate of the present invention obtained in Example 1 and the conductive film laminated substrate obtained in Comparative Example 1 was determined.
  • the sheet resistance was determined as follows. That is, 200mmX 260mm, thickness 67 measurement points were evenly provided on the film surface formed on a 0.7 mm glass substrate, and the resistance values were determined using a four-probe resistance meter (MCP-T600) manufactured by Mitsubishi Chemical Corporation. The average value was obtained, and the sheet resistance value was further obtained by multiplying by a constant of 4.5424.
  • the film thickness was measured as follows. That is, the film thickness of the conductive film formed on the glass substrate was measured using a two-dimensional fine shape measuring device (ET4000) manufactured by Kosaka Laboratory. For the measurement, five measurement points were set on a glass substrate, masked with Kavton tape, the mask was peeled off after film formation, the film thickness was measured, and the average value was taken as the film thickness.
  • E4000 two-dimensional fine shape measuring device manufactured by Kosaka Laboratory.
  • the specific resistance value ( ⁇ ⁇ cm) was obtained by multiplying the sheet resistance value obtained by the above four probe method by the film thickness.
  • the transmittance (%) of the transparent conductive film laminated substrate of the present invention obtained in Example 1 and the conductive film laminated substrate obtained in Comparative Example 1 was determined. That is, using a spectrophotometer manufactured by Hitachi, Ltd. (U-2010), the transmittance of the conductive film laminated substrate was measured in the wavelength range of 200 to 900 nm, and the transmittance of the glass substrate (blank) before film formation was measured. The transmittance (%) at 620 nm, 540 nm and 460 nm was calculated with the transmittance (%) as 100%.
  • an indium monotin oxide sintered body target was connected to a DC power supply (power 0.5KW).
  • a first layer (433 A in thickness) of an ITO film was formed on a glass substrate maintained at 200 ° C.
  • indium monostannate A second layer (thickness: 433 A) of an ITO film was formed on the first layer by sputtering an oxide getter using a DC power supply (power: 0.5 KW).
  • the indium-tin-tin oxide sintered body target was connected to a DC power supply (power 0 5KW) to form a third layer (thickness: 433 A) made of an ITO film on the second layer to obtain a transparent conductive film laminated substrate of the present invention.
  • a DC power supply power 0 5KW
  • the indium monotin oxide sintered target was sputtered using a DC power supply (power 0.5 KW), and the glass maintained at 200 ° C.
  • a single layer (thickness: 1686.6 mm) of an IT film was formed on the substrate to obtain a conductive film laminated substrate.
  • a target of indium tin oxide sintered body was connected to a DC power supply (power 0.5 KW). )
  • a single layer film thickness 1504.3 A made of an ITO film on a glass substrate maintained at 200 ° C. to obtain a conductive film laminated substrate.
  • the sheet resistance value ( ⁇ / port) and the specific resistance of the transparent conductive film laminated substrate of the present invention obtained in Example 2 and the conductive film laminated substrates obtained in Comparative Examples 2 and 3 were obtained in the same manner as described above.
  • the values ( ⁇ ⁇ cm) and the transmittance (%) at 620 nm, 540 nm and 460 nm were determined.
  • an indium-tin-tin oxide sintered target was connected to a DC power supply (power 0.5 KW).
  • a first layer (446.5 A thick) of an ITO film was formed on a glass substrate maintained at 200.
  • the indium-tin oxide sintered target was sputtered using an RF power supply (power 1.5 KW, frequency 13.56 GHz).
  • a second layer (film thickness 446.5 A) made of an ITO film was formed on the first layer.
  • the indium-tin oxide sintered body target was connected to a DC power supply (power supply). 0.5 KW) to form a third layer (thickness: 446.5 A) made of an ITO film on the second layer to obtain a transparent conductive film laminated substrate of the present invention.
  • a target of indium-tin oxide sintered body was connected to a DC power source (power: 0.5 KW). ) was used to form a first layer (177.8 mm thick) of an IT film on a glass substrate maintained at 200.
  • a target of indium monotin oxide sintered body was connected to a DC power source (electric power).
  • a third layer (177.8 A in thickness) of an IT film was formed on the second layer by sputtering using 0.5 KW).
  • the indium-tin oxide sintered compact target was connected to a DC power source (power 0 5KW) to form a fifth layer (177.8 A in thickness) made of an ITO film on the fourth layer to obtain a transparent conductive film laminated substrate of the present invention.
  • an indium-tin oxide sintered compact target was connected to a DC power supply (power 0.5KW).
  • a first layer (182.1 A film thickness) made of an ITO film was formed on a glass substrate maintained at 200 ° C.
  • the indium-tin oxide sintered target was sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz), A second layer (thickness: 455.3 A) of an ITO film was formed on the first layer.
  • a target of indium monotin oxide sintered body was connected to a DC power source (electric power). 0.5 KW) to form a third layer (182.1 A in thickness) of an ITO film on the second layer, thereby obtaining a transparent conductive film laminated substrate of the present invention.
  • an indium-tin oxide sintered body target was applied using a DC power supply (power 5KW).
  • a first layer (208 A thick) of an ITO film was formed on a glass substrate maintained at 299 ° C.
  • an indium monostannic oxide sintered body was obtained by an RF power source (power 1.5 KW, frequency 13.56 MHz).
  • the second layer (film thickness 51.99 A) consisting of the ITO film was formed on the first layer by sputtering using z).
  • a target of indium monotin oxide sintered body was connected to a DC power source (electric power). 0.5 KW) to form a third layer (208 A in thickness) made of an ITO film on the second layer to obtain a transparent conductive film laminated substrate of the present invention.
  • the sheet resistance value ( ⁇ noro), the specific resistance value ( ⁇ ⁇ cm), 620 nm, 540 nm and 460 nm were obtained in the same manner as described above.
  • the transmittance (%) at was determined.
  • Example 3 Except that the sputtering for forming the second layer on the first layer is performed in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.18% by volume, sputter pressure 0.7 Pa). In the same manner as in Example 3, a transparent conductive film laminated substrate of the present invention was obtained. The thicknesses of the first, second and third layers formed on this substrate were all 488.1 A.
  • Sputtering for forming the second layer on the first layer is performed in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputtering pressure 0.7 Pa). Except for the above, a transparent conductive film laminated substrate of the present invention was obtained in the same manner as in Example 3. The thickness of the first, second and third layers formed on this substrate was 432.1 A.
  • the sheet resistance ( ⁇ / port), the specific resistance ( ⁇ ⁇ cm), and the 620 nm and 540 nm were obtained in the same manner as described above. And the transmittance (%) at 460 nm.
  • a target of indium-tin oxide sinter was applied to a DC + RF power supply (DC: power 0.4 KW, RF: power 0.4 KW, frequency 13.56 MHz) )
  • DC power 0.4 KW
  • RF power 0.4 KW, frequency 13.56 MHz
  • the indium monotin oxide sintered target was sputtered using an RF power source (power 1.5 KW, frequency 13.'56 MHz). Then, a second layer (film thickness 451.9 A) made of an ITO film was formed on the first layer.
  • Example 10 In an atmosphere of argon gas (sputtering pressure 0.7 Pa), a target of indium monotin oxide sinter was connected to a DC + RF power supply (DC: power 0.4 KW, RF: power 0.4 KW, frequency 13 56 MHz) to form a third layer (451.9 A film thickness) of an ITO film on the second layer.
  • DC power 0.4 KW
  • RF power 0.4 KW
  • frequency 13 56 MHz DC + RF power supply
  • the sputtering for forming the first layer on the glass substrate and the sputtering for forming the third layer on the second layer were performed using a mixed gas of argon gas and oxygen (oxygen content 0.18% by volume, sputtering pressure 0.7 Pa).
  • the transparent conductive film-laminated substrate of the present invention was obtained in the same manner as in Example 9 except that the process was performed in the atmosphere of (3).
  • the thickness of each of the first, second and third layers formed on this substrate was 470.6 A.
  • the sheet resistance value ( ⁇ ⁇ ⁇ ), the specific resistance value ( ⁇ ⁇ cm), 620 nm, 540 nm and 460 The transmittance (%) at nm was determined.
  • a target of indium monotin oxide sintered body was DC-powered (power: 0.5KW)
  • a first layer (467.5 mm thick) of an IT film was formed on a glass substrate maintained at 200 ° C by sputtering.
  • an indium oxide sintered compact was obtained by an RF power source (power A second layer of indium oxide (467.5 A in thickness) was formed on the first layer by sputtering at 1.5 KW at a frequency of 13,56 MHz.
  • a target of indium monotin oxide sintered body was connected to a DC power source (power 0.5 KW) to form an IT ⁇ film on the second layer.
  • a third layer (having a thickness of 467.5 A) was formed to obtain a transparent conductive film laminated substrate of the present invention.
  • Indium-tin oxide sintered target was sputtered using a DC power supply (power 0.5 KW) under an atmosphere of argon gas (spray pressure 0.7 Pa), and the glass maintained at 200 A first layer (470.8 mm thick) consisting of an IT ⁇ film was formed on the substrate.
  • the indium oxide sintered body target was connected to a DC power source (power 0 5KW) to form a second layer of indium oxide 'film (thickness: 470.8A) on the first layer.
  • the sheet resistance ( ⁇ cm), specific resistance ( ⁇ ⁇ cm), The transmittance (%) at nm and 460 nm was determined.
  • a target of indium tin oxide sintered compact was (Power 0.5 KW) to form a first layer (thickness 288.5 A) of an ITO film on a glass substrate maintained at 150 ° C. .
  • an indium-tin-tin oxide sintered body target was sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz), A second layer (thickness: 673.3 A) composed of an ITO film was formed on one layer to obtain a transparent conductive film laminated substrate of the present invention.
  • a target of indium-tin oxide sintered body was DC-powered (power 0.5KW).
  • a single layer (thickness: 1069.2 A) made of an ITO film was formed on a glass substrate maintained at 150 ° C. by using, to obtain a conductive film laminated substrate.
  • a glass substrate maintained at 150 ° C by sputtering an indium monotin oxide sintered target using a DC power supply (power 0.5 KW) in an atmosphere of argon gas (spray pressure 0.7 Pa).
  • a single layer (928.0 A in thickness) of an ITO film was formed thereon to obtain a conductive film laminated substrate.
  • a target of indium monotin oxide sintered body was DC-powered (power 0.5KW)
  • a single layer (thickness 1406.5 A) of an ITO film was formed on a glass substrate maintained at 150 ° C. by using a sputtering method to obtain a conductive film laminated substrate.
  • the indium monotin oxide sintered target was set to 0 ⁇ + 1 ⁇ power (0 ⁇ : power 0.4 KW, 1: power 0.4 KW, Sputtering using a frequency of 13.56 MHz) to form a single-layer film (thickness: 1420.2 mm) consisting of an IT film on a glass substrate maintained at 150 to obtain a conductive film laminated substrate .
  • the sheet resistance value ( ⁇ / ⁇ ) and the specific resistance value were obtained in the same manner as described above. ( ⁇ ⁇ cm) and transmittance (%) at 620 nm, 540 nm and 460 nm. ⁇
  • a target of indium-tin oxide sintered body was connected to a DC power supply (power 0.5 KW). )
  • a first layer thickness 30.8.6 A of an ITO film on a glass substrate maintained at 150.
  • an indium / monotin oxide sintered body target was irradiated using an RF power supply (power 1.5 KW, frequency: 13.56 MHz).
  • a second layer (thickness: 720.OA) of an ITO film was formed on the first layer.
  • a target of indium monotin oxide sintered body was connected to a DC power source (electric power).
  • a third layer (thickness 308.6 A) of an ITO film was formed on the second layer by sputtering using 0.5 KW).
  • the sheet resistance ( ⁇ / port), the specific resistance ( ⁇ ⁇ cm), and the transmittance (%) at 620 nm, 540 nm and 460 nm were determined.
  • Sheet resistance (Omega slag) is 8.93, the specific resistance value (Omega - cm) was 1. 84X 10 one 4.
  • Table 8 shows the electrical properties (carrier density and mobility) of the conductive films of some typical transparent conductive film laminated substrates obtained above. The carrier density and the mobility of the conductive film were measured at 23 using Resi Test 8320 manufactured by Toyo Technicor Co., Ltd.
  • the first layer consisting of an ITO film was formed on a glass substrate on which a light-shielding film, a color resist film, and an overcoat layer were formed, and maintained at 200. Formed.
  • an indium-tin oxide sintered compact was obtained using an RF power supply (power 1.5 KW, frequency 13.56 MHz).
  • a second layer made of an ITO film was formed on the first layer.
  • a target of indium monotin oxide sintered body was connected to a DC power source (power supply). 0.5 KW) to form a third layer (thickness: 262.OA) of an ITO film on the second layer to obtain a color filter 1 of the present invention.
  • the first layer consisting of an ITO film is formed on a glass substrate on which a light-shielding film, a color resist film, and an overcoat layer are formed, which is maintained at 20 by sputtering. I let it.
  • the indium monotin oxide sintered body target was sputtered using a power supply (electric power 1.5 KW, frequency 13.56 MHz), A second layer (thickness: 698.8 A) of an ITO film was formed on the first layer.
  • a mixed gas of argon gas and oxygen oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa
  • the indium-tin oxide sintered body target was connected to a DC power supply (power supply). 0.5 KW) to form a third layer (thickness: 232.9 A) made of an ITO film on the second layer to obtain a color filter of the present invention.
  • the indium monotin oxide 'sintered target was replaced with a power source (0: 0.4 KW, RF: power 0.4 KW, Sputtering using a frequency of 13.56 MHz) was maintained at 20 CTC, and a single-layer film (thickness 1145.7) consisting of an ITO film was formed on a glass substrate on which a light-shielding film, color resist film, and overcoat layer were formed. A) was formed to obtain a color filter.
  • the sheet resistance was determined as follows. That is, 67 measurement points are provided evenly on the film surface formed on the glass substrate, and the resistance value is calculated using a four-probe resistance meter (MCP-T600) manufactured by Mitsubishi Chemical Corporation. The sheet resistance was determined by multiplying the value by a constant of 4.542.
  • the film thickness was measured as follows. That is, the film thickness of the conductive film formed on the glass substrate was measured using a two-dimensional fine shape measuring device (ET4000) manufactured by Kosaka Laboratory. For the measurement, five measurement points were set on a glass substrate, masked with Kavton tape, the mask was peeled off after film formation, the film thickness was measured, and the average value was taken as the film thickness.
  • E4000 two-dimensional fine shape measuring device manufactured by Kosaka Laboratory.
  • the specific resistance value ( ⁇ ⁇ cm) is obtained by multiplying the sheet resistance value obtained by the above four-probe method by the film thickness. I asked for it.
  • the transmittance (%) of the color filters of the present invention obtained in Examples 15 and 16 and the color filters obtained in Comparative Examples 8 and 9 was determined. That is, the transmittance (%) of the conductive film laminated substrate was measured in the wavelength range of 200 to 90 O nm using a spectrophotometer (U-210) manufactured by Hitachi, Ltd. Assuming that the transmittance (%) of the glass substrate (blank) on which the light-shielding film and the color resist film are formed is 100%, the transmittance (%) at 62 nm, 540 nm, and 450 nm is ) was calculated. Table 9 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A method for fabricating a substrate on which a transparent conductive film is deposited comprises the steps of forming an ITO film on a substrate by sputtering a target of an indium-tin oxide sintered body in an atmosphere of an inert gas or of a mixture gas of an inert gas and oxygen by using a DC power supply or a DC+RF power supply and forming an ITO film and/or indium oxide film on the ITO film formed at step (1) by sputtering at least one kind of target selected from an indium-tin oxide sintered body and an indium oxide sintered body by suing a DC power supply, an RF power supply, or a DC+RF power supply. A color filter having a high conductivity and an excellent transparency is fabricated by forming an ITO film on a substrate on which a light-shielding film and a color resist film are formed.

Description

透明導電膜積層基板及び力ラーフィルターの製造方法  Method for manufacturing transparent conductive film laminated substrate and power filter
技 術 分 野  Technical field
本発明は、 透明導電膜積層基板及びカラーフィル夕一の製造方法に関する。  The present invention relates to a method for manufacturing a transparent conductive film laminated substrate and a color filter.
背 景 技 術  Background technology
ノートパソコン、 デスクトップパソ.コン用ディスプレイなどの主流である T F Tディスプレイは、 光源からの光が T F T、 液晶分子、 カラ一フィルタ一を通過 し、 基板上に画像を形成するように構成されている。  TFT displays, which are the mainstream of displays for notebook computers and desktop computers, are configured so that light from a light source passes through TFTs, liquid crystal molecules, and color filters to form an image on a substrate.
カラーフィルタ一は、 透明基板上に遮光膜、 カラーレジスト膜及びインジウム ·錫 ·ォキサイド ( I T O) 導電膜が形成されたものである。  The color filter 1 has a light-shielding film, a color resist film, and an indium-tin-oxide (ITO) conductive film formed on a transparent substrate.
カラ一フィルターの製造方法としては、 例えば特開昭 6 3— 1 9 7 9 0 3号公 報、 特開平 6— 2 8 9 3 2号公報などに記載された方法が知られている。  As a method for producing a color filter, for example, the methods described in JP-A-63-197903, JP-A-6-28932 and the like are known.
特開昭 6 3 - 1 9 7 9 0 3号公報は、 遮光膜及びカラーレジスト膜が形成され たガラス基板を 1 8 0でに加熱し、 錫一インジウム酸化物焼結体からなるターゲ ットをスパッタリングすることにより、 又はインジウム錫合金からなる夕一ゲッ トを酸素を含むアルゴン雰'囲気中で反応性スパッ夕リングにより、 遮光膜及び力 ラーレジスト膜が形成されたガラス基板上に I T O導電膜を形成させる方法を開 示している。  Japanese Unexamined Patent Publication (Kokai) No. 63-197703 discloses a method in which a glass substrate on which a light-shielding film and a color resist film are formed is heated to 180 ° and a target comprising a tin-indium oxide sintered body Sputtering on a glass substrate on which a light-shielding film and a color resist film have been formed by reactive sputtering in an argon atmosphere containing oxygen. It discloses a method for forming a film.
しかしながら、 特開昭 6 3 - 1 9 7 9 0 3号公報に記載された方法で得られる I T O導電膜は、 単層からなるものであり、 導電率が低い (即ち比抵抗値が大き い) という欠点がある。 I T O導電膜の導電率を向上させようとすると、 Ι ΤΌ 導電膜の膜厚を厚くすることが必要になるが、 I T O導電膜の膜厚を厚くすると、 導電膜の透明性が損なわれるのが避けられなくなる。 従って、 この方法で得られ る I TO導電膜は、 高導電率及び透明性の両方を満足するものではない。  However, the ITO conductive film obtained by the method described in Japanese Patent Application Laid-Open No. 63-197703 is composed of a single layer and has a low conductivity (that is, a large specific resistance). There is a disadvantage that. In order to improve the conductivity of the ITO conductive film, it is necessary to increase the thickness of the conductive film. However, when the thickness of the ITO conductive film is increased, the transparency of the conductive film is impaired. Inevitable. Therefore, the ITO conductive film obtained by this method does not satisfy both high conductivity and transparency.
特開平 6— 2 8 9 3 2号公報は、 カラーレジスト膜上に形成された有機樹脂表 面に I T O導電膜を形成させる方法を開示している。 この方法は、 (a ) 有機樹 脂表面に、 錫一インジウム酸化物焼結体をターゲットとして用い、 アルゴンガス 又は酸素を 3容量%含むアルゴンと酸素との混合ガス雰囲気中で、 直流マグネト ロンスパッタリングにより厚さ 3〜 3 0 nmの結晶核生成層 (第 1層) を被覆す る工程、 (b ) 結晶核生成層を減圧した雰囲気中で、 耳つ 1 0 0 以上の前記有 機樹脂が劣化しない温度でァニールすることにより結晶核を成長させる工程及び ( c ) 結晶核生成層上に酸素を 3容量%含むアルゴンと酸素との混合ガス雰囲気 中で、 マグネトロンスパッタリングにより低抵抗化層 (第 2層) を被覆する工程 を備えている。 JP-A-6-28932 discloses a method for forming an ITO conductive film on the surface of an organic resin formed on a color resist film. This method comprises the steps of (a) direct current magnetron sputtering on an organic resin surface using a tin-indium oxide sintered body as a target in an atmosphere of argon gas or a mixed gas of argon and oxygen containing 3% by volume of oxygen. Covers the 3 to 30 nm thick crystal nucleation layer (first layer) (B) a step of growing crystal nuclei by annealing at a temperature at which the organic resin of at least 100 is not deteriorated in an atmosphere in which the crystal nucleation layer is depressurized, and (c) crystal nucleation. A step of coating the low-resistance layer (second layer) by magnetron sputtering in a mixed gas atmosphere of argon and oxygen containing 3% by volume of oxygen on the layer.
I T O導電膜の比抵抗値を低くするには、 二つの方法がある。 一つはキャリア (自由電子) の移動度を大きくする方法であり、 他の一つはキャリア (自由電 子) の密度を高くする方法である。 上記特開昭 6 3 - 1 9 7 9 0 3号公報に記載 の方法は、 キャリアの移動度を大きくし、 その結果として I T O導電膜の比抵抗 値を低く、 即ち導電率を向上させようとするものである。  There are two methods for lowering the specific resistance of the ITO conductive film. One is to increase the mobility of carriers (free electrons), and the other is to increase the carrier (free electrons) density. The method described in the above-mentioned Japanese Patent Application Laid-Open No. 63-197703 is intended to increase the mobility of carriers and consequently lower the specific resistance of the ITO conductive film, that is, to improve the conductivity. Is what you do.
しかしながら、 この方法によると、 キャリアの移動度は大きくなるが、 それに 伴ってキヤリァ 度が低くなるので、 導電率の改善効果は不充分である。  However, according to this method, although the carrier mobility is increased, the carrier degree is reduced accordingly, and the effect of improving the conductivity is insufficient.
また、 特開平 6 2 8 9 3 2号公報の方法は、 ァニール処理という特別な処理 を施す必要があり、 実用的ではない。  In addition, the method disclosed in Japanese Patent Application Laid-Open No. 628932 is not practical because it requires a special treatment called annealing treatment.
更に、 I T O導電膜を形成させる方法として、 例えば特開平 2 - 1 8 9 8 1 6 号公報などに記載された方法が知られている。  Furthermore, as a method for forming an ITO conductive film, a method described in, for example, Japanese Patent Application Laid-Open No. 2-189816 is known.
上記公報は、  The above publication is
減圧された不活性ガス又は不活性ガスと酸素との混合ガスを含む雰囲気内にお いて、 インジウム一錫酸化物焼結体のターゲットを用い、 2 0 0 以下に維持さ れた基板上に、 マグネト口ンスパッ夕リングにより , 第 1層の I T O膜を形成す る工程、  In an atmosphere containing a reduced pressure of an inert gas or a mixed gas of an inert gas and oxygen, using a target of indium-tin-tin oxide sintered body, a substrate maintained at 200 or less was used. Forming the first layer ITO film by magneto-port sputtering;
該基板を 3 0 0 °C以上に減圧下で加熱する工程、  Heating the substrate under 300 ° C. or more under reduced pressure;
減圧された不活性ガスと酸素との混合ガスを含む雰囲気内において、 前記ター ゲットを用い、 3 0 以上に加熱された該基板の第 1層上にマグネトロンスパ ッタリングにより、 第 2層の I T O膜を形成する工程、  In an atmosphere containing a mixed gas of an inert gas and oxygen that has been decompressed, using the target, magnetron sputtering is performed on the first layer of the substrate heated to 30 or more to form a second layer of ITO film. Forming a,
該基板を減圧された雰囲気中で 2 5 0 °C以下に冷却後該雰囲気を大気圧に戻す 工程  Cooling the substrate to 250 ° C. or lower in a reduced-pressure atmosphere and then returning the atmosphere to atmospheric pressure
を経て、 基板上に 2層からなる I T O導電膜を形成する方法を開示している。 上記特開平 6— 2 8 9 3 2号公報に記載の方法もまた、 I T〇導電膜中のキヤ リアの移動度を大きくし、 その結果として I T O導電膜の比抵抗値を低く、 即ち 導電率を向上させようとするものである。 Discloses a method of forming a two-layer ITO conductive film on a substrate. The method described in the above-mentioned Japanese Patent Application Laid-Open No. 6-28932 is also applicable to a method for preparing a capacitor in an IT conductive film. The purpose is to increase the rear mobility and consequently lower the specific resistance of the ITO conductive film, that is, to improve the conductivity.
しかしながら、 この方法によると、 キャリアの移動度は大きくなるものの、 キ ャリァ密度は高くならず、 導電率の改善効果は不充分である。  However, according to this method, although the carrier mobility is increased, the carrier density is not increased, and the effect of improving the conductivity is insufficient.
また、 上記方法では、 基板が 3 0 0 °C以上の高温に晒されるために、 使用され る基板に制限を受けるという欠点がある。  Further, the above method has a disadvantage that the substrate used is limited because the substrate is exposed to a high temperature of 300 ° C. or more.
更に、 上記方法では、 減圧下で 2 0 0 °C以下から 3 0 0 °C以上の高温に加熱し たり、 3 0 0 以上の高温から 2 5 0 °C以下に冷却する必要があり、 これらのカロ 熱及び冷却に長時間を要する。 上記方法は、 基板を減圧された雰囲気中で 2 5 0 °C以下に冷却後該雰囲気を大気圧に戻す工程を含んでいる。 この工程は、 3 0 0C以上に加熱された基板をその温度のままで大気圧に戻すと、 3 0 0 °C以上に加 熱された基板が酸素と接触し、 酸化され、 その結果基板が劣化するのを防ぐのに 必要である。 . ' 従って、 特開平 6— 2 8 9 3 2号公報の方法は、 基板を高温に加熱したり、 冷 却したりする煩雑な操作が必要であり、 実用的ではない。  Furthermore, in the above-mentioned method, it is necessary to heat under a reduced pressure from 200 ° C or lower to a high temperature of 300 ° C or higher, or to cool from a high temperature of 300 ° C or higher to 250 ° C or lower. It takes a long time to heat and cool. The method includes a step of cooling the substrate to 250 ° C. or lower in a reduced-pressure atmosphere and then returning the atmosphere to atmospheric pressure. In this step, when the substrate heated to 300 ° C. or more is returned to atmospheric pressure at that temperature, the substrate heated to 300 ° C. or more comes into contact with oxygen and is oxidized. Necessary to prevent degradation. 'Therefore, the method disclosed in JP-A-6-28932 requires a complicated operation of heating or cooling the substrate to a high temperature, and is not practical.
発 明 の 開 示  Disclosure of the invention
本発明の一つの目的は、 高い導電率を備え、 透明性に優れた導電膜が積層され た基板の製造方法を提供することである。  An object of the present invention is to provide a method for manufacturing a substrate on which a conductive film having high conductivity and excellent transparency is laminated.
本発明の他の一つの目的は、 高い導電率を備え、 透明性に優れたカラーフィル ターの製造方法を提供することである。  Another object of the present invention is to provide a method for producing a color filter having high conductivity and excellent transparency.
本発明者は、 上記目的を達成するために種々の研究を重ねてきた。 その結果、 基板上に I T O膜を形成させるに当たり、 基板上に少なくとも 2層の I T O膜を 形成させ、 且つこれら各層の I T O膜を形成させるための電源としてそれぞれ特 定の電源を用い且つ特定のスパッタリングガス雰囲気中でスパッタリングするこ とにより、 I T O膜中のキャリア濃度を高くすることができ、 それ故高い導電率 を備え、 しかも透明性に優れた導電膜が積層された基板が得られることを見い出 した。  The inventor has conducted various studies to achieve the above object. As a result, in forming the ITO film on the substrate, at least two layers of the ITO film are formed on the substrate, and a specific power source is used as a power source for forming the ITO film of each layer, and a specific sputtering is performed. By performing sputtering in a gas atmosphere, it is possible to increase the carrier concentration in the ITO film, and thus to obtain a substrate having a high conductivity and a laminated conductive film with excellent transparency. Came out.
また、 遮光膜及びカラーレジスト膜が形成された透明基板上に上記導電膜を積 層することにより、 高い導電率を備え、 透明性に優れたカラーフィルタ一が得ら れることを見い出した。 Further, by laminating the conductive film on a transparent substrate on which a light-shielding film and a color resist film are formed, a color filter having high conductivity and excellent transparency can be obtained. I found something to be done.
更に、 上記複数の I T O膜の一部を酸化インジウム膜に置き換えることによつ ても、 所望の導電膜積層基板及びカラーフィル夕一が得られることを見い出した。 本発明は、 これらの知見に基づき完成されたものである。  Furthermore, it has been found that a desired conductive film laminated substrate and color filter can be obtained by replacing a part of the plurality of ITO films with an indium oxide film. The present invention has been completed based on these findings.
本発明は、 (1)インジウム一錫酸化物焼結体のターゲットを、 D C (直流) 電 源又は D C + R F (高周波) 電源を用い、 不活性ガス又は不活性ガス及び酸素の 混合ガス雰囲気中でスパッタリングして、 I T O膜を形成する工程、 及び  According to the present invention, (1) a target of an indium-tin-tin oxide sintered body is formed by using a DC (direct current) power supply or a DC + RF (high frequency) power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen. Sputtering to form an ITO film, and
(2)インジウム一錫酸化物焼結体及びインジウム酸ィ匕物焼結体からなる群より選 ばれた少なくとも 1種のターゲットを、 D C電源、 R F電源又は D C + R F電源 を用い、 不活性ガス雰囲気中でスパッタリングして上記(1)で形成された I T O 膜上に I T O膜及び Z又は酸化ィンジゥム膜を形成する工程 (2) At least one target selected from the group consisting of indium monotin oxide sintered compact and indium oxide sinter sintered compact is treated with a DC power supply, an RF power supply or a DC + RF power supply using an inert gas. Forming an ITO film and a Z or indium oxide film on the ITO film formed in (1) by sputtering in an atmosphere;
を含む透明導電膜積層基板の製造方法を提供する。 The present invention provides a method for manufacturing a transparent conductive film laminated substrate including:
本発明は、 (1)インジウム一錫酸化物焼結体のターゲットを、 D C電源又は D C + R F電源を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中で スパッタリングして、 基板上に第 1層の I T〇膜を形成する工程、  The present invention provides: (1) sputtering of a target of an indium-tin-tin oxide sintered body using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen; Process of forming the first layer IT〇 film,
(2)上記ターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性 ガス及び酸素の混合ガス雰囲気中でスパッタリングして第 1層上に第 2層の I T 〇膜を形成する工程、 及び  (2) A step of forming a second IT layer on the first layer by sputtering the above target in a mixed gas atmosphere of an inert gas and oxygen using a DC power supply, an RF power supply or a DC + RF power supply. , as well as
(3)上記ターゲットを、 D C電源又は D C + R F電源を用い、 不活性ガス又は不 活性ガス及び酸素の混合ガス雰囲気中でスパッタリングして、 第 2層上に第 3層 の I T O膜を形成する工程  (3) Using a DC power supply or a DC + RF power supply, the above target is sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form a third ITO film on the second layer. Process
を含む透明導電膜積層基板の製造方法を提供する。 The present invention provides a method for manufacturing a transparent conductive film laminated substrate including:
本発明は、 上記各種の方法により製造される透明導電膜積層基板を提供する。 本発明は、 透明基板上に遮光膜、 カラ一レジスト膜及び少なくとも 2層の導電 膜を順次形成させるカラーフィルタ一の製造方法であって、 導電膜形成工程が The present invention provides a transparent conductive film laminated substrate manufactured by the above various methods. The present invention relates to a method for manufacturing a color filter in which a light-shielding film, a color resist film, and at least two conductive films are sequentially formed on a transparent substrate, wherein the conductive film forming step is performed.
(1)インジウム一錫酸化物焼結体のターゲットを、 0〇電源又は1^〇+ 1 電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 I T〇膜を形成する工程、 及び (1) The target of the indium tin oxide sintered body was sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen using a 0〇 power supply or a 1 ^ 〇 + 1 power supply, and the IT工程 forming a film, and
(2)インジウム一錫酸化物焼結体及びィンジゥム酸化物焼結体からなる群より選 ばれた少なくとも 1種のターゲットを、 D C電源、 R F電源又は D C + R F電源 を用い、 不活性ガス雰囲気中でスパッ夕リングして上記(1)で形成された I T O 膜上に I TO膜及び Z又は酸化インジウム膜を形成する工程 (2) Selected from the group consisting of indium tin oxide sintered compact and indium oxide sintered compact At least one type of target is sputtered in an inert gas atmosphere using a DC power supply, RF power supply or DC + RF power supply, and an ITO film and a Z film are formed on the ITO film formed in (1) above. Or a step of forming an indium oxide film
を含むカラ一フィルターの製造方法を提供する。 A method for producing a color filter comprising:
本発明は、 透明基板上に遮光膜、 カラーレジスト膜及び少なくとも 3層の導電 膜を順次形成させるカラーフィルターの製造方法であって、 導電膜形成工程が (1)インジウム一錫酸化物焼結体の夕一ゲットを、 D C電源又は D C + R F電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1層の I T O膜を形成する工程、  The present invention relates to a method for producing a color filter in which a light-shielding film, a color resist film, and at least three conductive films are sequentially formed on a transparent substrate, wherein the conductive film forming step comprises the steps of: Forming a first ITO film on a substrate by sputtering the first substrate using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen. ,
(2)上記ターゲットを、 D C電源、 : F電源又は D C + R F電源を用い、 不活性 ガス及び酸素の混合ガス雰囲気中でスパッ夕リングして第 1層上に第 2層の I T O膜を形成する工程、 及び (2) The above target is subjected to sputtering in a mixed gas atmosphere of an inert gas and oxygen using a DC power supply, F power supply or DC + RF power supply to form a second layer ITO film on the first layer. Performing the steps, and
(3)上記夕一ゲットを、 D C電源又は D C + R F電源を用い、 不活性ガス又は不 活性ガス及び酸素の混合ガス雰囲気中でスパッタリングして、 第 2層上に第 3層 の I TO膜を形成する工程  (3) Use the DC power supply or DC + RF power supply to sputter the above getter in an atmosphere of an inert gas or a mixed gas of an inert gas and oxygen to form a third layer of ITO film on the second layer. Forming the
を含むカラーフィルタ一の製造方法を提供する。 And a method for producing a color filter.
本発明は、 上記各種の方法により製造されるカラ一フィルタ一を提供する。  The present invention provides a color filter manufactured by the above various methods.
【発明の実施の形態】 本発明の透明導電膜積層基板は、 基板上に少なくとも 2層からなる I TO膜又 は少なくとも 1層の I T O膜及び少なくとも 1層の酸化インジウム膜を形成する ことにより製造される。  BEST MODE FOR CARRYING OUT THE INVENTION The transparent conductive film laminated substrate of the present invention is manufactured by forming at least two layers of an ITO film or at least one ITO film and at least one indium oxide film on the substrate. Is done.
基板上に形成される I TO膜は、 2層、 3層、 4層、 5層又はそれ以上であつ てもよい。 また、 酸化インジゥ厶膜は、 1層、 2層又はそれ以上であってもよい。 これら各 I T O膜等は、 公知の方法で基板上に成膜される。 本発明においては、 2層又はそれ以上からなる I T O膜の少なくとも 1つを、 (1)インジウム—錫酸 化物焼結体のターゲットを、 D C電源又は D C + R F電源を用い、 不活性ガス又 は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリングすることにより形成 し、 更にそのようにして形成された I T O膜上に、 (2)インジウム—錫酸化物焼 結体又はインジウム酸化物焼結体のターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性ガス雰囲気中でスパッタリングして I T O膜又は酸ィ匕 ィンジゥム膜を形成することを必須としている。 The number of ITO films formed on the substrate may be two, three, four, five or more. Further, the indium oxide film may have one layer, two layers or more. Each of these ITO films and the like is formed on a substrate by a known method. In the present invention, at least one of the ITO film composed of two or more layers, (1) a target of an indium-tin oxide sintered body, a DC power supply or a DC + RF power supply, and an inert gas or It is formed by sputtering in a mixed gas atmosphere of an inert gas and oxygen, and (2) indium-tin oxide firing is performed on the ITO film thus formed. It is essential to form a ITO film or an oxide film by sputtering a target of the sintered body or indium oxide sintered body in an inert gas atmosphere using a DC power supply, an RF power supply or a DC + RF power supply. I have.
上記(1)及び (2)の工程を経て形成される導電膜は、 導電膜中のキャリア密度が 高くなり、 しかもキャリアの移動度は殆ど低下せず、 いくつかのスパッタリング 条件下では導電膜中のキヤリァ密度が高くなり、 しかもキヤリァの移動度も大き くなるので、 導電膜は高導電率を備えたものになる。 .  In the conductive film formed through the above steps (1) and (2), the carrier density in the conductive film is increased, the mobility of the carrier is hardly reduced, and the conductive film is formed under some sputtering conditions. Since the carrier density is high and the carrier mobility is high, the conductive film has high conductivity. .
本発明の透明導電膜積層基板は、 より詳細には、 例えば下記に示す方法 Α〜方 法 Cにより製造される。 方法 A:  More specifically, the transparent conductive film laminated substrate of the present invention is manufactured by, for example, the following methods I to C. Method A:
方法 Aは、  Method A is
(1)インジウム一錫酸化物焼結体のターゲットを、 D C電源又は D C + R F電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1層の I TO膜を形成する工程、 及び  (1) The target of the indium-tin-tin oxide sintered body is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form a target on the substrate. Forming a single-layer ITO film, and
(2)上記ターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性 ガス雰囲気中でスパッタリングして第 1層上に第 2層の I T O膜を形成する工程 を有している。  (2) A step of forming a second layer of ITO film on the first layer by sputtering the above target in an inert gas atmosphere using a DC power supply, an RF power supply, or a DC + RF power supply.
基板は、 公知の基板のいずれであってもよく、 例えばガラス基板、 ガラスェポ キシ樹脂基板、 セラミック基板、 アルミナ基板、 シリコン基板、 窒化アルミニゥ ム基板、 メタル基板、 I M S基板、 メタルコア基板、 ホーロー基板、 樹脂基板な どが挙げられる。 樹脂基板の樹脂材料としては、 例えばポリカーボネー卜、 ポリ エーテルスルホン、 ポリイミド、 アクリル樹脂、環状ポリオレフイン (例えば、 日本ゼオン (株) 製のゼォノア樹脂) 、 ポリアリレニト、 ポリエチレンナフタレ ート (P E N) 、 ポリエチレンテレフ夕レート (P E T) などが挙げられる。 これら基板の中でも、 ガラス基板が好適である。 ガラス基板としては、 例えば カラーフィルター用のガラス基板を広く使用でき、 具体的にはソーダライムガラ ス基板などを例示できる。 基板の大きさ、 厚さなどは、 透明導電膜積層基板の使 用目的により適宜選択することができる。 方法 Aにおいて使用されるタ一ゲットは、 インジウム一錫酸化物焼結体である。 この焼結体は公知であり、 例えば微粉末状の酸化錫と微粉末状酸化ィンジゥムと を十分に混合し、 所定形状にプレス成型し、 例えば約 1000〜約 1500 の 高温で焼成したものなどを使用することができる。 焼結体中の酸化錫の含有量は、 限定されるものではないが、 通常約 3〜約 30重量%、 好ましくは約 5〜約 15 重量%である。 The substrate may be any of known substrates, for example, a glass substrate, a glass epoxy resin substrate, a ceramic substrate, an alumina substrate, a silicon substrate, an aluminum nitride substrate, a metal substrate, an IMS substrate, a metal core substrate, an enamel substrate, and a resin. Substrates are examples. Examples of the resin material of the resin substrate include polycarbonate, polyether sulfone, polyimide, acrylic resin, cyclic polyolefin (eg, Zeonor resin manufactured by Zeon Corporation), polyarylenit, polyethylene naphthalate (PEN), and polyethylene. Telephone rate (PET). Among these substrates, a glass substrate is preferable. As the glass substrate, for example, a glass substrate for a color filter can be widely used, and specifically, a soda lime glass substrate and the like can be exemplified. The size, thickness, and the like of the substrate can be appropriately selected depending on the purpose of use of the transparent conductive film laminated substrate. The target used in Method A is an indium tin oxide sintered body. This sintered body is publicly known, for example, a material obtained by sufficiently mixing fine powdered tin oxide and fine powdered oxide and press-molding it into a predetermined shape, for example, firing at a high temperature of about 1000 to about 1500. Can be used. The content of tin oxide in the sintered body is not limited, but is usually about 3 to about 30% by weight, preferably about 5 to about 15% by weight.
方法 Aにおいては、 まず、 インジウム一錫酸ィ匕物焼結体をターゲットとして用 レ これを基板上にスパッタリングして、 基板上に第 1層の I TO膜を形成させ る (以下この工程を 「第一工程」 という) 。  In the method A, first, using a sintered body of indium monotin oxide as a target, this is sputtered on a substrate to form a first layer of ITO film on the substrate (hereinafter, this step is referred to as "First step").
この第一工程のスパッタリング条件は、 以下の通りである。  The sputtering conditions in this first step are as follows.
電源は、 DC電源とす ¾か、 又は DC + RF電源とする。 電源は、 DC電源で あるのが好ましい。  The power supply should be DC power supply or DC + RF power supply. Preferably, the power supply is a DC power supply.
印加電力などの条件は、 タ一ゲットの大きさなどにより異なり一概にはいえな いが、 ターゲットが 5インチ X 15インチの大きさであると仮定すれば、 以下の 通りである。  The conditions such as the applied power vary depending on the size of the target and cannot be unconditionally determined. However, assuming that the target has a size of 5 inches × 15 inches, it is as follows.
印加電力は、 DC電源の場合、 通常約 0. 1〜約 1KW、 好ましくは約 0. 3 〜約 0. 6KWである。 DC + RF電源の場合、 DC電源の電力は、 通常約 0. 1〜約 1KW、 好ましくは約 0. 2〜約 0. 6KW、 ; F電源の電力は、 通 常約 0. 1〜約 3KW、 好ましくは約 0. 2〜約 0. 6KWである。 DCZRF 電力比は約 0. 1〜約 10の範囲内で適宜調整するのがよい。 RF電源を用いる 場合、 周波数は通常約 6. 78〜約 27. 12MHz、 好ましくは約 13. 56 MHzである。  The applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply. In the case of a DC + RF power supply, the power of the DC power supply is usually about 0.1 to about 1 kW, preferably about 0.2 to about 0.6 kW; the power of the F power supply is usually about 0.1 to about 3 kW , Preferably from about 0.2 to about 0.6 KW. The DCZRF power ratio should be appropriately adjusted within the range of about 0.1 to about 10. When using an RF power supply, the frequency is usually about 6.78 to about 27.12 MHz, preferably about 13.56 MHz.
基板の温度は、 基板の種類により異なるが、 例えばガラス基板を用いる場合は、 通常室温付近〜 300で未満、 好ましくは約 140〜約 250 である。  The temperature of the substrate varies depending on the type of the substrate. For example, when a glass substrate is used, the temperature is usually around room temperature to less than 300, preferably about 140 to about 250.
スパッタリングガスは、 不活性ガス又は不活性ガス及び酸素の混合ガス、 好ま しくは不活性ガス及び酸素の混合ガスである。 不活性ガスとしては、 公知の不活 性ガスを広く使用でき、 その代表的なものとしてアルゴンガスなどを挙げること ができる。  The sputtering gas is an inert gas or a mixed gas of an inert gas and oxygen, preferably a mixed gas of an inert gas and oxygen. As the inert gas, known inert gases can be widely used, and typical examples thereof include argon gas.
ガス圧 (スパッ夕圧) は、 通常約 0. 1〜約 1 P a、 好ましくは約 0. 2〜約 0. 8P aである。 The gas pressure (spray pressure) is usually about 0.1 to about 1 Pa, preferably about 0.2 to about 1 Pa. 0.8 Pa.
第一工程で不活性ガス及び酸素の混合ガスを用いる場合、 該混合ガス中の酸素 含有量は約 1容量%以下、 好ましくは約 0. 6容量%以下である。  When a mixed gas of an inert gas and oxygen is used in the first step, the oxygen content in the mixed gas is about 1% by volume or less, preferably about 0.6% by volume or less.
第一工程により、 基板上に第 1層として形成される IT O膜の膜厚は、 通常約 5〜約 100 nm、 好ましくは約 10〜約 70 nm、 特に好ましくは約 .15〜約 50 nmである。  The thickness of the ITO film formed as the first layer on the substrate by the first step is generally about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 0.15 to about 50 nm. It is.
方法 Aにおいては、 次に、 インジウム—錫酸化物焼結体をターゲットとして用 い、 これを基板上に形成された第 1層にスパッタリングして、 第 1層上に第 2層 の I TO膜を形成させる (以下この工程を 「第二工程」 という) 。  In method A, an indium-tin oxide sintered body is used as a target, which is then sputtered on the first layer formed on the substrate, and a second layer of ITO film is formed on the first layer. (Hereinafter, this step is referred to as “second step”).
この第二工程のスパッタリング条件は、 以下の通りである。  The sputtering conditions in this second step are as follows.
電源の種類は、 DC電源とする力、 R F電源とするか又は DC斗: F電源とす , る。 電源は、 RF電源であるのが好ましい。  The type of power supply can be DC power, RF power or DC to: F power. Preferably, the power supply is an RF power supply.
印加電力は、 DC電源の場合、 通常約 0. 1〜約 1KW、 好ましくは約 0. 3 〜約 0. 6KWである。 RF電源の電力は、 通常約 0. 1〜約 3KW、 好ましく は約 1〜約 1. 8KWである。 DC + RF電源の場合、 DC電源の電力は、 通常 約 0. 1〜約 1KW、 好ましくは約 0. 2〜約 0. 6KW、 RF電源の電力は、 通常約 0. 1〜約 3KW、 好ましくは約 0, 2〜約 0. 6KWである。 DC/R F電力比は約 0. 1〜約 10の範囲内で適宜調整するのがよい。 RF電源を用い る場合、 周波数は通常約 6. 78〜約 27. 12MHz、 好ましくは約  The applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply. The power of the RF power supply is usually about 0.1 to about 3 kW, preferably about 1 to about 1.8 kW. In the case of a DC + RF power supply, the power of the DC power supply is usually about 0.1 to about 1 kW, preferably about 0.2 to about 0.6 kW, and the power of the RF power supply is usually about 0.1 to about 3 kW, preferably Is about 0.2 to about 0.6 KW. The DC / RF power ratio may be appropriately adjusted within a range of about 0.1 to about 10. When using an RF power supply, the frequency is typically about 6.78 to about 27.12 MHz, preferably about
13. 56 MHzである。  13. 56 MHz.
第 1層が形成された基板の温度は、 通常室温付近〜 300" 未満、 好ましくは 約 140〜約 250°Cである。  The temperature of the substrate on which the first layer is formed is usually around room temperature to less than 300 ", preferably about 140 to about 250 ° C.
スパッタリングガスは、 不活性ガスである。 不活性ガスとしては、 公知の不活 性ガスを広く使用でき、 その代表的なものとしてアルゴンガスなどを挙げること ができる。  The sputtering gas is an inert gas. As the inert gas, known inert gases can be widely used, and typical examples thereof include argon gas.
ガス圧は、 通常約 0. 1〜約 1 P a、 好ましくは約 0. 2〜約 0. 8 P aであ る。  The gas pressure is usually from about 0.1 to about 1 Pa, preferably from about 0.2 to about 0.8 Pa.
第二工程により、 第 1層上に第 2層として形成される I TO膜の膜厚は、 通常 約 5〜約 100 n m、 好ましくは約 10〜約 70 nm、 特に好ましくは約 30〜 約 7 0 nmである。 The thickness of the ITO film formed as the second layer on the first layer by the second step is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 30 to about 70 nm. It is about 70 nm.
方法 Aにおいては、 基板温度を約 1 4 0〜約 2 5 0 °Cに維持したままで 2回の スパッタリングを行い、 基板上に 2層からなる I T O膜を形成させることができ る。 この場合には、 基板温度は十分に低いので、 基板の周りの雰囲気を直ちに大 気圧に戻しても、 基板が劣化するおそれがない。 冷却は、 分単位の短時間で完了 することができる。  In method A, two sputterings can be performed while maintaining the substrate temperature at about 140 to about 250 ° C. to form a two-layer ITO film on the substrate. In this case, since the substrate temperature is sufficiently low, even if the atmosphere around the substrate is immediately returned to the atmospheric pressure, there is no possibility that the substrate is deteriorated. Cooling can be completed in a short time, on the order of minutes.
方法 Aには、 以下の態様が含まれる。  Method A includes the following embodiments.
(A-1) (A-1)
(1)インジウム一錫酸化物焼結体の夕ーゲットを、 0〇電源又は0。 +尺?電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッ夕リン グして、 基板上に I T O膜を形成する工程、 及び  (1) Set the target of the indium tin oxide sintered body to 0 ° power or 0V. + Shaku? Using an electric power source to perform sputtering in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form an ITO film on the substrate; and
(2)ィンジゥム—錫酸化物焼結体及びィンジゥム酸化物焼結体からなる群より選 ばれた少なくとも 1種のターゲットを、 D C電源、 R F電源又は D C + R F電源 を用い、 不活性ガス雰囲気中でスパッタリングして上記(1)で形成された I T〇 膜上に I T O膜及び Ζ又は酸化ィンジゥム膜を形成する工程  (2) At least one type of target selected from the group consisting of an indium tin oxide sintered body and an indium oxide sintered body is placed in an inert gas atmosphere using a DC power source, an RF power source, or a DC + RF power source. Forming an ITO film and / or an oxide film on the IT film formed in (1) by sputtering
を含む透明導電膜積層基板の製造方法。 A method for producing a transparent conductive film laminated substrate comprising:
(A - 2) (1)工程の電源を D C電源とし、 (2)工程の電源を R F電源とする(A-1)に 記載の透明導電膜積層基板の製造方法。  (A-2) The method for producing a transparent conductive film laminated substrate according to (A-1), wherein the power supply in the step (1) is a DC power supply, and the power supply in the step (2) is an RF power supply.
(A-3) (1)工程のスパッ夕リングを不活性ガス及び酸素の混合ガス雰囲気中で行 い、 (2)工程のスパッタリングを不活性ガス雰囲気中で行う(A- 2)に記載の透明導 電膜積層基板の製造方法。  (A-3) The sputtering in (1) is performed in a mixed gas atmosphere of inert gas and oxygen, and the sputtering in (2) is performed in an inert gas atmosphere. A method for manufacturing a transparent conductive film laminated substrate.
(A - 4) (1)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以 下である上記 (A- 3)に記載の方法。  (A-4) The method according to (A-3) above, wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is about 1% by volume or less.
(A-5) (I)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 6容量 %以下である上記 (Α-4)に記載の方法。  (A-5) The method according to the above (上 記 -4), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (I) is about 0.6% by volume or less.
(Α-6) (1)工程の電源を D C電源とし、 (2)工程の電源を D C電源とする(A-1)に 記載の透明導電膜積層基板の製造方法。  (Α-6) The method for producing a transparent conductive film laminated substrate according to (A-1), wherein the power supply in the step (1) is a DC power supply and the power supply in the step (2) is a DC power supply.
(A-7) (1)工程のスパッタリングを不活性ガス及び酸素の混合ガス雰囲気中で行 い、 (2)工程のスパッタリングを不活性ガス雰囲気中で行う(A- 6)に記載の透明導 (A-8) α)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以 下である上記 (A- 7)に記載の方法。 (A-7) The sputtering in step (1) is performed in a mixed gas atmosphere of inert gas and oxygen, and the sputtering in step (2) is performed in an inert gas atmosphere. (A-8) The method according to (A-7), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step α) is about 1% by volume or less.
(A-9) (1)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 6容量 %以下である上記 (A- 8)に記載の方法。  (A-9) The method according to (A-8), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is about 0.6% by volume or less.
(A-10) (1)工程の電源を D C + R F電源とし、 (2)工程の電源を R F電源とする (A - 1)に記載の透明導電膜積層基板の製造方法。 ' (A- 11) (1)工程のスパッタリングを不活性ガス雰囲気中で行う(A- 10)に記載の透 明導電膜積層基板の製造方法。  (A-10) The method for producing a transparent conductive film laminated substrate according to (A-1), wherein the power supply in the step (1) is a DC + RF power supply, and the power supply in the step (2) is an RF power supply. (A-11) The method for producing a transparent conductive film laminated substrate according to (A-10), wherein the sputtering in the step (1) is performed in an inert gas atmosphere.
(A-12) (1)工程のスパッタリングを不活性ガス及び酸素の混合ガス雰囲気中で行 う(A- 10〉に記載の透明導電膜積層基板の製造方法。 (A-12) The method according to (A-10), wherein the sputtering in the step (1) is performed in a mixed gas atmosphere of an inert gas and oxygen.
(A-13) (1)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 6容量 %以下である上記 (A- 12)に記載の方法。  (A-13) The method according to (A-12), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is about 0.6% by volume or less.
(A - 14) (1)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 4容量 %以下である上記 (A- 13)に記載の方法。  (A-14) The method according to (A-13) above, wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is about 0.4% by volume or less.
(A-15) (1)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 2容量 %以下である上記 (A- 14)に記載の方法。 (A-15) The method according to the above (A-14), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is about 0.2% by volume or less.
(A - 16) (1)工程の電源を D C電源とし、 (2)工程の電源を D C + R F電源とする (A-1)に記載の透明導電膜積層基板の製造方法。  (A-16) The method for producing a transparent conductive film laminated substrate according to (A-1), wherein the power supply in the step (1) is a DC power supply, and the power supply in the step (2) is a DC + RF power supply.
(A-17) (1)工程のスパッタリングを不活性ガス及び酸素の混合ガス雰囲気中で行 う(A- 16)に記載の透明導電膜積層基板の製造方法。 (A-17) The method for producing a transparent conductive film laminated substrate according to (A-16), wherein the sputtering in the step (1) is performed in a mixed gas atmosphere of an inert gas and oxygen.
(A-18) (1)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以 下である上記(A- 17)に記載の方法。  (A-18) The method according to (A-17), wherein the oxygen content in the mixed gas of the inert gas and oxygen in step (1) is about 1% by volume or less.
(A-19) (1)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 6容量 %以下である上記 (A- 18)に記載の方法。 方法 B :  (A-19) The method according to the above (A-18), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is about 0.6% by volume or less. Method B:
方法] Bは、  Method] B
(1)インジウム—錫酸化物焼結体の夕一ゲットを、 0〇電源又は0〇+尺 電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1層の I TO膜を形成する工程、 (1) Use a 0 の power supply or a 0 夕 + length power supply for an indium-tin oxide sintered compact Forming a first layer ITO film on the substrate by sputtering in an inert gas or a mixed gas atmosphere of an inert gas and oxygen, using
(2)上記ターゲットを、 DC電源、 RF電源又は DC + RF電源を用い、 不活性 ガス雰囲気中でスパッタリングして第 1層上に第 2層の I TO膜を形成する工程、 及び  (2) forming a second layer ITO film on the first layer by sputtering the target using a DC power supply, an RF power supply or a DC + RF power supply in an inert gas atmosphere; and
(3)上記ターゲットを、 DC電源又は DC + RF電源を用い、 不活性ガス又は不 活性ガス及び酸素の混合ガス雰囲気中でスパッタリングして、 第 2層上に第 3層 の I TO膜を形成する工程  (3) The above target is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form a third layer ITO film on the second layer. Process
を含んでいる。 Contains.
この方法で用いられる基板及びターゲットは、 方法 Aと同じである。  The substrate and target used in this method are the same as in method A.
方法 Bにおいては、 まず、 インジウム—錫酸化物焼結体をターゲットとして用 レ、 これを基板上にスパッタリングして、 基板上に第 1層の I TO膜を形成させ る (以下この工程を 「第一工程」 という) 。  In method B, first, an indium-tin oxide sintered body is used as a target, which is sputtered on a substrate to form a first layer of ITO film on the substrate (hereinafter, this step is referred to as “ The first step ”).
この第一工程のスパッタリング条件は、 以下の通りである。  The sputtering conditions in this first step are as follows.
電源は、 DC電源とするか、 又は DC + RF電源とする。 電源は、 DC電源で あるのが好ましい。  The power supply shall be DC power supply or DC + RF power supply. Preferably, the power supply is a DC power supply.
印加電力などの条件は、 夕一ゲットの大きさなどにより異なり一概にはいえな いが、 ターゲットが 5インチ X 15インチの大きさであると仮定すれば、 以下の 通りである。  The conditions such as the applied power and the like vary depending on the size of the get per night, etc., and cannot be determined unconditionally. However, assuming that the target has a size of 5 inches × 15 inches, it is as follows.
印加電力は、 DC電源の場合、 通常約 0, 1〜約 1KW、 好ましくは約 0. 3 〜約 0. 6KWである。 DC + RF電猄の場合、 DC電源の電力は、 通常約 0. 1〜約 1KW、 好ましくは約 0. 2〜約 0. 6_KW、 RF電源の電力は、 通 常約 0. 1〜約 3KW、 好ましくは約 0. 2〜約 0. 6KWである。 DCZRF 電力比は約 0. 1〜約 10の範囲内で適宜調整するのがよい。 RF電源を用いる 場合、 周波数は通常約 6. 78〜約 27. 12 MH z、 好ましくは約 13. 56 MHzである。  The applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply. In the case of DC + RF power, the power of the DC power supply is usually about 0.1 to about 1KW, preferably about 0.2 to about 0.6_KW, and the power of the RF power supply is usually about 0.1 to about 3KW , Preferably from about 0.2 to about 0.6 KW. The DCZRF power ratio should be appropriately adjusted within the range of about 0.1 to about 10. If an RF power supply is used, the frequency is typically about 6.78 to about 27.12 MHz, preferably about 13.56 MHz.
基板の温度は、 基板の種類により異なるが、 例えばガラス基板を用いる場合は、 通常室温付近〜 300 °C未満、 好ましくは約 140〜約 250 °Cである。  The temperature of the substrate varies depending on the type of the substrate. For example, when a glass substrate is used, the temperature is usually around room temperature to less than 300 ° C, preferably about 140 to about 250 ° C.
スパッタリングガスは、 不活性ガス又は不活性ガス及び酸素の混合ガスである。 不活性ガスとしては、 公知の不活性ガスを広く使用でき、 その代表的なものとし てアルゴンガスなどを挙げることができる。 The sputtering gas is an inert gas or a mixed gas of an inert gas and oxygen. As the inert gas, known inert gases can be widely used, and typical examples thereof include argon gas.
ガス圧は、 通常約 0. 1〜約 1 P a、 好ましくは約 0. 2〜約 0. 8Paであ る。  The gas pressure is usually about 0.1 to about 1 Pa, preferably about 0.2 to about 0.8 Pa.
第一工程で不活性ガス及び酸素の混合ガスを用いる場合、 DC電源の場合は、 該混合ガス中の酸素含有量は約 1容量%以下、 好ましくは約 0. 6容量%以下で あり、 DC + RF電源の場合は、 該混合ガス中の酸素含有量は約 0. 6容量%以 下、 好ましくは約 0. 4容量%以下、 より好ましくは約 0. 2容量%以下である。 .第一工程により、 基板上に第 1層として形成される I TO膜の膜厚は、 通常約 5〜約 100nm、 好ましくは約 10〜約 70 nm、 特に好ましくは約 15〜約 50nmである。  When a mixed gas of an inert gas and oxygen is used in the first step, in the case of a DC power supply, the oxygen content in the mixed gas is about 1% by volume or less, preferably about 0.6% by volume or less. + In the case of an RF power source, the oxygen content in the mixed gas is about 0.6% by volume or less, preferably about 0.4% by volume or less, more preferably about 0.2% by volume or less. The thickness of the ITO film formed as the first layer on the substrate by the first step is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 15 to about 50 nm. .
方法 Bにおいては、 次に、 インジウム—錫酸化物焼結体をターゲットとして用 い、 これを基板上に形成された第 1層にスパッタリングして、 第 1層上に第 2層 の I TO膜を形成させる (以下この工程を 「第二工程」 という) 。  In method B, next, an indium-tin oxide sintered body is used as a target, which is sputtered on the first layer formed on the substrate, and the second layer of the ITO film is formed on the first layer. (Hereinafter, this step is referred to as “second step”).
この第二工程のスパッタリング条件は、 以下の通りである。  The sputtering conditions in this second step are as follows.
電源の種類は、 DC電源とするか、 RF電源とするか又は DC + RF電源とす る。  The type of power supply shall be DC power supply, RF power supply or DC + RF power supply.
印加電力は、 DC電源の場合、 通常約 0. 1〜約 1KW、 好ましくは約 0. 3 〜約 0. 6KWである。 RF電源の電力は、 通常約 0. 1〜約 3KW、 好ましく は約 1〜約 1. 8KWである。 DC + RF電源の場合、 DC電源の電力は、 通常 約 0. 1〜約 1KW、 好ましくは約 0. 2〜約 0. 6KW、 RF電源の電力は、 通常約 0. 1〜約 3KW、 好ましくは約 0. 2〜約 0. 6KWである。 DC/R F電力比は約 0. 1〜約 10の範囲内で適宜調整するのがよい。 RF電源を用い る場合、 周波数は通常約 6. 78〜約 27. 12 MH z、 好ましくは約  The applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply. The power of the RF power supply is usually about 0.1 to about 3 kW, preferably about 1 to about 1.8 kW. In the case of a DC + RF power supply, the power of the DC power supply is usually about 0.1 to about 1 kW, preferably about 0.2 to about 0.6 kW, and the power of the RF power supply is usually about 0.1 to about 3 kW, preferably Is about 0.2 to about 0.6 KW. The DC / RF power ratio may be appropriately adjusted within a range of about 0.1 to about 10. When using an RF power supply, the frequency is usually about 6.78 to about 27.12 MHz, preferably about
13. 56MHzである。  13. 56 MHz.
第 1層が形成された基板の温度は、 通常室温付近〜 300 X未満、 好ましくは 約 140〜約 250°Cである。  The temperature of the substrate on which the first layer is formed is usually around room temperature to less than 300X, preferably about 140 to about 250 ° C.
スパッタリングガスは、 不活性ガスである。 不活性ガスとしては、 公知の不活 性ガスを広く使用でき、 その代表的なものとしてアルゴンガスなどを挙げること ができる。 The sputtering gas is an inert gas. As the inert gas, known inert gases can be widely used, and typical examples thereof include argon gas. Can be.
ガス圧は、 通常約 0. 1〜約 1 P a、 好ましくは約 0. 2〜約 0. 8P aであ る。  The gas pressure is usually from about 0.1 to about 1 Pa, preferably from about 0.2 to about 0.8 Pa.
第二工程により、 第 1層上に第 2層として形成される I TO膜の膜厚は、 通常 約 5〜約 150 nm、 好ましくは約 10〜約 100 nm、 特に好ましくは約 20 〜約 70 nmである。  The thickness of the ITO film formed as the second layer on the first layer by the second step is usually about 5 to about 150 nm, preferably about 10 to about 100 nm, and particularly preferably about 20 to about 70 nm. nm.
方法 Bにおいては、 次に、 インジウム—錫酸化物焼結体をターゲットとして用 い、 これを不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中で基板上に形 成された第 2層にスパッタリングして、 第 2層上に第 3層の I T〇膜を形成させ る (以下この工程'を 「第三工程」 という) 。  In the method B, next, an indium-tin oxide sintered body is used as a target, and this is applied to the second layer formed on the substrate in an atmosphere of an inert gas or a mixed gas of an inert gas and oxygen. A third layer of IT を film is formed on the second layer by sputtering (hereinafter, this step is referred to as “third step”).
この第三工程のスパッタリング条件は、 第一工程のスパッタリング条件と同じ でよい。  The sputtering conditions in the third step may be the same as the sputtering conditions in the first step.
即ち、 第三工程のスパッタリング条件は、 以下の通りである。  That is, the sputtering conditions in the third step are as follows.
電源の種類は、 DC電源とするか、 又は DC + RF電源とする。  The power supply type is DC power supply or DC + RF power supply.
印加電力は、 DC電源の場合、 通常約 0. 1〜約 1KW、 好ましくは約 0. 3 〜約 0. 6KWである。 DC + RF電源の場合、 DC電源の電力は、 通常約 0. 1〜約 1KW、 好ましくは約 0. 2〜約 0. 6KW、 RF電源の電力は、 通 常約 0. 1〜約 3KW、 好ましくは約 0. 2〜約 0. 6KWである。 DCZRF 電力比は、 約 0. 1〜約 10の範囲内で適宜調整するのがよい。 RF電源を用い る場合、 周波数は通常約 6. 78〜約 27. 12 MHz、 好ましくは約  The applied power is usually about 0.1 to about 1 kW, preferably about 0.3 to about 0.6 kW for a DC power supply. In the case of a DC + RF power supply, the power of the DC power supply is usually about 0.1 to about 1 kW, preferably about 0.2 to about 0.6 kW, and the power of the RF power supply is usually about 0.1 to about 3 kW, Preferably it is from about 0.2 to about 0.6 KW. The DCZRF power ratio should be appropriately adjusted within the range of about 0.1 to about 10. When using an RF power supply, the frequency is typically about 6.78 to about 27.12 MHz, preferably about
13. 56MHzである。  13. 56 MHz.
基板の温度は、 通常室温付近〜 300°C未満、 好ましくは約 140〜約 250 である。  The temperature of the substrate is usually around room temperature to less than 300 ° C, preferably about 140 to about 250.
スパッタリングガスは、 不活性ガス及び酸素の混合ガスである。 不活性ガスと しては、 公知の不活性ガスを広く使用でき、 その代表的なものとしてアルゴンガ スなどを挙げることができる。  The sputtering gas is a mixed gas of an inert gas and oxygen. As the inert gas, known inert gases can be widely used, and typical examples thereof include argon gas.
ガス圧は、 通常約 0. 1〜約 1 P a、 好ましくは約 0. 2〜約 0. 8Paであ る。  The gas pressure is usually about 0.1 to about 1 Pa, preferably about 0.2 to about 0.8 Pa.
第三工程において、 DC電源の場合は、 不活性ガス及び酸素の混合ガス中の酸 素含有量は約 1容量%以下、 好ましくは約 0 . 6容量%以下であり、 D C + R F 電源の場合は、 該混合ガス中の酸素含有量は約 0 . 6容量%以下、 好ましくは約 0 . 4容量%以下である。 In the third step, in the case of DC power supply, the acid in the mixed gas of inert gas and oxygen The oxygen content is about 1% by volume or less, preferably about 0.6% by volume or less, and in the case of a DC + RF power supply, the oxygen content in the mixed gas is about 0.6% by volume or less, preferably about 0.4% by volume or less.
第三工程により、 第 2層上に第 3層として形成される I T O膜の膜厚は、 通常 約 5〜約 1 0 0 nm、 好ましくは約 1 0〜約 7 0 nm、 特に好ましくは約 1 5〜 約 5 0 nmである。  The thickness of the ITO film formed as the third layer on the second layer by the third step is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, particularly preferably about 1 to about 100 nm. 5 to about 50 nm.
本発明では、 第一工程及び第三工程のスパッタリングを全く同一条件で行って もよいし、 上記スパッタリング条件の範囲内で適宜変更して第一工程及び第三ェ 程のスパッタリングを行ってもよい。  In the present invention, the sputtering in the first step and the third step may be performed under exactly the same conditions, or the sputtering in the first step and the third step may be performed by appropriately changing the sputtering conditions. .
本発明では、 (1)工程、 (2)工程及び (3)工程の電源をいずれも D C電源とする のがよい。 この場合、 (1)工程及び (3)工程を不活性ガス及び酸素の混合ガスの雰 囲気下に行い、 (2)工程を不活性ガスの雰囲気下に行うのがよい。 更に、 (1)工程 及び (3)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以下、 好ましくは約 0 . 2〜約 0 . 6容量%とするのがよい。  In the present invention, it is preferable that all of the power supplies in the steps (1), (2) and (3) be DC power supplies. In this case, it is preferable that the steps (1) and (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is performed in an atmosphere of an inert gas. Further, the oxygen content in the mixed gas of the inert gas and oxygen in the steps (1) and (3) is about 1% by volume or less, preferably about 0.2 to about 0.6% by volume. .
また、 本発明では、 (1)工程及び (3)工程の電源をいずれも D C電源とし、 (2) 工程の電源を R F電源とするのがよい。 この場合、 (1)工程及び (3)工程を不活性 ガス及び酸素の混合ガスの雰囲気下に行い、 (2)工程を不活性ガスの雰囲気下に 行うのがよい。 更に、 (1)工程及び (3)工程の不活性ガス及び酸素の混合ガス中の 酸素含有量が約 1容量%以下、 好ましくは約 0 . 1〜約 0 . 6容量%とするのが よい。  Further, in the present invention, it is preferable that the power supply in the steps (1) and (3) is a DC power supply, and the power supply in the step (2) is an RF power supply. In this case, the steps (1) and (3) are preferably performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is preferably performed in an atmosphere of an inert gas. Further, the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) and the step (3) should be about 1% by volume or less, preferably about 0.1 to about 0.6% by volume. .
また、 本発明では、 (1)工程及ぴ (3〉工程の電源をいずれも D C + R F電源とし、 (2)工程の電源を R F電源とするのがよい。 この場合、 (1〉工程及び (3)工程を不 ' 活性ガス又は不活性ガス及び酸素の混合ガスの雰囲気下に行い、 (2)工程を不活 性ガスの雰囲気下に行うのがよい。 更に、 (1)工程及び(3)工程の不活性ガス及び 酸素の混合ガス中の酸素含有量が約 0 . 2容量%以下であるのがよい。  Further, in the present invention, it is preferable that the power supply in the steps (1) and (3) is a DC + RF power supply, and the power supply in the step (2) is an RF power supply. The step (3) is preferably performed in an atmosphere of an inert gas or a mixed gas of an inert gas and oxygen, and the step (2) is preferably performed in an atmosphere of an inert gas. 3) The oxygen content in the mixed gas of the inert gas and oxygen in the step is preferably about 0.2% by volume or less.
また、 本発明では、 (1)工程及び (3)工程の電源をいずれも D C電源とし、 (2) 工程の電源を D C + R F電源とするのがよい。 この場合、 (D工程及び (3)工程を 不活性ガス及び酸素の混合ガスの雰囲気下に行い、 (2)工程を不活性ガスの雰囲 気下に行うのがよい。 更に、 (1)工程及び (3)工程の不活性ガス及び酸素の混合ガ 】5 Further, in the present invention, it is preferable that both the power supplies in the steps (1) and (3) are DC power supplies, and the power supply in the step (2) is DC + RF power supplies. In this case, (Step D and Step (3) are preferably performed in an atmosphere of a mixed gas of an inert gas and oxygen, and Step (2) is preferably performed in an atmosphere of an inert gas. Further, (1) Process and the mixed gas of inert gas and oxygen in process (3) 】Five
ス中の酸素含有量が約 0. 1〜約 0 . 6容量%であるのがよい。 Preferably, the oxygen content in the solution is from about 0.1 to about 0.6% by volume.
本発明では、 第三工程の終了後に、 第二工程と同様のスパッタリング条件下に スパッタリングして、 第 3層上に I T O膜からなる第 4層を形成してもよい。 こ の 4層構造の I T〇膜が積層した透明導電膜積層基板は、 高導電性及び透明性の 点で特に好ましい。  In the present invention, after the third step, the fourth layer made of the ITO film may be formed on the third layer by sputtering under the same sputtering conditions as in the second step. The transparent conductive film laminated substrate on which the four-layered IT layer is laminated is particularly preferable in terms of high conductivity and transparency.
更に 4層構造の I T O膜が積層した透明導電膜積層基板の第 4層上に、 第一ェ 程又は第三工程と同様のスパッタリング条件下にスパッタリングして、 I T O膜 からなる第 5層を形成してもよい。  Further, on the fourth layer of the transparent conductive film laminated substrate on which the four-layered ITO film is laminated, the fifth layer made of the ITO film is formed by sputtering under the same sputtering conditions as in the first step or the third step. May be.
本発明では、 第二工程と同様のスパッタリング条件及び第一工程と同様のスパ ッタリング条件を交互に繰り返して、 第 5層の上に更に 1又は 2以上の I T O膜 を形成してもよい。  In the present invention, one or more ITO films may be further formed on the fifth layer by alternately repeating the same sputtering conditions as in the second step and the same sputtering conditions as in the first step.
方法 Bにおいては、 基板温度を約 1 4 0〜約 2 5 (TCに維持したままで 3回又 はそれ以上のスパッタリングを行い、 基板上に 3層又はそれ以上の層からなる I T O膜を形成させることができる。 この場合には、 基板温度は十分に低いので、 基板の周りの雰囲気を直ちに大気圧に戻しても、 基板が劣化するおそれがない。 冷却は、 分単位の短時間で完了することができる。  In method B, three or more times of sputtering are performed while maintaining the substrate temperature at about 140 to about 25 (TC, to form an ITO film composed of three or more layers on the substrate. In this case, the temperature of the substrate is sufficiently low, so that even if the atmosphere around the substrate is immediately returned to the atmospheric pressure, there is no risk that the substrate will be degraded. can do.
方法 Bには、 以下の態様が含まれる。  Method B includes the following embodiments.
(B-1) (B-1)
(1)インジウム一錫酸化物焼結体のターゲットを、 D C電源又は D C + R F電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1層の I T O膜を形成する工程、  (1) The target of the indium-tin-tin oxide sintered body is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form a target on the substrate. Forming a single ITO film,
(2)上記ターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性 ガス雰囲気中でスパッ夕リングして第 1層上に第 2層の I T〇膜を形成する工程、 及び  (2) forming a second layer IT layer on the first layer by sputtering the target using a DC power supply, an RF power supply, or a DC + RF power supply in an inert gas atmosphere; and
(3)上記ターゲットを、 D C電源又は D C + R F電源を用い、 不活性ガス又は不 活 14ガス及び酸素の混合ガス雰囲気中でスパッタリングして、 第 2層上に第 3層 の I T O膜を形成する工程、 (3) The above target is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert 14 gas and oxygen to form a third ITO film on the second layer. Process,
を備えている透明導電膜積層基板の製造方法。 A method for manufacturing a transparent conductive film laminated substrate comprising:
(B-2) (1)工程、 (2)工程及び (3)工程の電源をいずれも D C電源とする上記 (B- 1)に記載の方法。 (B-2) The above (B- The method described in 1).
(B-3) (1)工程及び (3)工程を不活性ガス及び酸素の混合ガスの雰囲気下に行い、 (2)工程を不活性ガスの雰囲気下に行う上記 (B- 2)に記載の方法。  (B-3) The step (1) and the step (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is performed in an atmosphere of an inert gas. the method of.
(B-4) (1)工程及び (3)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以下である上記 (B- 3)に記載の方法。 (B-4) The method according to (B-3), wherein the oxygen content in the mixed gas of the inert gas and oxygen in step (1) and step (3) is about 1% by volume or less.
(B-5) (1)工程及び (3)工程の電源をいずれも D C電源とし、 (2)工程の電源を R F電源とする上記 (B-1)に記載の方法。  (B-5) The method according to the above (B-1), wherein the power supply in the steps (1) and (3) is a DC power supply, and the power supply in the step (2) is an RF power supply.
(B-6) (1)工程及び (3)工程を不活性ガス及び酸素の混合ガスの雰囲気下に行い、 (2)工程を不活性ガスの雰囲気下に行う上記 (B-5)に記載の方法。  (B-6) The step (1) and the step (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is performed in an atmosphere of an inert gas. the method of.
(B-7) (1)工程及び (3)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以下である上記 (B- 6)に記載の方法。 (B-7) The method according to (B-6) above, wherein the oxygen content in the mixed gas of the inert gas and oxygen in step (1) and step (3) is about 1% by volume or less.
(B - 8) (1)工程、 (2)工程及び (3)工程を不活性ガスの雰囲気下に行う上記 (B-5)に 記載の方法。  (B-8) The method according to the above (B-5), wherein the steps (1), (2) and (3) are performed in an inert gas atmosphere.
(B-9) (1)工程及び (3)工程の電源をいずれも D C + R F電源とし、 (2)工程の電 源を R F電源とする上記 (B-1)に記載の方法。  (B-9) The method according to (B-1) above, wherein the power supply in the step (1) and the step (3) is a DC + RF power supply, and the power supply in the step (2) is an RF power supply.
(B-10) (1)工程及び (3)工程を不活性ガス及び酸素の混合ガスの雰囲気下に行い、 (2)工程を不活性ガスの雰囲気下に行う上記 (B- 9)に記載の方法。  (B-10) The step (1) and the step (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is performed in an atmosphere of an inert gas. the method of.
(B - 11) (1)工程及び (3)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が 約 0 . 2容量%以下である上記 (B-10)に記載の方法。 (B-11) The method according to (B-10), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) and the step (3) is about 0.2% by volume or less.
(Β-12) (1)工程及び (3)工程の電源をいずれも D C電源とし、 (2)工程の電源を D C + R F電源とする上記 (B- 1)に記載の方法。 (Β-12) The method according to the above (B-1), wherein the power supply for the steps (1) and (3) is a DC power supply, and the power supply for the step (2) is a DC + RF power supply.
(B - 13) (1)工程及び (3)工程を不活性ガス及び酸素の混合ガスの雰囲気下に行い、 (2)工程を不活性ガスの雰囲気下に行う上記 (B- 12)に記載の方法。  (B-13) Step (1) and step (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, and step (2) is performed in an atmosphere of an inert gas. the method of.
(B-14) (1)工程及び (3)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が 約 1容量%以下である上記 (B- 13)に記載の方法。 方法 C (B-14) The method according to (B-13) above, wherein the oxygen content in the mixed gas of the inert gas and oxygen in step (1) and step (3) is about 1% by volume or less. Method C
方法 Cは、  Method C is
(1)インジウム—錫酸化物焼結体のターゲットを、 0じ電源又は13じ+ ?電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1層の I T〇膜を形成する工程、 及び (1) Set the target of the indium-tin oxide sintered compact to 0 or more Power supply Forming a first layer IT film on the substrate by sputtering in an inert gas or a mixed gas atmosphere of an inert gas and oxygen, and
(2)インジウム酸化物焼結体のターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッ 夕リングして第 1層上に第 2層の酸化ィンジゥム膜を形成する工程 (2) The target of the indium oxide sintered body was sputtered in an inert gas or a mixed gas atmosphere of inert gas and oxygen using a DC power supply, RF power supply or DC + RF power supply, and the target was placed on the first layer. Forming a second layer of oxide film on the substrate
を有している。 have.
この方法は、 (1)工程で用いられるターゲットがインジウム一錫酸化物焼結体 であり、 (2)工程で用いられる夕一ゲットがインジウム酸化物焼結体であること を特徴とする。 ターゲットが異なる場合を除き、 他の条件は方法 Aと同じでよい。 本発明では、 (1)工程の電源を D C電源とし、 (2)工程の電源を R F電源とする のがよい。 この場合には、 (1)工程を不活性ガス及び酸素の混合ガスの雰囲気下 に行い、 (2)工程を不活性ガスの雰囲気下に行うのがよい。 更に、 (1)工程の不活 性ガス及び酸素の混合ガス中の酸素含有量は約 1容量%以下、 好ましくは約 0 . 6容量%以下であるのがよい。  This method is characterized in that the target used in the step (1) is an indium-tin-tin oxide sintered body, and the target used in the step (2) is an indium-tin-oxide sintered body. Other conditions can be the same as in Method A, except for different targets. In the present invention, the power supply in the step (1) is preferably a DC power supply, and the power supply in the step (2) is preferably an RF power supply. In this case, step (1) is preferably performed in an atmosphere of a mixed gas of an inert gas and oxygen, and step (2) is preferably performed in an atmosphere of an inert gas. Further, the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is preferably about 1% by volume or less, and more preferably about 0.6% by volume or less.
(1)工程により、 基板上に第 1層として形成される I T O膜の膜厚は、 通常約 5〜約 1 0 0 n m、 好ましくは約 1 0〜約 7 0 nm、 特に好ましくは約 1 5〜約 5 0 n mである。  The thickness of the ITO film formed as the first layer on the substrate by the step (1) is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 150 nm. ~ 50 nm.
(2)工程により、 第 1層上に第 2層として形成される酸化インジウム膜の膜厚' は、 通常約 5〜約 1 5 0 nm、 好ましくは約 1 0〜約 1 0 O n m、 特に好ましく は約 2 0〜約 7 0 n mである。  In the step (2), the thickness of the indium oxide film formed as the second layer on the first layer is usually about 5 to about 150 nm, preferably about 10 to about 10 O nm, particularly Preferably it is about 20 to about 70 nm.
方法 Cにおいては、 基板温度を約 1 4 0〜約 2 5 に維持したままで 2回の スパッタリングを行い、 基板上に I τ〇膜及び酸化インジウム膜を形成させるこ とができる。 この場合には、 基板温度は十分に低いので、 基板の周りの雰囲気を 直ちに大気圧に戻しても、 基板が劣化するおそれがない。 冷却は、 分単位の短時 間で完了することができる。  In the method C, the sputtering is performed twice while maintaining the substrate temperature at about 140 to about 25 to form an Iτ〇 film and an indium oxide film on the substrate. In this case, since the substrate temperature is sufficiently low, even if the atmosphere around the substrate is immediately returned to the atmospheric pressure, there is no possibility that the substrate is deteriorated. Cooling can be completed in a matter of minutes.
方法 Cには、 以下の態様が含まれる。  Method C includes the following embodiments.
(C-1) (C-1)
(1)インジウム一錫酸化物焼結体のタ一ゲットを、 0じ電源又は13〇+ 1 1^電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1層の I T O膜を形成する工程、 及び (1) A target of indium tin oxide sintered body is sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen by using a power source of 0 or 13〇 + 11 1. Forming a first layer of ITO film on the substrate, and
(2)インジウム酸化物焼結体のターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッ 夕リングして第 1層上に第 2層の酸化ィンジゥム膜を形成する工程 '  (2) The target of the indium oxide sintered body was sputtered in an inert gas or a mixed gas atmosphere of inert gas and oxygen using a DC power supply, RF power supply or DC + RF power supply, and the target was placed on the first layer. Of forming a second layer of oxide film on the substrate ''
を備えている透明導電膜積層基板の製造方法。 A method for manufacturing a transparent conductive film laminated substrate comprising:
(C-2) (1)工程の電源を D C電源とし、 (2〉工程の電源を R F電源とする上記 (C- 1)に記載の方法。 .  (C-2) The method according to (C-1), wherein the power supply in the step (1) is a DC power supply, and the power supply in the step (2) is an RF power supply.
(C-3) (1)工程及び (2)工程を不活性ガス及び酸素の混合ガスの雰囲気下に行う上 記(C- 2)に記載の方法。  (C-3) The method according to (C-2), wherein the steps (1) and (2) are performed in an atmosphere of a mixed gas of an inert gas and oxygen.
(C-4) (1)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以 下、 («工程の不活性ガス及び酸素の混合ガス中の酸素含有量が 0 . 6容量%以 下である上記(C- 3)に記載の方法。 (C-4) The oxygen content in the mixed gas of the inert gas and oxygen in the step (1) is about 1% by volume or less. The method according to (C-3), wherein the content is 6% by volume or less.
(C-5) (1)工程を不活性ガス及び酸素の混合ガスの雰囲気下に行い、 (2)工程を不 活性ガス雰囲気下に行う上記 (C 2)に記載の方法。  (C-5) The method according to the above (C2), wherein the step (1) is performed in an atmosphere of a mixed gas of an inert gas and oxygen, and the step (2) is performed in an atmosphere of an inert gas.
(C-6) (1)'工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以 下である上記(C- 5)に記載の方法。 上記の方法以外に、 本発明の透明導電膜積層基板は、 下記に示す方法 Dにより 製造することができる。 (C-6) The method according to (C-5), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (1) ′ is about 1% by volume or less. In addition to the above method, the transparent conductive film laminated substrate of the present invention can be manufactured by the following method D.
方法 D: Method D:
方法 Dは、  Method D is
(1)インジウム—錫酸化物焼結体のターゲットを、 D C電源又はD C + R F電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1層の. I T〇膜を形成する工程、  (1) The target of the indium-tin oxide sintered body is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen, and the target is put on a substrate. The process of forming one layer of IT〇 film,
(2)上記ターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性 ガス及び酸素の混合ガス雰囲気中でスパッタリングして第 1層上に第 2層の I T O膜を形成する工程、 及び (2) forming a second layer ITO film on the first layer by sputtering the target using a DC power supply, an RF power supply or a DC + RF power supply in an atmosphere of a mixed gas of an inert gas and oxygen; as well as
(3)上記ターゲットを、 0 0電源又は0〇+ 11 電源を用ぃ、 不活性ガス又は不 活性ガス及び酸素の混合ガス雰囲気中でスパッ夕リングして、 第 2層上に第 3層 の I TO膜を形成する工程 (3) Sputtering the above target in an inert gas or a mixed gas atmosphere of inert gas and oxygen using a 0 power supply or 0 + 11 power supply Of forming an ITO film
を含んでいる。 Contains.
この方法で用いられる基板及びターゲットは、 方法 Aと同じである。  The substrate and target used in this method are the same as in method A.
(2)工程のスパッタリングを不活性ガス及び酸素の混合ガス雰囲気中で行う以 外、 他の条件は方法 Bと同じである。  (2) Other conditions are the same as those of the method B except that the sputtering in the step is performed in a mixed gas atmosphere of an inert gas and oxygen.
(1)工程、 (2)工程及び (3)工程を不活性ガス及び酸素の混合ガスの雰囲気下に 行う場合、 (2)工程の不活性ガス及び酸素の混合ガス中の酸素含有量は、 (1〉工程 における混合ガス中め酸素含有量と同レベル又はそれよりも低いのがよい。 具体 的には、 (1)工程及び (3)工程の不活性ガス及び酸素の混合ガス中の酸素含有量を 約 1容量%以下、 好ましくは約 0. 2〜約 0. 6容量%とし、 (2)工程の不活性 ガス及び酸素の混合ガス中の酸素含有量を約 0. 3容量%以下、 好ましくは約 0. 2容量%以下とするのがよい。  When the steps (1), (2) and (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen, the oxygen content in the mixed gas of the inert gas and oxygen in the step (2) is The oxygen content in the mixed gas of the inert gas and oxygen in step (1) and step (3) is preferably equal to or lower than the oxygen content in the mixed gas in step (1). The content is about 1% by volume or less, preferably about 0.2 to about 0.6% by volume, and the oxygen content in the mixed gas of the inert gas and oxygen in step (2) is about 0.3% by volume or less. It is preferably about 0.2% by volume or less.
(1)工程により、 基板上に第 1層として形成される I TO膜の膜厚は、 通常約 5〜約 100nm、 好ましくは約 10〜約 70 nm、 特に好ましくは約 15〜約 50 nmである。 .  The thickness of the ITO film formed as the first layer on the substrate by the step (1) is usually about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 15 to about 50 nm. is there. .
(2)工程により、 第 1層上に第 2層として形成される I TO膜の膜厚は、 通常 約 5〜約 150 nm、 好ましくは約: I 0〜約 100 nm、 特に好ましくは約 20 〜約 70 nmである。  In step (2), the thickness of the ITO film formed as the second layer on the first layer is usually about 5 to about 150 nm, preferably about: I0 to about 100 nm, and particularly preferably about 20 to about 100 nm. ~ 70 nm.
(3)工程により、 第 2層上に第 3層として形成される I T〇膜の膜厚は、 逋常 約 5〜約 100 nm、 好ましくは約 10〜約 70 nm、 特に好ましくは約 15〜 約 50 nmである。  In step (3), the thickness of the IT film formed as the third layer on the second layer is about 5 to about 100 nm, preferably about 10 to about 70 nm, and particularly preferably about 15 to about 70 nm. It is about 50 nm.
本発明では、 (3)工程の終了後に、 (2)工程と同様のスパッタリング条件下にス パッ夕リングして、 第 3層上に I TO膜からなる第 4層を形成してもよく、 更に 第 4層上に、 (】)又は(3)工程と同様のスパッタリング条件下にスパッタリングし て、 I TO膜からなる第 5層を形成してもよい。  In the present invention, after the step (3), the fourth layer made of the ITO film may be formed on the third layer by sputtering under the same sputtering conditions as in the step (2). Further, a fifth layer made of an ITO film may be formed on the fourth layer by sputtering under the same sputtering conditions as in step () or (3).
本発明では、 (2)工程と同様のスパッタリング条件及び(1)工程と同様のスパッ タリング条件を交互に繰り返して、 第 5層の上に更に 1又は 2以上の I TO膜を 形成してもよい。  In the present invention, one or more ITO films may be further formed on the fifth layer by alternately repeating the sputtering conditions similar to the step (2) and the sputtering conditions similar to the step (1). Good.
方法 Dにおいては、 基板温度を約 140〜約 250°Cに維持したままで 3回又 はそれ以上のスパッタリングを行い、 基板上に 3層又はそれ以上の層からなる Γ . T O膜を形成させることができる。 この場合には、 基板温度は十分に低いので、 基板の周りの雰囲気を直ちに大気圧に戻しても、 基板が劣化するおそれがない。 冷却は、 分単位の短時間で完了することができる。 In method D, the substrate temperature is maintained at about 140 to about 250 ° C three times or Can perform more sputtering to form a TO.TO film composed of three or more layers on the substrate. In this case, since the substrate temperature is sufficiently low, even if the atmosphere around the substrate is immediately returned to the atmospheric pressure, there is no possibility that the substrate is deteriorated. Cooling can be completed in a short time, on the order of minutes.
方法 Dには、 以下の態様が含まれる。  Method D includes the following embodiments.
(D-1) (D-1)
(1)インジウム—錫酸化物焼結体のターゲットを、 0 電源又は0 0 + 1 ?電源 を用い、 不活性ガス又ば不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1 '層の I T〇膜を形成する工程、  (1) The target of the indium-tin oxide sintered body was sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen using a 0 power source or a 0 + 1 power source. Forming a first 'layer IT〇 film thereon,
(2)上記ターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性 ガス及び酸素の混合ガス雰囲気中でスパッタリングして第 1層上に第 2層の I T 〇膜を形成する工程、 及び (2) A step of forming a second IT layer on the first layer by sputtering the above target in a mixed gas atmosphere of an inert gas and oxygen using a DC power supply, an RF power supply or a DC + RF power supply. , as well as
(3)上記ターゲットを、 0〇電源又は0〇+ 電源を用ぃ、 不活性ガス又は不 活性ガス及び酸素の混合ガス雰囲気中でスパッタリングして、 第 2層上に第 3層 の I T O膜を形成する工程、  (3) The above target is sputtered in an inert gas or a mixed gas atmosphere of an inert gas and oxygen using a 0 ° power source or a 0 ° + power source to form a third layer ITO film on the second layer. Forming,
を備えている透明導電膜積層基板の製造方法。 A method for manufacturing a transparent conductive film laminated substrate comprising:
(D-2) (1)工程、 (2)工程及び (3〉工程の電源をいずれも D C電源とする上記 (D- 1)に記載の方法。  (D-2) The method according to the above (D-1), wherein the power source in the steps (1), (2) and (3) is a DC power source.
(D-3) (1)工程、 (2)工程及び (3)工程を不活性ガス及び酸素の混合ガスの雰囲気 下に行う上記 (D- 2)に記載の方法。'  (D-3) The method according to (D-2), wherein the steps (1), (2) and (3) are performed in an atmosphere of a mixed gas of an inert gas and oxygen. '
(D-4) (1)工程及び (3)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約. 1容量%以下、 (2)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 3容量%以下である上記 (D- 3)に記載の方法。  (D-4) The oxygen content in the mixed gas of the inert gas and oxygen in the steps (1) and (3) is about 0.1% by volume or less, and in the mixed gas of the inert gas and the oxygen in the step (2). The method according to the above (D-3), wherein the oxygen content of the compound is not more than about 0.3% by volume.
(D-5) (1)工程及び (3)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 2〜約 0 . 6容量%、 (2)工程の不活性ガス及び酸素の混合ガス中の酸素含 有量が約 0 . 2容量%以下である上記 (D- 4)に記載の方法。  (D-5) The oxygen content in the mixed gas of the inert gas and oxygen in the step (1) and the step (3) is about 0.2 to about 0.6% by volume; The method according to (D-4), wherein the oxygen content in the oxygen mixture gas is about 0.2% by volume or less.
(D-6) (1)工程及び (3)工程の電源をいずれも D C電源とし、 (2)工程の電源を R F電源とする上記(D-1)に記載の方法。 (D-6) The method according to (D-1) above, wherein the power supply of the step (1) and the step (3) is a DC power supply, and the power supply of the step (2) is an RF power supply.
(D-7) (i)工程及び (3)工程を不活性ガス雰囲気下に行い、 (2)工程を不活性ガス 及び酸素の混合ガスの雰囲気下に行う上記 (D- 6)に記載の方法。 (D-7) Steps (i) and (3) are performed in an inert gas atmosphere. The method according to (D-6) above, which is performed in an atmosphere of a mixed gas of oxygen and oxygen.
(D-8) (2)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 1容量%以 下である上記 (D- 7)に記載の方法。  (D-8) The method according to (D-7), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (2) is about 1% by volume or less.
(D - 9) (2)工程の不活性ガス及び酸素の混合ガス中の酸素含有量が約 0 . 3容量 %以下である上記 (D- 8)に記載の方法。 上記方法 A〜方法 Dにおけるスパッタリングは、 公知のスパッタリング、 例え ば、 マグネトロンスパッタリング、 反応性スパッタリング、 E C Rスパッタリン グ等を包含する。 カラーフィルターの製造  (D-9) The method according to (D-8), wherein the oxygen content in the mixed gas of the inert gas and oxygen in the step (2) is about 0.3% by volume or less. The sputtering in the above methods A to D includes known sputtering, for example, magnetron sputtering, reactive sputtering, ECR sputtering and the like. Manufacture of color filters
本発明のカラーフィル夕一は、 透明基板上に遮光膜、 カラーレジスト膜及び I T O導電膜が形成されたものである。 カラーレジスト膜と I T O導電膜との間に オーバーコート層が形成されていてもよい。  The color filter of the present invention is obtained by forming a light-shielding film, a color resist film, and an ITO conductive film on a transparent substrate. An overcoat layer may be formed between the color resist film and the ITO conductive film.
透明基板は、 限定されるものではなく、 この種の分野で通常用いられている透 明基板を広く使用できる。 透明基板の具体例としては、 例えばアルカリガラス、 無アルカリガラスなどのガラス板、 ポリ力一ボネ一ト、 ポリメタクリルレートな どの樹脂板などを挙げることができる。 これらの中でも、 無アルカリガラスが好 適である。 透明基板の大きさ、 厚さなどは、 カラーフィル夕一の使用目的により 適宜選択することができる。  The transparent substrate is not limited, and a transparent substrate usually used in this kind of field can be widely used. Specific examples of the transparent substrate include, for example, glass plates such as alkali glass and non-alkali glass, and resin plates such as polycarbonate and polymethacrylate. Of these, alkali-free glass is preferred. The size and thickness of the transparent substrate can be appropriately selected according to the purpose of use of the color filter.
遮光膜を形成する材料は、 この分野で通常用いられている遮光膜形成材料を広 く使用できる。 遮光膜形成材料としては、 例えば金属、 金属の酸化物、 顔料を分 散させた樹脂などを挙げることができる。 金属としては、 具体的には、 クロム、 モリブデン、 タンタル、 アルミニウムなどが挙げられる。 金属の酸化物としては、 具体的には、 酸化クロム、 酸化アルミニウムなどが挙げられる。 顔料を分散させ た樹脂としては、 具体的にはカーボン分散樹脂、 黒色顔料分散樹脂などが挙げら れる。 これらの中でも、 遮光性、 成膜性などの観点から、 金属クロム、 酸化クロ ム、 力一ボン分散樹脂、 黒色顔料分散樹脂などが好適である。  As the material for forming the light-shielding film, a light-shielding film forming material generally used in this field can be widely used. Examples of the light-shielding film forming material include metals, metal oxides, and resins in which pigments are dispersed. Specific examples of the metal include chromium, molybdenum, tantalum, and aluminum. Specific examples of the metal oxide include chromium oxide and aluminum oxide. Specific examples of the resin in which the pigment is dispersed include a carbon dispersed resin and a black pigment dispersed resin. Among these, metal chromium, chromium oxide, resin dispersed in carbon black, resin dispersed in black pigment, and the like are preferable from the viewpoints of light-shielding properties and film-forming properties.
カラーレジスト膜を形成する材料は、 この分野で通常用いられているカラ一レ ジスト膜形成材料を広く使用できる。 カラーレジスト膜形成材料としては、 例え ばアクリル樹脂、 ポリエステル樹脂、 ポリビニルアルコール樹脂、 ポリイミド樹 脂又はこれら樹脂の混合物に赤色系、 緑色系又は青色系着色剤を分散させたもの などを挙げることができる。 . The material used to form the color resist film is a color resin commonly used in this field. A wide variety of dist film forming materials can be used. Examples of the color resist film forming material include an acrylic resin, a polyester resin, a polyvinyl alcohol resin, a polyimide resin, or a mixture of these resins in which a red, green, or blue colorant is dispersed. . .
ォ一バーコ一ト層を構成する樹脂は、 この分野で通常用いられている樹脂を広 く使用でき、 例えばエポキシ樹脂、 アクリル樹脂、 ポリイミド樹脂等が挙げられ る。  As the resin constituting the overcoat layer, a resin commonly used in this field can be widely used, and examples thereof include an epoxy resin, an acrylic resin, and a polyimide resin.
透明基板上に遮光膜、 カラーレジスト膜及びオーバーコート膜を形成させるに 当たっては、 公知の遮光膜形成方法、 カラーレジスト膜形成方法及びオーバ一コ ート膜形成方法を広く利用することができる。  In forming a light-shielding film, a color resist film, and an overcoat film on a transparent substrate, a known light-shielding film forming method, a color resist film forming method, and an overcoat film forming method can be widely used. .
本発明のカラーフィルタ一は、 遮光膜及びカラ一レジスト膜、 必要に応じて更 にオーバ一コート膜が形成された透明基板上に、 少なくとも 2層からなる I T O 導電膜が形成されている。  In the color filter of the present invention, at least two ITO conductive films are formed on a transparent substrate on which a light-shielding film, a color resist film, and, if necessary, an overcoat film are further formed.
本発明のカラ一フィルタ一は、 例えば透明基板上に公知の方法により遮光膜及 びカラーレジスト膜、 必要に応じて更にオーバーコ一ト膜を形成させた後、 上記 方法 A〜方法 Eのいずれかの導電膜形成方法に従って導電膜を形成させることに より、 製造される。  The color filter of the present invention comprises, for example, a method of forming a light-shielding film and a color resist film on a transparent substrate by a known method, and further forming an overcoat film as necessary. It is manufactured by forming a conductive film according to the conductive film forming method described above.
発 明 の 効 果  The invention's effect
本発明の透明導電膜積層基板の製造方法によれば、 導電膜中のキャリア (自由 電子) 密度を高くすることができ、 しかもキャリア移動度を殆ど低下させないか 又はキヤリァ移動度を維持もしくは大きくできるので、 高い導電率を備えた透明 導電膜積層基板を得ることができる。  ADVANTAGE OF THE INVENTION According to the manufacturing method of the transparent conductive film laminated substrate of the present invention, the carrier (free electron) density in the conductive film can be increased, and the carrier mobility can be hardly reduced, or the carrier mobility can be maintained or increased. Therefore, a transparent conductive film laminated substrate having high conductivity can be obtained.
基板上に形成された導電膜は高い導電率を備えているので、 膜厚を厚くする必 要はなく、 優れた透明性を確保することができる。  Since the conductive film formed on the substrate has high conductivity, it is not necessary to increase the film thickness, and excellent transparency can be secured.
従って、 本発明の方法によれば、 高い導電率を備えた、 即ち比抵抗値が小さい 透明導電膜積層基板を製造することができる。 本発明の方法によれば、 透明性に 優れた透明導電膜積層基板を製造することができる。  Therefore, according to the method of the present invention, it is possible to manufacture a transparent conductive film laminated substrate having high conductivity, that is, having a small specific resistance value. ADVANTAGE OF THE INVENTION According to the method of this invention, the transparent conductive film laminated substrate excellent in transparency can be manufactured.
本発明の方法においては、 基板温度を 3 0 0 °C以上の温度に維持する必要はな く、 場合によっては 1 4 0〜 2 5 0 °Cの比較的低い温度でも、 基板上に良好な導 電膜を形成することができる。 そのために、 使用される基板の種類に制限を受け ない。 本発明の方法は、 真空下で 3 0 0 °C以上の高温から 2 5 O t:以下に冷却す る必要がなく、 実用的である。 In the method of the present invention, it is not necessary to maintain the substrate temperature at a temperature of 300 ° C. or higher, and in some cases, even at a relatively low temperature of 140 ° C. to 250 ° C. Guidance An electrolytic film can be formed. Therefore, there is no restriction on the type of substrate used. The method of the present invention is practical because it is not necessary to cool from a high temperature of 300 ° C. or more under vacuum to 25 Ot: or less.
本発明の方法では、 スパッ夕リングの際の電源の種類及びスパッ夕リングガス を変更するだけで、 所望の I T O膜を基板上に成膜することができ、 工業的に有 利である。  According to the method of the present invention, a desired ITO film can be formed on a substrate only by changing the type of power supply and the sputtering gas at the time of sputtering, which is industrially advantageous.
本発明の方法では、 ァニール処理という特別な処理を施す必要がなく、 極めて 実用的である。  The method of the present invention does not require a special treatment of annealing treatment, and is extremely practical.
本発明の方法によれば、 高い導電率を備えた、 即ち比抵抗値が小さい I T O導 電膜を有するカラ一フィルターを製造することができる。  According to the method of the present invention, a color filter having an ITO conductive film having high conductivity, that is, having a small specific resistance value can be manufactured.
本発明の方法によれば、 透明性に優れた力ラーフィルタ一を製造することがで きる。  According to the method of the present invention, a power filter having excellent transparency can be manufactured.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例及び比較例を掲げて、 本発明をより一層明らかにする。  Hereinafter, the present invention will be further clarified with reference to Examples and Comparative Examples.
透明導電膜積層基板の製造例を次に示す。  The following is an example of manufacturing a transparent conductive film laminated substrate.
以下の実施例及び比較例における操作の概略は、 次の通りである。  The outline of the operation in the following Examples and Comparative Examples is as follows.
ガラス基板 (2 0 Ommx 2 6 O mm、 厚さ 0 . 7 mm) を予熱ゾ一ンに設置 し、 高真空下で 6 0分間所定の温度まで予熱する。  A glass substrate (20 Ommx26 Omm, thickness 0.7 mm) is placed in a preheating zone and preheated to a predetermined temperature for 60 minutes under high vacuum.
所定温度まで基板が予熱されると、 アルゴンガスと酸素とが所定の割合になる ようにガスを導入し、 全圧 (スパッ夕圧) が 0 . 7 P aになるように調整した後、 夕ーゲットに所定の電源を用いて印加し、 放電を開始ずる。  When the substrate is preheated to a predetermined temperature, a gas is introduced so that the argon gas and oxygen have a predetermined ratio, and the total pressure (sputter pressure) is adjusted to 0.7 Pa, and then the gas is introduced. Apply a predetermined power to the target and start discharging.
夕一ゲット上のグロ一放電が安定しだことを確認した後、 予熱された基板を移 動速度 1 . O m/分の速度で放電中を移動させ、 基板上に所定厚の第 1層の透明 導電膜を形成させる。 所定膜厚になるまで、 ターゲット上を往復させる。  After confirming that the glow discharge on the evening get is stable, the preheated substrate is moved during the discharge at a moving speed of 1.O m / min. Is formed. Reciprocate on the target until the film thickness reaches the specified value.
次に、 アルゴンガスと酸素とが所定の割合になるようにガスを導入し、 全圧が 所定圧力になるように調整した後、 ターゲットに所定の電源を用いて印加し、 放 電を開始する。  Next, a gas is introduced so that the argon gas and the oxygen have a predetermined ratio, and the total pressure is adjusted to a predetermined pressure, and then applied to the target using a predetermined power supply to start discharging. .
ターゲット上のグロ一放電が安定したことを確認した後、 予熱された基板を移 動速度 1 . O mZ分の速度で放電中を移動させ、 基板上に所定厚の第 2層の透明 導電膜を形成させる。 所定膜厚になるまで、 ターゲット上を往復させる。 After confirming that the glow discharge on the target has stabilized, the preheated substrate is moved at a speed of 1.O mZ during the discharge, and a second layer of transparent material of a predetermined thickness is placed on the substrate. A conductive film is formed. Reciprocate on the target until the film thickness reaches the specified value.
更に、 第 2層の透明導電膜上に第 3層の透明導電膜及び第 5層の透明導電膜を 形成させる場合には、 第 1層の透明導電膜を形成させる操作と同様の操作を繰り 返す。 第 3層の透明導電膜上に第 4層の透明導電膜を形成させる場合には、 第 2 層の透明導電膜を形成させる操作と同様の操作を繰り返す。  Further, when forming the third and fifth transparent conductive films on the second transparent conductive film, the same operation as that for forming the first transparent conductive film is repeated. return. When forming the fourth layer of the transparent conductive film on the third layer of the transparent conductive film, the same operation as the operation of forming the second layer of the transparent conductive film is repeated.
更に、 成膜後のガラス基板を真空室に移動し、 3分間放冷した後、 窒素ガスで 真空室を置換し、 透明導電膜が形成されたガラス基板を取り出した。  Further, the glass substrate after film formation was moved to a vacuum chamber, and allowed to cool for 3 minutes. Then, the vacuum chamber was replaced with nitrogen gas, and the glass substrate on which the transparent conductive film was formed was taken out.
実施例 1 Example 1
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7P a) の雰囲気下、 インジウム—錫酸化物焼結体 (酸化錫含有量 10重量 %、 以下同じ) ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリ ングして、 200 に維持されたガラス基板上に I TO膜からなる第 1層 (膜厚 438. 8 A) を形成させた。  Indium-tin oxide sintered body (tin oxide content 10% by weight, the same applies hereinafter) in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa) The target was sputtered using a DC power supply (power 0.5 KW) to form a first layer (thickness 438.8 A) of an ITO film on a glass substrate maintained at 200.
次に、 アルゴンガス (スパッタ圧 0. 7 P a) の雰囲気下、 インジウム—錫酸 化物焼結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数 13. 56MH z) を用いてスパッタリングして、 第 1層上に I TO膜からなる第 2層 (膜厚 4 38. 8A) を形成させて、 本発明の透明導電膜積層基板を得た。  Next, in an atmosphere of argon gas (sputter pressure 0.7 Pa), the indium-tin oxide sintered target was sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz), A second layer (thickness: 438.8 A) made of an ITO film was formed on the first layer to obtain a transparent conductive film laminated substrate of the present invention.
比較例 1 Comparative Example 1
アルゴンガス (スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼 結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数 13. 56 MHz) を用 いてスパッタリングして、 200 に維持されたガラス基板上に I TO膜からな る第 1層 (膜厚 553. 9A) を形成させた。  In an atmosphere of argon gas (spray pressure 0.7 Pa), an indium monotin oxide sintered target was sputtered using an RF power supply (power 1.5 KW, frequency 13.56 MHz) to 200. A first layer (thickness: 553.9A) consisting of an ITO film was formed on the maintained glass substrate.
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッタ圧 0. 7 P a) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 1層上に I TO膜か らなる第 2層 (膜厚 553. 9 A) を形成させて、 導電膜積層基板を得た。 実施例 1で得られた本発明の透明導電膜積層基板及び比較例 1で得られた導電 膜積層基板につき、 シート抵抗を求めた。  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), the indium-tin oxide sintered body target was connected to a DC power supply (power supply). 0.5 KW) to form a second layer (thickness: 553.9 A) of an ITO film on the first layer to obtain a conductive film laminated substrate. The sheet resistance of the transparent conductive film laminated substrate of the present invention obtained in Example 1 and the conductive film laminated substrate obtained in Comparative Example 1 was determined.
シ一ト抵抗値は次のようにして求めた。 即ち、 200mmX 260mm、 厚み 0. 7 mmのガラス基板上に形成された膜面に、 均等に 67点の測定点を設け、 三菱化学製の四探針抵抗計 (MCP— T600) を用いて抵抗値を求め、 これら の平均値を求め、 更に定数 =4. 5424を乗じてシ一ト抵抗値を求めた。 The sheet resistance was determined as follows. That is, 200mmX 260mm, thickness 67 measurement points were evenly provided on the film surface formed on a 0.7 mm glass substrate, and the resistance values were determined using a four-probe resistance meter (MCP-T600) manufactured by Mitsubishi Chemical Corporation. The average value was obtained, and the sheet resistance value was further obtained by multiplying by a constant of 4.5424.
膜厚は次のようにして測定した。 即ち、 小坂研究所製の二次元微細形状測定器 (ET4000) を用い、 ガラス基板上に成膜された導電膜の膜厚を測定した。 測定は、 ガラス基板上に 5点の測定ポイントを設定し、 カブトンテープでマスク し、 成膜後マスクを剥がし、 膜厚を測定し、 その平均値を膜の膜厚とした。  The film thickness was measured as follows. That is, the film thickness of the conductive film formed on the glass substrate was measured using a two-dimensional fine shape measuring device (ET4000) manufactured by Kosaka Laboratory. For the measurement, five measurement points were set on a glass substrate, masked with Kavton tape, the mask was peeled off after film formation, the film thickness was measured, and the average value was taken as the film thickness.
比抵抗値 (Ω · cm) は、 上記四探針法で求めたシート抵抗値に膜厚を乗じる ことにより求めた。  The specific resistance value (Ω · cm) was obtained by multiplying the sheet resistance value obtained by the above four probe method by the film thickness.
また、 実施例 1で得られた本発明の透明導電膜積層基板及び比較例 1で得られ た導電膜積層基板につき、 透過率 (%) を求めた。 即ち、 日立製作所製分光光度 計 (U— 2010) を使用して、 波長 200〜 900 nmの範囲で導電膜積層基 板の透過率 ) を測定し、 成膜前のガラス基板 (ブランク) の透過率 (%) を 100%として、 620 nm、 540 nm及び 460 nmにおける透過率 (%) を算出した。  Further, the transmittance (%) of the transparent conductive film laminated substrate of the present invention obtained in Example 1 and the conductive film laminated substrate obtained in Comparative Example 1 was determined. That is, using a spectrophotometer manufactured by Hitachi, Ltd. (U-2010), the transmittance of the conductive film laminated substrate was measured in the wavelength range of 200 to 900 nm, and the transmittance of the glass substrate (blank) before film formation was measured. The transmittance (%) at 620 nm, 540 nm and 460 nm was calculated with the transmittance (%) as 100%.
結果を第 1表に示す。  The results are shown in Table 1.
第 1 表  Table 1
Figure imgf000027_0001
実施例 2
Figure imgf000027_0001
Example 2
アルゴンガスと酸素との混合気体 (酸素含有量 0. 54容量%、 スパッタ圧 0. 7 Pa) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 DC電源 (電 力 0. 5KW) を用いてスパッタリングして、 200°Cに維持されたガラス基板 上に I TO膜からなる第 1層 (膜厚 433 A) を形成させた。  Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.54% by volume, sputter pressure 0.7 Pa), an indium monotin oxide sintered body target was connected to a DC power supply (power 0.5KW). A first layer (433 A in thickness) of an ITO film was formed on a glass substrate maintained at 200 ° C.
次に、 アルゴンガス (スパッ夕圧 0. 7P a) の雰囲気下、 インジウム一錫酸 化物焼結体夕一ゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリング して、 第 1層上に I TO膜からなる第 2層 (膜厚 433 A) を形成させた。 Next, in an atmosphere of argon gas (spray pressure 0.7 Pa), indium monostannate A second layer (thickness: 433 A) of an ITO film was formed on the first layer by sputtering an oxide getter using a DC power supply (power: 0.5 KW).
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 54容量%、 スパッ 夕圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 DC 電源 (電力 0. 5KW) を用いてスパッタリングして、 第 2層上に I TO膜から なる第 3層 (膜厚 433 A) を形成させて、 本発明の透明導電膜積層基板を得た。 比較例 2  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.54% by volume, sputter pressure: 0.7 Pa), the indium-tin-tin oxide sintered body target was connected to a DC power supply (power 0 5KW) to form a third layer (thickness: 433 A) made of an ITO film on the second layer to obtain a transparent conductive film laminated substrate of the present invention. Comparative Example 2
アルゴンガス (スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼 結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 200°Cに維持されたガラス基板上に I T〇膜からなる単層 (膜厚 1686. 6 Α) を形成させて、 導電膜積層基板を得た。  In an atmosphere of argon gas (spray pressure 0.7 Pa), the indium monotin oxide sintered target was sputtered using a DC power supply (power 0.5 KW), and the glass maintained at 200 ° C. A single layer (thickness: 1686.6 mm) of an IT film was formed on the substrate to obtain a conductive film laminated substrate.
比較例 3 Comparative Example 3
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5 KW) を用いてスパッタリングして、 200°Cに維持されたガラス 基板上に I TO膜からなる単層 (膜厚 1504. 3 A) を形成させて、 導電膜積 層基板を得た。  In an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa), a target of indium tin oxide sintered body was connected to a DC power supply (power 0.5 KW). ) To form a single layer (film thickness 1504.3 A) made of an ITO film on a glass substrate maintained at 200 ° C. to obtain a conductive film laminated substrate.
実施例 2で得られた本発明の透明導電膜積層基板並びに比較例 2及び 3で得ら れた導電膜積層基板につき、 上記と同様にして、 シート抵抗値 (Ω/口) 、 比抵 抗値 (ύ · cm) 並びに 620 nm、 540 nm及び 460 nmにおける透過率 (%) を求めた。  The sheet resistance value (Ω / port) and the specific resistance of the transparent conductive film laminated substrate of the present invention obtained in Example 2 and the conductive film laminated substrates obtained in Comparative Examples 2 and 3 were obtained in the same manner as described above. The values (ύ · cm) and the transmittance (%) at 620 nm, 540 nm and 460 nm were determined.
結果を第 2表に示す。  The results are shown in Table 2.
導電膜の シート抵抗 比抵抗値 透過率 (%) 全膜厚 (Α) (Ω /口) (Ώ · cm) 620nm 540nm 460nm 実施例 2 1299.1 13.37 1.74X10-4 95.16 97.91 91.21 比較例 2 1686.6 15.30 2.58X10—4 90.16 90.96 83.85 比較例 3 1504.3 15.64 2.35X10一4 96.55 98.01 88.20 実施例 3 Sheet resistance of conductive film Specific resistance value Transmittance (%) Total film thickness (Α) (Ω / port) (Ώ · cm) 620 nm 540 nm 460 nm Example 2 1299.1 13.37 1.74X10 -4 95.16 97.91 91.21 Comparative example 2 1686.6 15.30 2.58 X10- 4 90.16 90.96 83.85 Comparative example 3 1504.3 15.64 2.35X10 one 4 96.55 98.01 88.20 Example 3
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 Pa) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 200でに維持されたガラス 基板上に ITO膜からなる第 1層 (膜厚 446. 5 A) を形成させた。 ' 次に、 アルゴンガス (スパッ夕圧 0. 7P a) の雰囲気下、 インジウム—錫酸 化物焼結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数 13.. 56MH z) を用いてスパッタリングして、 第 1層上に I TO膜からなる第 2層 (膜厚 4 46. 5 A) を形成させた。  Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa), an indium-tin-tin oxide sintered target was connected to a DC power supply (power 0.5 KW). A first layer (446.5 A thick) of an ITO film was formed on a glass substrate maintained at 200. 'Next, under an atmosphere of argon gas (spray pressure 0.7 Pa), the indium-tin oxide sintered target was sputtered using an RF power supply (power 1.5 KW, frequency 13.56 GHz). Thus, a second layer (film thickness 446.5 A) made of an ITO film was formed on the first layer.
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッタ圧 0. 7 P a) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 2層上に I TO膜か らなる第 3層 (膜厚 446. 5A) を形成させて、 本発明の透明導電膜積層基板 を得た。  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), the indium-tin oxide sintered body target was connected to a DC power supply (power supply). 0.5 KW) to form a third layer (thickness: 446.5 A) made of an ITO film on the second layer to obtain a transparent conductive film laminated substrate of the present invention.
実施例 4 Example 4
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 DC電源 (電力 0.. 5KW) を用いてスパッタリングして、 200 に維持されたガラス 基板上に I T〇膜からなる第 1層 (膜厚 177. 8 Α) を形成させた。  Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), a target of indium-tin oxide sintered body was connected to a DC power source (power: 0.5 KW). ) Was used to form a first layer (177.8 mm thick) of an IT film on a glass substrate maintained at 200.
次に、 アルゴンガス (スパッタ圧 0. 7 Pa) の雰囲気下、 インジウム一錫酸 化物焼結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数 13. 56MH z) を用いてスパッタリングして、 第 1層上に I T〇膜からなる第 2層 (膜厚 1 77. 8 Α) を形成させた。  Next, in an atmosphere of argon gas (sputter pressure 0.7 Pa), an indium monostannic oxide sintered target was sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz), A second layer of IT. Film (177.8 mm thick) was formed on one layer.
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッタ圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 2層上に I T〇膜か らなる第 3層 (膜厚 177. 8 A) を形成させた。  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), a target of indium monotin oxide sintered body was connected to a DC power source (electric power). A third layer (177.8 A in thickness) of an IT film was formed on the second layer by sputtering using 0.5 KW).
次に、 アルゴンガス (スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム一錫酸 化物焼結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数 13. 56MH z) を用いてスパッタリングして、 第 3層上に I TO膜からなる第 4層 (膜厚 1 77. 8 A) を形成させた。 Next, in an atmosphere of argon gas (spray pressure 0.7 Pa), indium monostannic acid The nitride target is sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz), and a fourth layer of ITO film (thickness 177.8 A) is formed on the third layer Was formed.
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッ夕圧 0.' 7Pa) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 4層上に I TO膜か らなる第 5層 (膜厚 177. 8A) を形成させて、 本発明の透明導電膜積層基板 を得た。  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0,7 Pa), the indium-tin oxide sintered compact target was connected to a DC power source (power 0 5KW) to form a fifth layer (177.8 A in thickness) made of an ITO film on the fourth layer to obtain a transparent conductive film laminated substrate of the present invention.
実施例 5 Example 5
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 Pa) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 200°Cに維持されたガラス 基板上に I TO膜からなる第 1層 (膜厚 182. 1 A) を形成させた。  Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa), an indium-tin oxide sintered compact target was connected to a DC power supply (power 0.5KW). A first layer (182.1 A film thickness) made of an ITO film was formed on a glass substrate maintained at 200 ° C.
次に、 アルゴンガス (スパッタ圧 0. 7 P a) の雰囲気下、 インジウム—錫酸 化物焼結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数 13. 56MH z) を用いてスパッタリングして、 第 1層上に I TO膜からなる第 2層 (膜厚 4 55. 3 A) を形成させた。  Next, in an atmosphere of argon gas (sputter pressure 0.7 Pa), the indium-tin oxide sintered target was sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz), A second layer (thickness: 455.3 A) of an ITO film was formed on the first layer.
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッタ圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 2層上に I TO膜か らなる第 3層 (膜厚 182. 1 A) を形成させて、 本発明の透明導電膜積層基板 を得た。  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), a target of indium monotin oxide sintered body was connected to a DC power source (electric power). 0.5 KW) to form a third layer (182.1 A in thickness) of an ITO film on the second layer, thereby obtaining a transparent conductive film laminated substrate of the present invention.
実施例 6 Example 6
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 Pa) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 DC電源 (電力 5KW) を用いてスパッタリングして、 299°Cに維持されたガラス 基板上に I TO膜からなる第 1層 (膜厚 208 A) を形成させた。  In an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa), an indium-tin oxide sintered body target was applied using a DC power supply (power 5KW). By sputtering, a first layer (208 A thick) of an ITO film was formed on a glass substrate maintained at 299 ° C.
次に、 アルゴンガス (スパッタ圧 0. 7 P a) の雰囲気下、 インジウム一錫酸 化物焼結体夕一ゲットを、 RF電源 (電力 1. 5KW、 周波数 13. 56MH z) を用いてスパッタリングして、 第 1層上に I TO膜からなる第 2層 (膜厚 5 19. 9 A) を形成させた。 Next, under an atmosphere of argon gas (sputter pressure 0.7 Pa), an indium monostannic oxide sintered body was obtained by an RF power source (power 1.5 KW, frequency 13.56 MHz). The second layer (film thickness 51.99 A) consisting of the ITO film was formed on the first layer by sputtering using z).
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッタ圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5 KW) を用いてスパッタリングして、 第 2層上に I TO膜か らなる第 3層 (膜厚 208 A) を形成させて、 本発明の透明導電膜積層基板を得 た。  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), a target of indium monotin oxide sintered body was connected to a DC power source (electric power). 0.5 KW) to form a third layer (208 A in thickness) made of an ITO film on the second layer to obtain a transparent conductive film laminated substrate of the present invention.
実施例 3〜 6で得られた本発明の透明導電膜積層基板につき、 上記と同様にし て、 シート抵抗値 (Ωノロ) 、 比抵抗値 (Ω · cm) 並びに 620 nm、 540 nm及び 460 nmにおける透過率 (%) を求めた。  Regarding the transparent conductive film laminated substrate of the present invention obtained in Examples 3 to 6, the sheet resistance value (Ω noro), the specific resistance value (Ω · cm), 620 nm, 540 nm and 460 nm were obtained in the same manner as described above. The transmittance (%) at was determined.
結果を第 3表に示す。  Table 3 shows the results.
第 3 表  Table 3
Figure imgf000031_0001
実施例 7
Figure imgf000031_0001
Example 7
第 1層上に第 2層を形成させるスパッタリングを、 アルゴンガスと酸素との混 合気体 (酸素含有量 0. 18容量%、 スパッ夕圧 0. 7 P a) の雰囲気下で行う 以外は、 実施例 3と同様にして、 本発明の透明導電膜積層基板を得た。 この基板 上に形成された第 1層、 第 2層及び第 3層の膜厚は、 いずれも 488. 1 Aであ つた。  Except that the sputtering for forming the second layer on the first layer is performed in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.18% by volume, sputter pressure 0.7 Pa). In the same manner as in Example 3, a transparent conductive film laminated substrate of the present invention was obtained. The thicknesses of the first, second and third layers formed on this substrate were all 488.1 A.
実施例 8 Example 8
第 1層上に第 2層を形成させるスパッ夕リングを、 アルゴンガスと酸素との混 合気体 (酸素含有量 0. 542容量%、 スパッタ圧 0. 7 P a) の雰囲気下で行 う以外は、 実施例 3と同様にして、 本発明の透明導電膜積層基板を得た。 この基 板上に形成された第 1層、 第 2層及び第 3層の膜厚は、 いずれも 432. 1Aで あつに。 Sputtering for forming the second layer on the first layer is performed in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputtering pressure 0.7 Pa). Except for the above, a transparent conductive film laminated substrate of the present invention was obtained in the same manner as in Example 3. The thickness of the first, second and third layers formed on this substrate was 432.1 A.
実施例 7及び 8で得られた本発明の透明導電膜積層基板につき、 上記と同様に して、 シート抵抗値 (Ω /口) 、 比抵抗値 (Ω · cm) 並びに 620 nm、 54 0 nm及び 460 nmにおける透過率 (%) を求めた。  For the transparent conductive film laminated substrate of the present invention obtained in Examples 7 and 8, the sheet resistance (Ω / port), the specific resistance (Ω · cm), and the 620 nm and 540 nm were obtained in the same manner as described above. And the transmittance (%) at 460 nm.
結果を第 4表に示す。  The results are shown in Table 4.
第 4 表  Table 4
Figure imgf000032_0001
実施例 9
Figure imgf000032_0001
Example 9
アルゴンガス (スパッタ圧 0. 7 Pa) の雰囲気下、 インジウム—錫酸化物焼 結体ターゲットを、 DC + RF電源 (DC :電力 0. 4KW、 RF :電力 0. 4 KW, 周波数 13. 56 MHz) を用いてスパッタリングして、 200 に維持 されたガラス基板上に I TO膜からなる第 1層 (膜厚 451. 9A) を形成させ た。  In an atmosphere of argon gas (sputtering pressure 0.7 Pa), a target of indium-tin oxide sinter was applied to a DC + RF power supply (DC: power 0.4 KW, RF: power 0.4 KW, frequency 13.56 MHz) ) To form a first layer (451.9 A in thickness) of an ITO film on a glass substrate maintained at 200.
次に、 アルゴンガス (スパッ夕圧 0. 7P a) の雰囲気下、 インジウム一錫酸 化物焼結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数 13.' 56MH z) を用いてスパッタリングして、 第 1層上に I TO膜からなる第 2層 (膜厚 4 51. 9 A) を形成させた。  Next, in an atmosphere of argon gas (spray pressure 0.7 Pa), the indium monotin oxide sintered target was sputtered using an RF power source (power 1.5 KW, frequency 13.'56 MHz). Then, a second layer (film thickness 451.9 A) made of an ITO film was formed on the first layer.
次に、 アルゴンガス (スパッタ圧 0. 7 P a) の雰囲気下、 インジウム一錫酸 化物焼結体ターゲットを、 DC + RF電源 (DC :電力 0. 4KW、 R F:電力 0. 4KW、 周波数 13. 56 MHz) を用いてスパッタリングして、 第 2層上 に I TO膜からなる第 3層 (膜厚 451. 9 A) を形成させて、 本発明の透明導 実施例 10 Next, in an atmosphere of argon gas (sputtering pressure 0.7 Pa), a target of indium monotin oxide sinter was connected to a DC + RF power supply (DC: power 0.4 KW, RF: power 0.4 KW, frequency 13 56 MHz) to form a third layer (451.9 A film thickness) of an ITO film on the second layer. Example 10
ガラス基板上に第 1層を形成させるスパッタリング及び第 2層上に第 3層を形 成させるスパッタリングを、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 18容量%、 スパッタ圧 0. 7Pa) の雰囲気下で行う以外は、 実施例 9と同様 にして、 本発明の透明導電膜積層基板を得た。 この基板上に形成された第 1層、 第 2層及び第 3層の膜厚は、 いずれも 470. 6Aであった。  The sputtering for forming the first layer on the glass substrate and the sputtering for forming the third layer on the second layer were performed using a mixed gas of argon gas and oxygen (oxygen content 0.18% by volume, sputtering pressure 0.7 Pa). The transparent conductive film-laminated substrate of the present invention was obtained in the same manner as in Example 9 except that the process was performed in the atmosphere of (3). The thickness of each of the first, second and third layers formed on this substrate was 470.6 A.
実施例 9及び 10で得られた本発明の透明導電膜積層基板につき、 上記と同様 にして、 シート抵抗値 (Ω Ό) 、 比抵抗値 (Ω · cm) 並びに 620 nm、 5 40 nm及び 460 nmにおける透過率 (%) を求めた。  For the transparent conductive film laminated substrate of the present invention obtained in Examples 9 and 10, the sheet resistance value (Ω 及 び), the specific resistance value (Ω · cm), 620 nm, 540 nm and 460 The transmittance (%) at nm was determined.
結果を第 5表に示す。  Table 5 shows the results.
第 5 表  Table 5
Figure imgf000033_0001
実施例 1 1
Figure imgf000033_0001
Example 1 1
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 200°Cに維持されたガラス 基板上に I T〇膜からなる第 1層 (膜厚 467. 5 Α) を形成させた。  Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), a target of indium monotin oxide sintered body was DC-powered (power: 0.5KW) A first layer (467.5 mm thick) of an IT film was formed on a glass substrate maintained at 200 ° C by sputtering.
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッ夕圧 0. 7 Pa) の雰囲気下、 インジウム酸化物焼結体夕一ゲットを、 RF電 源 (電力 1. 5KW、 周波数 13, 56 MHz) を用いてスパッタリングして、 第 1層上に酸化インジウム膜からなる第 2層 (膜厚 467. 5 A) を形成させた。 次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッ夕圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 2層上に I T〇膜か らなる第 3層 (膜厚 46 7. 5A) を形成させて、 本発明の透明導電膜積層基板 を得た。 Next, under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), an indium oxide sintered compact was obtained by an RF power source (power A second layer of indium oxide (467.5 A in thickness) was formed on the first layer by sputtering at 1.5 KW at a frequency of 13,56 MHz. Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), a target of indium monotin oxide sintered body was connected to a DC power source (power 0.5 KW) to form an IT〇 film on the second layer. A third layer (having a thickness of 467.5 A) was formed to obtain a transparent conductive film laminated substrate of the present invention.
実施例 1 2 Example 1 2
アルゴンガス (スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム—錫酸化物焼 結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 2 00でに維持されたガラス基板上に I T〇膜からなる第 1層 (膜厚 47 0. 8 Α) を形成させた。  Indium-tin oxide sintered target was sputtered using a DC power supply (power 0.5 KW) under an atmosphere of argon gas (spray pressure 0.7 Pa), and the glass maintained at 200 A first layer (470.8 mm thick) consisting of an IT〇 film was formed on the substrate.
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパ ッタ圧 0. 7 P a) の雰囲気下、 インジウム酸化物焼結体ターゲットを、 DC電 源 (電力 0. 5KW) を用いてスパッタリングして、 第 1層上に酸化インジウム '膜からなる第 2層 (膜厚 470. 8A) を形成させた。  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), the indium oxide sintered body target was connected to a DC power source (power 0 5KW) to form a second layer of indium oxide 'film (thickness: 470.8A) on the first layer.
次に、 アルゴンガス (スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム—錫酸 化物焼結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリング して、 第 2層上に: [ T〇膜からなる第 3層 (膜厚 47 0. 8 Α) を形成させて、 本発明の透明導電膜積層基板を得た。 '  Next, in an atmosphere of argon gas (spray pressure 0.7 Pa), an indium-tin oxide sintered body target was sputtered using a DC power supply (power 0.5 KW) to form a target on the second layer. : [A third layer (thickness 470.8 膜厚) made of a T〇 film was formed to obtain a transparent conductive film laminated substrate of the present invention. '
実施例 1 1及び 1 2で得られた本発明の透明導電膜積層基板につき、 上記と同 様にして、 シート抵抗値 (ΩΖ口) 、 比抵抗値 (Ω · cm) 並びに 62 0 nm、 540 nm及び 460 nmにおける透過率 (%) を求めた。  Regarding the transparent conductive film laminated substrate of the present invention obtained in Examples 11 and 12, in the same manner as described above, the sheet resistance (ΩΖcm), specific resistance (Ω · cm), The transmittance (%) at nm and 460 nm was determined.
, 結果を第 6表に示す。  Table 6 shows the results.
第 6 表  Table 6
Figure imgf000034_0001
実施例 1 3
Figure imgf000034_0001
Example 13
アルゴンガスと酸素との混合気体 (酸素含有量 0· 36容量%、 スパッ夕圧 0 2 8 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5 KW) を用いてスパッタリングして、 150°Cに維持されたガラス 基板上に I TO膜からなる第 1層 (膜厚 288. 5 A) を形成させた。 . Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.336% by volume, sputter pressure 0 28 Pa), a target of indium tin oxide sintered compact was (Power 0.5 KW) to form a first layer (thickness 288.5 A) of an ITO film on a glass substrate maintained at 150 ° C. .
次に、 アルゴンガス (スパッタ圧 0. 28P a) の雰囲気下、 インジウム一錫 酸化物焼結体ターゲットを、 RF電源 (電力 1. 5KW, 周波数 13. 56MH z) を用いてスパッタリングして、 第 1層上に I TO膜からなる第 2層 (膜厚 6 73. 3A) を形成させて、 本発明の透明導電膜積層基板を得た。  Next, in an atmosphere of argon gas (sputter pressure 0.28 Pa), an indium-tin-tin oxide sintered body target was sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz), A second layer (thickness: 673.3 A) composed of an ITO film was formed on one layer to obtain a transparent conductive film laminated substrate of the present invention.
比較例 4 Comparative Example 4
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 150°Cに維持されたガラス 基板上に I T O膜からなる単層 (膜厚 1069. 2A) を形成させて、 導電膜積 層基板を得た。 '  Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa), a target of indium-tin oxide sintered body was DC-powered (power 0.5KW). A single layer (thickness: 1069.2 A) made of an ITO film was formed on a glass substrate maintained at 150 ° C. by using, to obtain a conductive film laminated substrate. '
比較例 5 Comparative Example 5
アルゴンガス (スパッ夕圧 0. 7 Pa) の雰囲気下、 インジウム一錫酸化物焼 結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 150°Cに維持されたガラス基板上に I TO膜からなる単層 (膜厚 928. 0 A) を形成させて、 導電膜積層基板を得た。  A glass substrate maintained at 150 ° C by sputtering an indium monotin oxide sintered target using a DC power supply (power 0.5 KW) in an atmosphere of argon gas (spray pressure 0.7 Pa). A single layer (928.0 A in thickness) of an ITO film was formed thereon to obtain a conductive film laminated substrate.
比較例 6 Comparative Example 6
アルゴンガスと酸素との混合気体 (酸素含有量 0. 36容量%、 スパッ夕圧 0. 7 Pa) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 DC電源 (電 力 0. 5KW) を用いてスパッタリングして、 150°Cに維持されたガラス基板 上に I TO膜からなる単層 (膜厚 1406. 5 A) を形成させて、 導電膜積層基 板を得た。  In an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.36% by volume, sputter pressure 0.7 Pa), a target of indium monotin oxide sintered body was DC-powered (power 0.5KW) A single layer (thickness 1406.5 A) of an ITO film was formed on a glass substrate maintained at 150 ° C. by using a sputtering method to obtain a conductive film laminated substrate.
比較例 7 Comparative Example 7
アルゴンガス (スパッタ圧 0. 7 Fa) の雰囲気下、 インジウム一錫酸化物焼 結体ターゲットを、 0〇+ 1 ?電源 (0〇:電カ0. 4KW、 1 :電カ0. 4 KW、 周波数 13. 56MHz) を用いてスパッタリングして、 150 に維持 されたガラス基板上に I T〇膜からなる単層膜 (膜厚 1420. 2 Α) を形成さ せて、 導電膜積層基板を得た。 実施例 1 3で得られた本発明の透明導電膜積層基板及び比較例 4〜 7で得られ た導電膜積層基板につき、 上記と同様にして、 シート抵抗値 (Ω/Π) 、 比抵抗 値 (Ω · cm) 並びに 620 nm、 540 nm及び 460 nmにおける透過率 (%) を求めた。 · In an atmosphere of argon gas (sputter pressure 0.7 Fa), the indium monotin oxide sintered target was set to 0〇 + 1〇 power (0〇: power 0.4 KW, 1: power 0.4 KW, Sputtering using a frequency of 13.56 MHz) to form a single-layer film (thickness: 1420.2 mm) consisting of an IT film on a glass substrate maintained at 150 to obtain a conductive film laminated substrate . Regarding the transparent conductive film laminated substrate of the present invention obtained in Example 13 and the conductive film laminated substrate obtained in Comparative Examples 4 to 7, the sheet resistance value (Ω / Π) and the specific resistance value were obtained in the same manner as described above. (Ω · cm) and transmittance (%) at 620 nm, 540 nm and 460 nm. ·
結果を第 7表に示す。  Table 7 shows the results.
第 7 表  Table 7
Figure imgf000036_0001
実施例 14
Figure imgf000036_0001
Example 14
アルゴンガスと酸素との混合気体 (酸素含有量 0. 3 6容量%、 スパッタ圧 0. 28 P a) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5 KW) を用いてスパッタリングして、 1 50 に維持されたガラス 基板上に I TO膜からなる第 1層 (膜厚 3 0 8. 6 A) を形成させた。  In an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.36% by volume, sputter pressure 0.28 Pa), a target of indium-tin oxide sintered body was connected to a DC power supply (power 0.5 KW). ) To form a first layer (thickness 30.8.6 A) of an ITO film on a glass substrate maintained at 150.
次に、 アルゴンガス (スパッタ圧 0. 28 P a) の雰囲気下、 インジウム.一錫 酸化物焼結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数: 1 3. 5 6MH z) を用いてスパッタリングして、 第 1層上に I TO膜からなる第 2層 (膜厚 7 20. OA) を形成させた。  Next, in an atmosphere of argon gas (sputter pressure 0.28 Pa), an indium / monotin oxide sintered body target was irradiated using an RF power supply (power 1.5 KW, frequency: 13.56 MHz). By sputtering, a second layer (thickness: 720.OA) of an ITO film was formed on the first layer.
次に、 アルゴンガスと酸素との混合気体 (酸素含有量 0. 36容量%、 スパッ 夕圧 0. 2 8 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 2層上に I TO膜か らなる第 3層 (膜厚 30 8. 6 A) を形成させた。  Next, in an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.36% by volume, sputter pressure 0.28 Pa), a target of indium monotin oxide sintered body was connected to a DC power source (electric power). A third layer (thickness 308.6 A) of an ITO film was formed on the second layer by sputtering using 0.5 KW).
更に、 アルゴンガス (スパッ夕圧 0. 2 8 P a) の雰囲気下'、 インジウム一錫 酸化物焼結体ターゲットを、 RF電源 (電力 1. 5KW、 周波数 13. 56MH z) を用いてスパッタリングして、 第 3層上に ITO膜からなる第 4層 (膜厚 7 20. OA) を形成させて、 本発明の透明導電膜積層基板を得た。 In addition, under an atmosphere of argon gas (spray pressure 0.28 Pa), indium-tin The oxide sintered target was sputtered using an RF power source (power 1.5 KW, frequency 13.56 MHz) to form a fourth layer (thickness 720.OA) of ITO film on the third layer. Thus, a transparent conductive film laminated substrate of the present invention was obtained.
上記と同様にして、 シート抵抗値 (Ω /口) 、 比抵抗値 (Ω · cm) 並びに 6 20 nm、 540 nm及び 460 nmにおける透過率 (%) を求めた。  In the same manner as above, the sheet resistance (Ω / port), the specific resistance (Ω · cm), and the transmittance (%) at 620 nm, 540 nm and 460 nm were determined.
シート抵抗値 (Ωノロ) は 8. 93、 比抵抗値 (Ω - cm) は 1. 84X 10 一4であった。 620 nm、 540 nm及び 460 nmにおける透過率 (%) は、 それぞれ 91. 1%、 87. 0%、 93. 7%であった。 上記で得られるいくつかの代表的な透明導電膜積層基板について、 導電膜の電 気特性 (キャリア密度及び移動度) を第 8表に示す。 導電膜のキャリア密度及ぴ 移動度は、 東洋テク二力 (株) 製の Resi Test 8320 を用い、 23でで測定した 値である。 Sheet resistance (Omega slag) is 8.93, the specific resistance value (Omega - cm) was 1. 84X 10 one 4. The transmittances (%) at 620 nm, 540 nm and 460 nm were 91.1%, 87.0% and 93.7%, respectively. Table 8 shows the electrical properties (carrier density and mobility) of the conductive films of some typical transparent conductive film laminated substrates obtained above. The carrier density and the mobility of the conductive film were measured at 23 using Resi Test 8320 manufactured by Toyo Technicor Co., Ltd.
第 8 表  Table 8
Figure imgf000037_0001
次にカラ一フィル夕一の製造例を示す。 ガラス基板 (20 Ommx 26 Omm, 厚さ 0. 7mm) の代わりに、 遮光膜、 カラーレジスト膜及びオーバーコート層が形成されたガラス基板 (20 OmmX 26 Omm, 厚さ 0. 7mm) を用いる以外は、 上記と同様にして、 透明導電膜 が積層されたカラーフィルターを製造した。
Figure imgf000037_0001
Next, an example of manufacturing a color filter will be described. Except that instead of using a glass substrate (20 Ommx 26 Omm, thickness 0.7 mm), a glass substrate (20 OmmX 26 Omm, thickness 0.7 mm) on which a light-shielding film, color resist film, and overcoat layer are formed In the same manner as above, a color filter on which a transparent conductive film was laminated was manufactured.
実施例 15 Example 15
アルゴンガスと酸素との混合ガス (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 Pa) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 200 に維持され、 遮光膜、 カラ一レジスト膜及びォ一バーコ一ト層が形成されたガラス基板上に I TO膜か らなる第 1層 (膜厚 262. OA) を形成させた。  In an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa), an indium-tin oxide sintered target was used, and a DC power supply (power 0.5KW) was used. The first layer (thickness: 262.OA) consisting of an ITO film was formed on a glass substrate on which a light-shielding film, a color resist film, and an overcoat layer were formed, and maintained at 200. Formed.
次に、 アルゴンガス (スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム—錫酸 化物焼結体夕一ゲットを、 R F電源 (電力 1. 5 KW、 周波数 13. 56MH z) を用いてスパッタリングして、 第 1層上に ITO膜からなる第 2層 (膜厚 6 11. 4A) を形成させた。  Next, in an atmosphere of argon gas (sputter pressure 0.7 Pa), an indium-tin oxide sintered compact was obtained using an RF power supply (power 1.5 KW, frequency 13.56 MHz). By sputtering, a second layer (thickness: 611.4 A) made of an ITO film was formed on the first layer.
次に、 アルゴンガスと酸素との混合ガス (酸素含有量 0. 542容量%、 スパ ッタ圧 0. 7 P a) の雰囲気下、 インジウム一錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 2層上に I TO膜か なる第 3層 (膜厚 262. OA) を形成させて、 本発明のカラ一フィルタ一を 得た。  Next, under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), a target of indium monotin oxide sintered body was connected to a DC power source (power supply). 0.5 KW) to form a third layer (thickness: 262.OA) of an ITO film on the second layer to obtain a color filter 1 of the present invention.
実施例 16 Example 16
アルゴンガスと酸素との混合ガス (酸素含有量 0. 542容量%、 スパッタ圧 0. 7 P a) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 20 に維持され、 遮光膜、 カラ一レジスト膜及びオーバ一コート層が形成されたガラス基板上に I TO膜か らなる第 1層 (膜厚 232. 9 A) を形成させた。  Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputtering pressure 0.7 Pa), an indium-tin oxide sintered target was connected to a DC power supply (power 0.5 KW). The first layer (thickness 23.29 A) consisting of an ITO film is formed on a glass substrate on which a light-shielding film, a color resist film, and an overcoat layer are formed, which is maintained at 20 by sputtering. I let it.
次に、 アルゴンガス (スパッタ圧 0. 7 F a) の雰囲気下、 インジウム一錫酸 化物焼結体ターゲットを、 電源 (電カ1. 5KW、 周波数 13. 56MH z) を用いてスパッタリングして、 第 1層上に I TO膜からなる第 2層 (膜厚 6 98. 8 A) を形成させた。 次に、 アルゴンガスと酸素との混合ガス (酸素含有量 0. 542容量%、 スパ ッ夕圧 0. 7 P a) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 D C電源 (電力 0. 5KW) を用いてスパッタリングして、 第 2層上に I TO膜か らなる第 3層 (膜厚 232. 9 A) を形成させて、 本発明のカラーフィルタ一を 得た。 Next, in an atmosphere of argon gas (sputter pressure 0.7 Fa), the indium monotin oxide sintered body target was sputtered using a power supply (electric power 1.5 KW, frequency 13.56 MHz), A second layer (thickness: 698.8 A) of an ITO film was formed on the first layer. Next, under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content: 0.542% by volume, sputter pressure: 0.7 Pa), the indium-tin oxide sintered body target was connected to a DC power supply (power supply). 0.5 KW) to form a third layer (thickness: 232.9 A) made of an ITO film on the second layer to obtain a color filter of the present invention.
比較例 8 Comparative Example 8
アルゴンガスと酸素との混合気体 (酸素含有量 0. 542容量%、 スパッ夕圧 0. 7 P a) の雰囲気下、 インジウム—錫酸化物焼結体ターゲットを、 DC電源 (電力 0. 5KW) を用いてスパッタリングして、 200°Cに維持され、 遮光膜、 カラーレジスト膜及びォ一バーコート層が形成されたガラス基板上に I TO膜か らなる単層膜 (膜厚 1133. OA) を形成させて、 カラーフィルターを得た。 比較例 9  Under an atmosphere of a mixed gas of argon gas and oxygen (oxygen content 0.542% by volume, sputter pressure 0.7 Pa), a target of indium-tin oxide sintered body was DC-powered (power 0.5KW). Sputtered using a single layer film consisting of an ITO film (thickness 1133.OA) on a glass substrate on which a light-shielding film, a color resist film, and an overcoat layer are formed and maintained at 200 ° C. Was formed to obtain a color filter. Comparative Example 9
アルゴンガス (スパッ夕圧 0. 7 Pa) の雰囲気下、 インジウム一錫酸化物'焼 結体ターゲットを、 0じ+尺 電源 (0。:電カ0. 4KW、 RF :電力 0. 4 KW、 周波数 13. 56MHz) を用いてスパッタリングして、 20 CTCに維持 され、 遮光膜、 カラーレジスト膜及びオーバーコート層が形成されたガラス基板 上に I TO膜からなる単層膜 (膜厚 1145. 7 A) を形成させて、 カラ一フィ ルターを得た。  Under an atmosphere of argon gas (spray pressure 0.7 Pa), the indium monotin oxide 'sintered target was replaced with a power source (0: 0.4 KW, RF: power 0.4 KW, Sputtering using a frequency of 13.56 MHz) was maintained at 20 CTC, and a single-layer film (thickness 1145.7) consisting of an ITO film was formed on a glass substrate on which a light-shielding film, color resist film, and overcoat layer were formed. A) was formed to obtain a color filter.
実施例 15及び 16で得られた本発明のカラーフィルター並びに比較例 8及び 9で得られたカラーフィルタ一にっき、 シート抵抗値を求めた。  Sheet resistance values of the color filters of the present invention obtained in Examples 15 and 16 and the color filters obtained in Comparative Examples 8 and 9 were determined.
シート抵抗値は次のようにして求めた。 即ち、 上記ガラス基板上に形成された 膜面に、 均等に 67点の測定点 ¾設け、 三菱化学製の四探針抵抗計 (MCP— T 600) を用いて抵抗値を求め、 これらの平均値を求め、 更に定数 =4. 542 4を乗じてシート抵抗値を求めた。  The sheet resistance was determined as follows. That is, 67 measurement points are provided evenly on the film surface formed on the glass substrate, and the resistance value is calculated using a four-probe resistance meter (MCP-T600) manufactured by Mitsubishi Chemical Corporation. The sheet resistance was determined by multiplying the value by a constant of 4.542.
膜厚は次のようにして測定した。 即ち、 小坂研究所製の二次元微細形状測定器 (ET4000) を用い、 ガラス基板上に成膜された導電膜の膜厚を測定した。 測定は、 ガラス基板上に 5点の測定ポイントを設定し、 カブトンテープでマスク し、 成膜後マスクを剥がし、 膜厚を測定し、 その平均値を膜の膜厚とした。  The film thickness was measured as follows. That is, the film thickness of the conductive film formed on the glass substrate was measured using a two-dimensional fine shape measuring device (ET4000) manufactured by Kosaka Laboratory. For the measurement, five measurement points were set on a glass substrate, masked with Kavton tape, the mask was peeled off after film formation, the film thickness was measured, and the average value was taken as the film thickness.
比抵抗値 (Ω · cm) は、 上記四探針法で求めたシート抵抗値に膜厚を乗じる ことにより求めた。 The specific resistance value (Ω · cm) is obtained by multiplying the sheet resistance value obtained by the above four-probe method by the film thickness. I asked for it.
また、 実施例 1 5及び 1 6で得られた本発明のカラ一フィルター並びに比較例 8及び 9で得られたカラ一フィルタ一にっき、 透過率 (%) を求めた。 即ち、 日 立製作所製分光光度計 (U— 2 0 1 0 ) を使用して、 波長 2 0 0〜9 0 O n mの 範囲で導電膜積層基板の透過率 (%) を測定し、 成膜前の遮光膜及びカラーレジ スト膜が形成されたガラス基板 (ブランク) の透過率 (%) を 1 0 0 %として、 6 2 0 n m、 5 4 0 nm及び 4 6 0 nmにおける透過率 (%) を算出した。 結果を第 9表に示す。  The transmittance (%) of the color filters of the present invention obtained in Examples 15 and 16 and the color filters obtained in Comparative Examples 8 and 9 was determined. That is, the transmittance (%) of the conductive film laminated substrate was measured in the wavelength range of 200 to 90 O nm using a spectrophotometer (U-210) manufactured by Hitachi, Ltd. Assuming that the transmittance (%) of the glass substrate (blank) on which the light-shielding film and the color resist film are formed is 100%, the transmittance (%) at 62 nm, 540 nm, and 450 nm is ) Was calculated. Table 9 shows the results.
第 9 表  Table 9
Figure imgf000040_0001
実施例; I 5及び 1 6で得られたカラーフィルタ一は、 いずれも、 I T O膜から なる第 1層を形成させる際に、 カラーレジスト膜が損傷を受けておらず、 カラー フィル夕一としての所期の性能を備えていた。
Figure imgf000040_0001
Example: In the color filters obtained in I5 and I6, the color resist film was not damaged when the first layer composed of the ITO film was formed, and It had the expected performance.

Claims

請 求 の 範 囲 The scope of the claims
1. (1)インジウム一錫酸化物焼結体のターゲットを、 DC電源又は DC + RF 電源を用い、 不活性ガス又は不活性ガス及び酸素の混合ガスの雰囲気中でスパッ 夕リングして、 I TO膜を形成する工程、 及び  1. (1) Sputtering the target of indium monotin oxide sintered body using a DC power supply or DC + RF power supply in an atmosphere of an inert gas or a mixed gas of an inert gas and oxygen, Forming a TO film, and
(2)インジウム一錫酸化物焼結体及びインジウム酸化物焼結体からなる群より選 ばれた少なくとも 1種のターゲットを、 DC電源、 RF電源又は DC + RF電源 を用い、 不活性ガス雰囲気中でスパッタリングして上記(1)で形成された I TO 膜上に I TO膜及び Z又は酸化ィンジゥム膜を形成する工程 (2) At least one target selected from the group consisting of indium tin oxide sintered body and indium oxide sintered body is placed in an inert gas atmosphere using a DC power supply, an RF power supply, or a DC + RF power supply. Forming an ITO film and a Z or indium oxide film on the ITO film formed in (1) above by sputtering
を含む透明導電膜積層基板の製造方法。 A method for producing a transparent conductive film laminated substrate comprising:
2. (1)工程の電源を DC電源とし、 (2)工程の電源を RF電源とする請求の範囲 第 1項に記載の透明導電膜積層基板の製造方法。 2. The method for producing a transparent conductive film laminated substrate according to claim 1, wherein the power supply in the step (1) is a DC power supply, and the power supply in the step (2) is an RF power supply.
3. (1)工程のスパッタリングを不活性ガス及び酸素の混合ガス雰囲気中で行い、 3. (1) Step sputtering is performed in a mixed gas atmosphere of inert gas and oxygen,
(2)工程のスパッ夕リングを不活性ガス雰囲気中で行う請求の範囲第 2項に記載 の透明導電膜積層基板の製造方法。 ' 4. (1).工程の電源を DC電源とし、 (2〉工程の電源を DC電源とする請求の範囲 第 1項に記載の透明導電膜積層基板の製造方法。 3. The method for manufacturing a transparent conductive film laminated substrate according to claim 2, wherein the sputtering in the step (2) is performed in an inert gas atmosphere. 4. The method for producing a transparent conductive film laminated substrate according to claim 1, wherein the power supply in the step (1) is a DC power supply, and the power supply in the step (2) is a DC power supply.
5. (1)工程のスパッタリングを不活性ガス及び酸素の混合ガス雰囲気中で行い、 (2)工程のスパッ夕リングを不活性ガス雰囲気中で行う請求の範囲第 4項に記載 の透明導電膜積層基板の製造方法。  5. The transparent conductive film according to claim 4, wherein the sputtering in the step (1) is performed in a mixed gas atmosphere of an inert gas and oxygen, and the sputtering in the step (2) is performed in an inert gas atmosphere. A method for manufacturing a laminated substrate.
6. (2)工程で用いるターゲットがインジウム一錫酸化物焼結体である請求の範 囲第 1項に記載の透明導電膜積層基板の製造方法。 6. The method according to claim 1, wherein the target used in the step (2) is a sintered body of indium monotin oxide.
7. 基板上に I TO膜を形成する請求の範囲第 1項記載の方法であって、 (1)ェ 程及び (2)工程でスパッタリング処理される基板の温度が 300で未満である透 明導電膜積層基板の製造方法。  7. The method according to claim 1, wherein the ITO film is formed on the substrate, wherein the temperature of the substrate to be sputtered in the steps (1) and (2) is less than 300. A method for manufacturing a conductive film laminated substrate.
8. (1)工程及び(2)工程でスパッタリング処理される基板の温度が 140〜25 0 °Cである請求の範囲第 7項に記載の透明導電膜積層基板の製造方法。 8. The method for producing a transparent conductive film laminated substrate according to claim 7, wherein the temperature of the substrate subjected to the sputtering treatment in the steps (1) and (2) is 140 to 250 ° C.
9. (1)インジウム一錫酸化物焼結体のターゲットを、 DC電源又は DC + RF 電源を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッ夕 リングして、 基板上に第 1層の I TO膜を形成する工程、 (2)上記ターゲットを、 DC電源、 RF電源又は DC + RF電源を用い、 不活性 ガス及び酸素の混合ガス雰囲気中でスパッ夕リングして第 1層上に第 2層の I T 〇膜を形成する工程、 及び 9. (1) The target of the indium-tin-tin oxide sintered body is subjected to sputtering in an inert gas or a mixed gas atmosphere of an inert gas and oxygen using a DC power supply or a DC + RF power supply, and is then placed on the substrate. Forming a first layer ITO film, (2) Using a DC power supply, RF power supply or DC + RF power supply, sputtering the above target in a mixed gas atmosphere of inert gas and oxygen to form a second layer IT layer on the first layer Performing the steps, and
(3〉上記ターゲットを、 DC電源又は DC + RF電源を用い、 不活性ガス又は不 活性ガス及び酸素の混合ガス雰囲気中でスパッタリングして、 第 2層上に第 3層 の I TO膜を形成する工程  (3) The above target is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form a third layer ITO film on the second layer. Process
を含む透明導電膜積層基板の製造方法。 A method for producing a transparent conductive film laminated substrate comprising:
10. 透明基板上に遮光膜、 カラーレジスト膜及び少なくとも 2層の導電膜を順 次形成させるカラ一フィルタ一の製造方法であって、 導電膜形成工程が  10. A method for manufacturing a color filter in which a light shielding film, a color resist film, and at least two conductive films are sequentially formed on a transparent substrate, wherein the conductive film forming step is performed.
(1)インジウム一錫酸化物焼結体のターゲットを、 DC電源又は DC + RF電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 I TO膜を形成する工程、 及び (1) The target of the indium monotin oxide sintered body is sputtered using a DC power supply or a DC + RF power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen to form an ITO film. Forming, and
(2)インジウム—錫酸化物焼結体及びインジウム酸ィヒ物焼結体からなる群より選 ばれた少なくとも 1種のターゲットを、 DC電源、 R F電源、又は D C + RF電源 を用い、 不活性ガス雰囲気中でスパッタリングして上記(1)で形成された I TO 膜上に I TO膜及び Z又は酸化ィンジゥム膜を形成する工程  (2) Inert at least one target selected from the group consisting of indium-tin oxide sintered compact and indium oxide sintered compact using DC power supply, RF power supply, or DC + RF power supply Step of forming an ITO film and a Z or indium oxide film on the ITO film formed in (1) by sputtering in a gas atmosphere
を含む力ラーフィルターの製造方法。 A method for producing a power filter comprising:
11. (1)工程の電源を DC電源とし、 (2)工程の電源を RF電源とする請求の範 囲第 10項に記載のカラーフィル夕一の製造方法。  11. The method for manufacturing a color filter according to claim 10, wherein the power supply in the step (1) is a DC power supply, and the power supply in the step (2) is an RF power supply.
12. (1)工程のスパッタリングを不活性ガス及び酸素の混合ガス雰囲気中で行 い、 (2)工程のスパッタリングを不活性ガス雰囲気中で行う請求の範囲第 11項 に記载のカラ一フィルターの製造方法。  12. The color filter according to claim 11, wherein the sputtering in the step (1) is performed in a mixed gas atmosphere of an inert gas and oxygen, and the sputtering in the step (2) is performed in an inert gas atmosphere. Manufacturing method.
13. 工程の電源を DC電源とし、 (2)工程の電源を DC電源とする請求の範 囲第 10項に記載の力ラーフィルターの製造方法。  13. The method for producing a power filter according to claim 10, wherein the power source of the process is a DC power source, and the power source of the process (2) is a DC power source.
14. (1)工程のスパッタリングを不活性ガス及び酸素の混合ガス雰囲気中で行 い、 (2)工程のスパッタリングを不活性ガス雰囲気中で行う請求の範囲第 13項 に記載の力ラーフィルターの製造方法。  14. The power filter according to claim 13, wherein the sputtering in the step (1) is performed in a mixed gas atmosphere of an inert gas and oxygen, and the sputtering in the step (2) is performed in an inert gas atmosphere. Production method.
15. (2)工程で用いるターゲットがインジウム一錫酸化物焼結体である請求の 範囲第 10項に記載のカラーフィルターの製造方法。 15. The method for producing a color filter according to claim 10, wherein the target used in the step (2) is a sintered body of indium monotin oxide.
1 6 . 遮光膜及びカラ一レジスト膜が形成された基板上に I T O膜を形成する請 求の範囲第 1 0項の方法であって、 (1)工程及び (2)工程でスパッタリング処理さ れる基板の温度が 1 4 0〜2 5 0 であるカラーフィルターの製造方法。 16. The method according to claim 10, wherein the ITO film is formed on the substrate on which the light-shielding film and the color resist film are formed, wherein the method is performed by sputtering in the steps (1) and (2). A method for producing a color filter, wherein the temperature of the substrate is 140 to 250.
1 7 . 透明基板上に遮光膜、 カラーレジスト膜及び少なくとも 3層の導電膜を順 次形成させるカラーフィルターの製造方法であって、 導電膜形成工程が  17. A method for manufacturing a color filter, comprising sequentially forming a light-shielding film, a color resist film, and at least three conductive films on a transparent substrate, wherein the conductive film forming step is performed.
(1)インジウム一錫酸化物焼結体のターゲットを、 0〇電源又は0〇+
Figure imgf000043_0001
電源 を用い、 不活性ガス又は不活性ガス及び酸素の混合ガス雰囲気中でスパッタリン グして、 基板上に第 1層の I T O膜を形成する工程、
(1) Set the target of the indium tin oxide sintered body to 0〇 power supply or 0〇 +
Figure imgf000043_0001
Forming a first layer ITO film on the substrate by sputtering using a power supply in an inert gas or a mixed gas atmosphere of an inert gas and oxygen;
(¾上記ターゲットを、 D C電源、 R F電源又は D C + R F電源を用い、 不活性 ガス及び酸素の混合ガス雰囲気中でスパッタリングして第 1層上に第 2層の I T O膜を形成する工程、 及び  (¾ a step of forming a second ITO film on the first layer by sputtering the target in a mixed gas atmosphere of an inert gas and oxygen using a DC power supply, an RF power supply or a DC + RF power supply, and
(3)上記ターゲットを、 0。電源又は0〇+ 1 ?電源を用ぃ、 不活性ガス又は不 活性ガス及び酸素の混合ガス雰囲気中でスパッタリングして、 第 2層上に第 3層 の I T O膜を形成する工程  (3) The target is 0. Step of forming a third layer ITO film on the second layer by sputtering in an inert gas or a mixed gas atmosphere of an inert gas and oxygen using a power supply or a power supply of 0 + 1?
を含むカラ一フィル夕一の製造方法。 A method for producing a color filter containing
PCT/JP2002/002135 2001-03-07 2002-03-07 Substrate with deposited transparent condcutive film and method for fabricating color filter WO2002071414A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-63835 2001-03-07
JP2001-63842 2001-03-07
JP2001063835 2001-03-07
JP2001063842 2001-03-07

Publications (1)

Publication Number Publication Date
WO2002071414A1 true WO2002071414A1 (en) 2002-09-12

Family

ID=26610799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002135 WO2002071414A1 (en) 2001-03-07 2002-03-07 Substrate with deposited transparent condcutive film and method for fabricating color filter

Country Status (2)

Country Link
TW (1) TW521280B (en)
WO (1) WO2002071414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115667573A (en) * 2020-05-25 2023-01-31 日东电工株式会社 Method for producing translucent conductive sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465933B (en) * 2013-09-18 2018-03-06 上海蓝光科技有限公司 The preparation method of the LED chip of the preparation method and use of the ito thin film ito thin film
CN105331936B (en) * 2014-06-18 2018-05-08 北京北方华创微电子装备有限公司 The deposition process and GaN base LED chip of ito thin film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189816A (en) * 1989-01-17 1990-07-25 Nippon Sheet Glass Co Ltd Method for forming transparent conductive film
JPH03261005A (en) * 1990-03-09 1991-11-20 Fujitsu Ltd Formation of hyaline conductive film
JPH0874034A (en) * 1994-09-09 1996-03-19 Aneruba Kk Formation of ito transparent conductive film
JPH08180748A (en) * 1994-12-21 1996-07-12 Sumitomo Bakelite Co Ltd Transparent electrode
JPH1148387A (en) * 1997-08-08 1999-02-23 Toppan Printing Co Ltd Transparent conductive film
JPH11335815A (en) * 1998-05-20 1999-12-07 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film and deposition apparatus
JP2000045063A (en) * 1998-07-28 2000-02-15 Teijin Ltd Film with transparent conductive thin film and its production
JP2000256842A (en) * 1999-01-08 2000-09-19 Tosoh Corp Ito sputtering target, and production of ito sintered compact and transparent conductive film
JP2000338506A (en) * 1999-06-01 2000-12-08 Advanced Display Inc Liquid crystal display device and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189816A (en) * 1989-01-17 1990-07-25 Nippon Sheet Glass Co Ltd Method for forming transparent conductive film
JPH03261005A (en) * 1990-03-09 1991-11-20 Fujitsu Ltd Formation of hyaline conductive film
JPH0874034A (en) * 1994-09-09 1996-03-19 Aneruba Kk Formation of ito transparent conductive film
JPH08180748A (en) * 1994-12-21 1996-07-12 Sumitomo Bakelite Co Ltd Transparent electrode
JPH1148387A (en) * 1997-08-08 1999-02-23 Toppan Printing Co Ltd Transparent conductive film
JPH11335815A (en) * 1998-05-20 1999-12-07 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film and deposition apparatus
JP2000045063A (en) * 1998-07-28 2000-02-15 Teijin Ltd Film with transparent conductive thin film and its production
JP2000256842A (en) * 1999-01-08 2000-09-19 Tosoh Corp Ito sputtering target, and production of ito sintered compact and transparent conductive film
JP2000338506A (en) * 1999-06-01 2000-12-08 Advanced Display Inc Liquid crystal display device and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115667573A (en) * 2020-05-25 2023-01-31 日东电工株式会社 Method for producing translucent conductive sheet

Also Published As

Publication number Publication date
TW521280B (en) 2003-02-21

Similar Documents

Publication Publication Date Title
KR101277433B1 (en) Transparent conductive film and touch panel
WO2014115770A1 (en) Transparent electroconductive substrate and method for producing same
WO2014112534A1 (en) Transparent conductive film and production method therefor
JP2005141981A (en) Crystalline ito film, crystallization method of ito film, transparent conductive film, touch panel and dye-sensitized solar cell
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
WO1987005742A1 (en) Process for producing transparent conductive film
TWI409540B (en) Method for manufacturing touch panel and apparatus for forming film
JP4068993B2 (en) Transparent conductive laminated film
JP2003109434A (en) Transparent conductive film and touch panel
WO2002071414A1 (en) Substrate with deposited transparent condcutive film and method for fabricating color filter
JPH06136159A (en) Transparent conductive film and its production
TWI555869B (en) Method for manufacturing transparent conductive film
JP2003034860A (en) Transparent electroconductive film and touch panel
KR101666350B1 (en) Insulation Film including fluorocarbon thin film and Method of Manufacturing The Same
JP3501820B2 (en) Transparent conductive film with excellent flexibility
JP2002050230A (en) Transparent conductive film, transparent conductive sheet and touch panel
JP2002343151A (en) Manufacturing method of laminated substrate of transparent conductive film
CN115985580B (en) Silver nanowire transparent conductive film and preparation method and application thereof
JP2002350834A (en) Method for manufacturing color filter
CN109811308A (en) A kind of ITO process for making conducting membrane
JP5123785B2 (en) Method for forming antireflection film and antireflection film
JP3489844B2 (en) Transparent conductive film and method for producing the same
JP3501819B2 (en) Transparent conductive film with excellent flatness
JP2010182562A (en) Transparent conductive film
JP3627864B2 (en) Transparent conductive film, transparent conductive sheet and touch panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase