JPH1088332A - Sputtering target, transparent conductive coating and its production - Google Patents

Sputtering target, transparent conductive coating and its production

Info

Publication number
JPH1088332A
JPH1088332A JP24081696A JP24081696A JPH1088332A JP H1088332 A JPH1088332 A JP H1088332A JP 24081696 A JP24081696 A JP 24081696A JP 24081696 A JP24081696 A JP 24081696A JP H1088332 A JPH1088332 A JP H1088332A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
target
sputtering
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24081696A
Other languages
Japanese (ja)
Inventor
Akira Mitsui
彰 光井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24081696A priority Critical patent/JPH1088332A/en
Publication of JPH1088332A publication Critical patent/JPH1088332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce transparent conductive coating relatively high in a specific resistance by prescribing the compsn. of a sputtering target. SOLUTION: This sputtering target is the one essentially composed of ZnO and contg. Ga and Y. By using this target, transparent conductive coating having relatively high specific resistance of 10<-1> to 10<10> Ωcm can stably be obtd. This is owing to the following reason. Ga in the coating or target partially or totally enters into a solid solution, works as a dopant and works so as to produce electrons having electric conductivity. Y in the coating reduces the concn. of a carrier and works, as an impurity scattering source, so as to reduce the mobility thereof. By this operation, the coating relatively high in specific resistance can be realized even in sputtering with a low oxygen concn. Preferably, the content of Ga is regulated to 0.2 to 8.0mol% expressed in terms of Ga1 O3 , and the content of Y is regulated to 0.2 to 60.0mol% expressed in terms of Y2O3 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリングタ
ーゲットおよび透明導電膜とその製造方法に関する。
[0001] The present invention relates to a sputtering target, a transparent conductive film and a method for producing the same.

【0002】[0002]

【従来の技術】従来、比抵抗が比較的高い10-1〜10
10Ωcmである酸化物系の透明導電膜をスパッタリング
法で形成する場合、ターゲット自体の比抵抗が10-1
1010Ωcmの導電性を有するターゲットを用いて、た
とえば雰囲気ガス中の酸素が3体積%以下のような、低
酸素濃度でスパッタリングすることが知られている。
2. Description of the Related Art Conventionally, the resistivity is relatively high at 10 -1 to 10.
When an oxide-based transparent conductive film having a resistivity of 10 Ωcm is formed by a sputtering method, the specific resistance of the target itself is 10 −1 to 10 −1 .
It is known that sputtering is performed using a target having a conductivity of 10 10 Ωcm at a low oxygen concentration such that the oxygen in the atmospheric gas is 3% by volume or less.

【0003】しかし、この方法では、ターゲットの導電
性が乏しいため、高周波スパッタリング法に限られ、装
置構造が単純で操作性が良く、成膜速度が速いなどの工
業的な生産性に優れた直流スパッタリング法は用いられ
ないという問題を有していた。
However, in this method, since the conductivity of the target is poor, it is limited to the high-frequency sputtering method, and the DC structure is excellent in industrial productivity such as a simple apparatus structure, good operability, and a high deposition rate. There was a problem that the sputtering method was not used.

【0004】直流スパッタリング法を用いるには、10
-2Ωcm以下の低抵抗の導電性の高いターゲットを用い
ることが安定な放電が得られる点で望ましい。
In order to use the DC sputtering method, 10
It is desirable to use a low-resistance high-conductivity target of −2 Ωcm or less in that a stable discharge can be obtained.

【0005】しかし、10-3〜10-1Ωcmの低抵抗の
ZnO系ターゲットを用いて、アルゴンガスのみを導入
した低酸素雰囲気中で直流スパッタリング成膜した場
合、形成した膜の比抵抗は10-4Ωcm台の低抵抗の膜
しか得られていない(特開平2−149459)。
However, when a DC sputtering film is formed in a low oxygen atmosphere containing only argon gas using a ZnO-based target having a low resistance of 10 -3 to 10 -1 Ωcm, the specific resistance of the formed film is 10%. Only a low-resistance film of the order of -4 Ωcm has been obtained (Japanese Patent Laid-Open No. 2-149559).

【0006】10-2Ωcm以下の低抵抗のターゲットを
用いた場合、10-1〜1010Ωcmを有する膜を得るに
は、雰囲気ガス中に酸素ガスなどの酸化性ガスを導入し
て、高い酸素濃度でのスパッタリングが必要である。
When a target having a low resistance of 10 −2 Ωcm or less is used, a film having 10 −1 to 10 10 Ωcm can be obtained by introducing an oxidizing gas such as an oxygen gas into an atmosphere gas. Sputtering at an oxygen concentration is required.

【0007】しかし、この酸素は形成した膜にも作用し
て、膜にダメージを与えるという問題を有していた。
However, this oxygen has a problem that it also acts on the formed film and damages the film.

【0008】したがって、生産性に優れた直流スパッタ
リング法を用い、膜へのダメージの少ない低酸素濃度の
雰囲気下で、比抵抗が10-1〜1010Ωcmである透明
導電膜の製造方法が望まれていた。
Therefore, a method of manufacturing a transparent conductive film having a specific resistance of 10 -1 to 10 10 Ωcm under a low oxygen concentration atmosphere with little damage to the film by using a DC sputtering method excellent in productivity is desired. Was rare.

【0009】[0009]

【発明が解決しようとする課題】本発明は、直流スパッ
タリング法に用いることができ、比抵抗が比較的高い1
-1〜1010Ωcmである透明導電膜を安定して製造で
きるスパッタリングターゲットの提供を目的とする。
The present invention can be used for a DC sputtering method and has a relatively high specific resistance.
An object of the present invention is to provide a sputtering target capable of stably producing a transparent conductive film having a thickness of 0 -1 to 10 10 Ωcm.

【0010】本発明は、また、生産性に優れ、比較的高
い10-1〜1010Ωcmの比抵抗が容易に得られる透明
導電膜とその製造方法の提供を目的とする。
Another object of the present invention is to provide a transparent conductive film which is excellent in productivity and can easily obtain a relatively high specific resistance of 10 -1 to 10 10 Ωcm, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明は、ZnOを主成
分とし、GaとYとを含むスパッタリングターゲットを
提供する。
The present invention provides a sputtering target containing ZnO as a main component and containing Ga and Y.

【0012】スパッタリングターゲットの比抵抗は、1
-2Ωcm以下であることが好ましい。10-2Ωcmよ
り高いと、直流スパッタリングの際の放電が不安定にな
りやすくなる。特に、10-3Ωcm以下であることが好
ましい。
The specific resistance of the sputtering target is 1
It is preferably at most 0 -2 Ωcm. If it is higher than 10 -2 Ωcm, discharge during DC sputtering tends to be unstable. In particular, it is preferably 10 −3 Ωcm or less.

【0013】本発明のスパッタリングターゲットを用い
ることにより、比抵抗が比較的高い10-1〜1010Ωc
mである透明導電膜が安定して得られる。
[0013] By using the sputtering target of the present invention, a relatively high specific resistance of 10 -1 to 10 10 Ωc
The transparent conductive film having a value of m can be stably obtained.

【0014】前述した比抵抗がより安定して得られると
いう理由から、Gaの含有割合はGa2 3 換算で0.
2〜8.0モル%で、Yの含有割合はY2 3 換算で
0.2〜60.0モル%であることが好ましい。
Since the above-mentioned specific resistance can be obtained more stably, the content ratio of Ga is 0.1% in terms of Ga 2 O 3 .
The content of Y is preferably from 2 to 8.0 mol% and from 0.2 to 60.0 mol% in terms of Y 2 O 3 .

【0015】ターゲットの製造方法は、特に限定される
ものではないが、常圧焼結法、ホットプレス法などの通
常のセラミックスを焼結する方法が用いることができ
る。ホットプレス法が、緻密で低抵抗の焼結体(ターゲ
ット)を作製できる点で好ましい。
The method for manufacturing the target is not particularly limited, but a method for sintering ordinary ceramics such as a normal pressure sintering method or a hot press method can be used. The hot pressing method is preferable because a dense and low-resistance sintered body (target) can be produced.

【0016】本発明は、また、スパッタリングターゲッ
トを、酸化性ガスの含有割合が3体積%以下の雰囲気中
でスパッタリングして透明導電膜を製造する方法におい
て、スパッタリングターゲットとして前記のスパッタリ
ングターゲットを用いることを特徴とする透明導電膜の
製造方法を提供する。
The present invention also provides a method for producing a transparent conductive film by sputtering a sputtering target in an atmosphere having an oxidizing gas content of 3% by volume or less, wherein the sputtering target is used as the sputtering target. And a method for producing a transparent conductive film.

【0017】雰囲気ガスは、酸化性ガスの含有割合が3
体積%以下で用いられ、アルゴンガスのような不活性ガ
スのみで用いることもできる。
The atmosphere gas has an oxidizing gas content of 3%.
It is used in a volume% or less, and can be used only with an inert gas such as an argon gas.

【0018】雰囲気中の酸化性ガスの含有割合が3体積
%を超えると、雰囲気中の酸化性ガスが、成膜した膜を
再スパッタリングして膜にダメージを多く与える。
If the content of the oxidizing gas in the atmosphere exceeds 3% by volume, the oxidizing gas in the atmosphere resputters the formed film and damages the film.

【0019】本発明において用い得る酸素含有ガスとし
ては、O2 、H2 O、CO、C02などのガス分子に酸
素原子を有するガスなどが挙げられる。
Examples of the oxygen-containing gas that can be used in the present invention include gases having oxygen atoms in gas molecules such as O 2 , H 2 O, CO, and CO 2 .

【0020】スパッタリング方法としては、直流方式、
高周波方式など、あらゆる放電方式で行うことができる
が、装置構造が単純で操作性が良く、成膜速度が速いな
どの工業的な生産性の優れた直流スパッタリング法が好
ましい。
As a sputtering method, a direct current method,
Although any discharge method such as a high frequency method can be used, a direct current sputtering method which is excellent in industrial productivity such as a simple apparatus structure, good operability, and a high film forming rate is preferable.

【0021】成膜される基体としては、ガラス、セラミ
ックス、プラスチック、金属などが挙げられる。成膜中
の基体の温度は、特に制約されない。また、成膜後、基
体を、後加熱(熱処理)することもできる。
Examples of the substrate on which a film is formed include glass, ceramics, plastics, and metals. The temperature of the substrate during film formation is not particularly limited. After the film formation, the substrate can be post-heated (heat treated).

【0022】本発明は、また、ZnOを主成分とし、G
aとYとを含む透明導電膜を提供する。
According to the present invention, ZnO is used as a main component.
A transparent conductive film containing a and Y is provided.

【0023】本発明の透明導電膜は、比抵抗が比較的高
い10-1〜1010Ωcmを容易に達成できることから、
このような比抵抗が比較的高い透明導電膜として好適で
ある。
The transparent conductive film of the present invention can easily achieve a relatively high specific resistance of 10 -1 to 10 10 Ωcm.
Such a transparent conductive film having a relatively high specific resistance is suitable.

【0024】特に、10kΩ/□〜100GΩ/□の高
いシート抵抗値が必要な場合、例えば、様々な所望の発
熱量を得るための透明発熱体に最適である。さらに、例
えば、他の透明導電膜と組み合わせて(積層して)用い
る場合、電極部近傍での導電性が実用上非常に重要であ
るが、10kΩ/□〜100GΩ/□の抵抗を有してい
れば、電極近傍での導電性は十分であり、安定して膜に
通電(使用)することができる。このとき、他の透明導
電膜の下地膜として用いた場合、上に積層される膜の結
晶性を調整したり、真空中に残留する水分からのコンタ
ミネーションを抑制したり、上に積層される膜の導電性
や耐久性などの特性を良くすることができる。また、他
の透明導電膜のオーバーコート膜として保護膜として用
いることができる。また、積層により、積層膜の内部応
力を低減させ、膜破断を低減することができる。
In particular, when a high sheet resistance value of 10 kΩ / □ to 100 GΩ / □ is required, for example, it is most suitable for a transparent heating element for obtaining various desired heating values. Further, for example, when used in combination (laminated) with another transparent conductive film, conductivity near the electrode portion is very important in practical use, but has a resistance of 10 kΩ / □ to 100 GΩ / □. If this is the case, the conductivity near the electrodes is sufficient and the film can be stably energized (used). At this time, when used as a base film of another transparent conductive film, the crystallinity of the film laminated thereon is adjusted, contamination from moisture remaining in vacuum is suppressed, or the film is laminated on the film. Characteristics such as conductivity and durability of the film can be improved. Further, it can be used as a protective film as an overcoat film of another transparent conductive film. In addition, the lamination can reduce internal stress of the laminated film and reduce film breakage.

【0025】膜の比抵抗が、10-1Ωcmより低いと、
所望(10kΩ/□〜100GΩ/□)のシート抵抗値
を得るには、膜厚を薄くする必要があり、膜の断線など
の問題が生じやすくなるため好ましくない。
When the specific resistance of the film is lower than 10 -1 Ωcm,
In order to obtain a desired (10 kΩ / □ to 100 GΩ / □) sheet resistance value, it is necessary to reduce the film thickness, which is not preferable because problems such as disconnection of the film are likely to occur.

【0026】また、膜の比抵抗が、1010Ωcmより高
いと、所望(10kΩ/□〜100GΩ/□)のシート
抵抗値を得るには、膜厚を厚くする必要があり、コスト
高になるので好ましくない。
When the specific resistance of the film is higher than 10 10 Ωcm, it is necessary to increase the film thickness in order to obtain a desired sheet resistance value (10 kΩ / □ to 100 GΩ / □), which increases the cost. It is not preferable.

【0027】前述した比抵抗がより安定して得られると
いう理由から、Gaの含有割合はGa2 3 換算で0.
2〜8.0モル%であり、Yの含有割合はY2 3 換算
で0.2〜60.0モル%であることが好ましい。
Since the above-mentioned specific resistance can be obtained more stably, the content ratio of Ga is 0.1% in terms of Ga 2 O 3 .
A 2 to 8.0 mol%, it is preferable content of Y is 0.2 to 60.0 mol% in terms of Y 2 O 3.

【0028】本発明においては、本発明の膜やターゲッ
トに含まれるYの一部を他の元素で置換、あるいはYに
他の元素を添加できる。他の元素としては、La、Ce
などのランタノイドやScなどが挙げられる。
In the present invention, a part of Y contained in the film or the target of the present invention can be replaced with another element, or another element can be added to Y. Other elements include La and Ce.
Lanthanoids and Sc.

【0029】[0029]

【作用】膜中およびターゲット中のGaは、ZnOに一
部あるいは全部固溶してドーパントとして働き、導電性
を発現する電子を生成するように働く。
The Ga in the film and the target is partially or entirely dissolved in ZnO to function as a dopant, and functions to generate electrons exhibiting conductivity.

【0030】膜中のYは、キャリア濃度を減少させ、不
純物散乱源として易動度を減少させるように働く。この
作用により、低酸素濃度でのスパッタリングでも比抵抗
が10-1〜1010Ωcmの比較的高い抵抗を実現でき
る。
Y in the film works to reduce the carrier concentration and to reduce the mobility as an impurity scattering source. By this effect, a relatively high specific resistance of 10 -1 to 10 10 Ωcm can be realized even by sputtering at a low oxygen concentration.

【0031】膜中のYは、膜中に均一に分散しており、
ZnOに固溶した状態で存在する。一方、ターゲット中
のYは偏析して存在するため、前記のYの高抵抗化の作
用が狭い範囲にしか及ばないので、ターゲット全体とし
ては10-4Ωcm台の低抵抗を有する。ターゲット中の
Yは、Y23 あるいはZnOに固溶した状態で存在す
る。
Y in the film is uniformly dispersed in the film,
It exists as a solid solution in ZnO. On the other hand, since Y in the target is segregated, the effect of increasing the resistance of Y is limited to a narrow range, so that the target as a whole has a low resistance of the order of 10 −4 Ωcm. Y in the target exists as a solid solution in Y 2 O 3 or ZnO.

【0032】[0032]

【実施例】【Example】

(例1〜11)ZnO粉末、Ga2 3 粉末およびY2
3 粉末を用意し、これらの粉末を表1に示す各種割合
でボールミルで混合した。
(Examples 1 to 11) ZnO powder, Ga 2 O 3 powder and Y 2
O 3 powders were prepared, and these powders were mixed at various ratios shown in Table 1 with a ball mill.

【0033】この混合粉末をカーボン製のホットプレス
用型に充填し、アルゴン雰囲気中で1100℃で1時間
の条件でホットプレスを行い焼結体を作製した。このと
きのホットプレス圧力は100kg/cm2 とした。
This mixed powder was filled in a carbon hot press mold and hot-pressed at 1100 ° C. for 1 hour in an argon atmosphere to produce a sintered body. The hot press pressure at this time was 100 kg / cm 2 .

【0034】次に、それぞれの焼結体から3×3×30
mmの角柱状に切り出し、4端子法で比抵抗を測定し
た。その結果を、表1に示す。すべて10-4Ωcm台の
低抵抗であった。
Next, 3 × 3 × 30
The sample was cut into a square prism having a thickness of mm, and the specific resistance was measured by a four-terminal method. Table 1 shows the results. All had low resistance of the order of 10 −4 Ωcm.

【0035】次に、それぞれの焼結体から直径6イン
チ、厚さ5mmの寸法に切り出し、ZnO−Ga2 3
−Y2 3 系のターゲットを作製した(以下、ZGYタ
ーゲットと呼ぶ。)。
Next, each sintered body was cut out to a size of 6 inches in diameter and 5 mm in thickness, and ZnO--Ga 2 O 3
Was prepared -Y 2 O 3 system targets (hereinafter, referred to as ZGY target.).

【0036】これらZGYターゲットを用いて、マグネ
トロン直流(DC)スパッタリング装置を使用して、Z
nO−Ga2 3 −Y2 3 系膜(以下、ZGY膜と呼
ぶ。)の成膜を、投入電力:800W、導入ガス:アル
ゴンガス、圧力:4×10−3Torr、基体温度:無
加熱、の条件で行った。基体には、ソーダライムガラス
を用いた。膜厚はおよそ40nmとなるように行った。
Using these ZGY targets, a magnetron direct current (DC) sputtering apparatus is used to
An nO—Ga 2 O 3 —Y 2 O 3 -based film (hereinafter referred to as a ZGY film) was formed by applying power: 800 W, introducing gas: argon gas, pressure: 4 × 10 −3 Torr, and substrate temperature: This was performed under the condition of no heating. Soda lime glass was used for the substrate. The film thickness was set to be about 40 nm.

【0037】成膜中、放電は安定しており、問題はなか
った。成膜後、膜厚を測定した結果、およそ40nmで
あった。シート抵抗を2端針法で測定した。測定したシ
ート抵抗と膜厚から比抵抗を算出した。その結果を表1
に示す。
During the film formation, the discharge was stable and there was no problem. After film formation, the film thickness was measured to be about 40 nm. Sheet resistance was measured by the two-end needle method. The specific resistance was calculated from the measured sheet resistance and film thickness. Table 1 shows the results.
Shown in

【0038】表1に示すされるようにZGY膜の抵抗は
Y添加量の増加に伴い増加し、10-1〜1010Ωcmま
で増加した。一方、該ZGY膜の組成をICP分析し
た。その結果を表1に示す。ZGY膜中のYの含有量
(Y2 3 換算)は、ターゲットの含有量の約2倍程度
となっていた。
As shown in Table 1, the resistance of the ZGY film increased as the amount of Y added increased, and increased from 10 -1 to 10 10 Ωcm. On the other hand, the composition of the ZGY film was analyzed by ICP. Table 1 shows the results. The content of Y (in terms of Y 2 O 3 ) in the ZGY film was about twice the content of the target.

【0039】このターゲット中のY含有量と膜中のY含
有量とのずれは、Y2 3 の蒸気圧がZnOやGa2
3 と比べて低いためと考えられる。
The difference between the Y content in the target and the Y content in the film is that the vapor pressure of Y 2 O 3 is ZnO or Ga 2 O.
Probably because it is lower than 3 .

【0040】(例12)例5と同様に、ZnO粉末、G
2 3 粉末およびY2 3 粉末を用意し、これらの粉
末を表1に示すような割合でボールミルで混合した。こ
の混合粉末をラバープレス法で成形後、空気中で150
0℃で3時間の条件で常圧焼成を行い焼結体を作製し
た。
Example 12 As in Example 5, ZnO powder, G
a 2 O 3 powder and Y 2 O 3 powder were prepared, and these powders were mixed by a ball mill at the ratios shown in Table 1. After molding this mixed powder by a rubber press method,
Under normal pressure firing at 0 ° C. for 3 hours, a sintered body was produced.

【0041】次に、例5と同様に切り出した後、4端子
法で比抵抗を測定した。その結果、比抵抗は5×10-3
Ωcmであった。
Next, after cutting out in the same manner as in Example 5, the specific resistance was measured by a four-terminal method. As a result, the specific resistance is 5 × 10 −3.
Ωcm.

【0042】次に、例5と同様に、直径6インチ、厚さ
5mmの寸法に切り出し、ZGYターゲットを作製し、
例5と同様の条件で成膜した。成膜中、放電は安定して
おり、問題はなかった。成膜後、膜厚を測定した結果、
およそ40nmであり、比抵抗は105 Ωcmであっ
た。膜中のGa2 3 およびY2 3 の含有量はそれぞ
れ2.7モル%および18.3モル%であった。
Next, in the same manner as in Example 5, a ZGY target was prepared by cutting out a piece having a diameter of 6 inches and a thickness of 5 mm.
A film was formed under the same conditions as in Example 5. During the film formation, the discharge was stable and there was no problem. After film formation, the film thickness was measured,
It was about 40 nm, and the specific resistance was 10 5 Ωcm. The contents of Ga 2 O 3 and Y 2 O 3 in the film were 2.7 mol% and 18.3 mol%, respectively.

【0043】なお、例1〜12の膜(基板を含む)の可
視光透過率は、すべて85%以上であった。
The films (including the substrates) of Examples 1 to 12 all had a visible light transmittance of 85% or more.

【0044】(例13〜16)例1と同様にして、表1
に示す割合で混合した粉末を、例1と同様にホットプレ
スして焼結体を作製した。
(Examples 13 to 16)
In the same manner as in Example 1, the powder mixed at the ratio shown in Table 1 was hot-pressed to produce a sintered body.

【0045】例1と同様にして測定した比抵抗を表1に
示す。Gaを含まない例15においては、ターゲットの
比抵抗は105 Ωcmと高かった。
Table 1 shows the resistivity measured in the same manner as in Example 1. In Example 15 containing no Ga, the specific resistance of the target was as high as 10 5 Ωcm.

【0046】次に、これら燒結体から例1と同様にして
ターゲットを作製した。これらターゲットを用いて、マ
グネトロンDCスパッタリング装置を使用して、例1と
同様の条件で成膜した。
Next, a target was prepared from these sintered bodies in the same manner as in Example 1. Using these targets, a film was formed under the same conditions as in Example 1 using a magnetron DC sputtering apparatus.

【0047】Gaを含まない例15においては、ターゲ
ットの抵抗が高く、放電しなかったためDCスパッタリ
ングでは成膜できなかった。
In Example 15, which did not contain Ga, the target was high in resistance and did not discharge, so that a film could not be formed by DC sputtering.

【0048】例13、14および16では、成膜中、放
電は安定しており、問題はなかった。成膜後、膜厚を測
定した結果、およそ40nmであった。例1と同様に比
抵抗を算出した結果を表1に示す。例13、14および
16では、所望の10-1〜1010Ωcmの透明導電膜は
得られなかった。
In Examples 13, 14 and 16, the discharge was stable during the film formation, and there was no problem. After film formation, the film thickness was measured to be about 40 nm. Table 1 shows the result of calculating the specific resistance in the same manner as in Example 1. In Examples 13, 14 and 16, a desired transparent conductive film having a density of 10 -1 to 10 10 Ωcm was not obtained.

【0049】例13、14および16の膜(基板を含
む)の可視光透過率は、すべて85%以上であった。
The films (including the substrate) of Examples 13, 14 and 16 all had a visible light transmittance of 85% or more.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【発明の効果】本発明のターゲットは直流スパッタリン
グ法に用いることができ、また、本発明のターゲットを
用いれば、比抵抗が比較的高い10-1〜1010Ωcmで
ある透明導電膜を安定して製造できる。
The target of the present invention can be used for a direct current sputtering method, and the use of the target of the present invention stabilizes a transparent conductive film having a relatively high specific resistance of 10 -1 to 10 10 Ωcm. Can be manufactured.

【0052】本発明の透明導電膜は、比較的高い10-1
〜1010Ωcmの比抵抗を容易に達成でき、生産性にも
優れる。
The transparent conductive film of the present invention has a relatively high 10 -1.
A specific resistance of 10 to 10 10 Ωcm can be easily achieved, and the productivity is excellent.

【0053】本発明の透明導電膜は、単独に用いられる
ほか、他の透明導電膜と組み合わせて用いることによ
り、次のような効果を持つ。
The transparent conductive film of the present invention can be used alone or in combination with another transparent conductive film to provide the following effects.

【0054】たとえば、本発明の透明導電膜を下地層に
用いた場合、バリアー層として働き、基板からの蒸発あ
るいは拡散を防ぐ。また、続けて上層に成膜される透明
導電膜の真空中に残留する水分からのコンタミネーショ
ンを抑制したり、結晶成長をコントロールし、所望の結
晶性を有する膜を作製できる。
For example, when the transparent conductive film of the present invention is used as an underlayer, it functions as a barrier layer and prevents evaporation or diffusion from the substrate. In addition, a film having desired crystallinity can be manufactured by suppressing contamination of the transparent conductive film which is subsequently formed as an upper layer from moisture remaining in vacuum or controlling crystal growth.

【0055】オーバーコートとして場合には、水分や酸
素など外気からの保護層として働く。
When used as an overcoat, it functions as a protective layer from the outside air such as moisture and oxygen.

【0056】他の透明導電膜と組み合わせて(積層し
て)用いる場合、電極部近傍での導電性が実用上非常に
重要であるが、10kΩ/□〜100GΩ/□の抵抗を
有していれば、電極近傍での導電性は十分であり、安定
して膜に通電(使用)することができ、電極近傍での異
常な発熱を防ぐことができる。また、積層により、積層
膜の内部応力を低減させ、膜破断を低減することができ
る。
When used in combination (laminated) with another transparent conductive film, conductivity near the electrode portion is very important for practical use, but it is required to have a resistance of 10 kΩ / □ to 100 GΩ / □. In this case, the conductivity near the electrodes is sufficient, the film can be stably energized (used), and abnormal heat generation near the electrodes can be prevented. In addition, the lamination can reduce internal stress of the laminated film and reduce film breakage.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ZnOを主成分とし、GaとYとを含むス
パッタリングターゲット。
1. A sputtering target containing ZnO as a main component and containing Ga and Y.
【請求項2】GaをGa2 3 換算で0.2〜8.0モ
ル%含み、YをY2 3 換算で0.2〜60.0モル%
含む請求項1のスパッタリングターゲット。
2. The composition contains 0.2 to 8.0 mol% of Ga in terms of Ga 2 O 3 and 0.2 to 60.0 mol% of Y in terms of Y 2 O 3.
2. The sputtering target of claim 1, comprising:
【請求項3】スパッタリングターゲットを、酸化性ガス
の含有割合が3体積%以下の雰囲気中で直流スパッタリ
ングして透明導電膜を製造する方法において、スパッタ
リングターゲットとして請求項1または2のスパッタリ
ングターゲットを用いることを特徴とする透明導電膜の
製造方法。
3. A method for producing a transparent conductive film by subjecting a sputtering target to DC sputtering in an atmosphere having an oxidizing gas content of 3% by volume or less, wherein the sputtering target according to claim 1 or 2 is used as the sputtering target. A method for producing a transparent conductive film, comprising:
【請求項4】ZnOを主成分とし、GaとYとを含む透
明導電膜。
4. A transparent conductive film containing ZnO as a main component and containing Ga and Y.
【請求項5】GaをGa2 3 換算で0.2〜8.0モ
ル%含み、YをY2 3 換算で0.2〜60.0モル%
含む請求項4の透明導電膜。
5. A composition containing 0.2 to 8.0 mol% of Ga as Ga 2 O 3 and 0.2 to 60.0 mol% of Y as Y 2 O 3.
The transparent conductive film according to claim 4, comprising:
JP24081696A 1996-09-11 1996-09-11 Sputtering target, transparent conductive coating and its production Pending JPH1088332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24081696A JPH1088332A (en) 1996-09-11 1996-09-11 Sputtering target, transparent conductive coating and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24081696A JPH1088332A (en) 1996-09-11 1996-09-11 Sputtering target, transparent conductive coating and its production

Publications (1)

Publication Number Publication Date
JPH1088332A true JPH1088332A (en) 1998-04-07

Family

ID=17065126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24081696A Pending JPH1088332A (en) 1996-09-11 1996-09-11 Sputtering target, transparent conductive coating and its production

Country Status (1)

Country Link
JP (1) JPH1088332A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011613A (en) * 1999-06-29 2001-01-16 Mitsui Mining & Smelting Co Ltd Production of sputtering target containing zinc oxide
WO2007125814A1 (en) * 2006-04-26 2007-11-08 Mitsubishi Materials Corporation ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
JP2008255477A (en) * 2007-03-09 2008-10-23 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM
JP2009097090A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097087A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097088A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097091A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097089A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
US8231812B2 (en) 2007-09-27 2012-07-31 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film
WO2016132825A1 (en) * 2015-02-18 2016-08-25 三菱マテリアル株式会社 Sputtering target and laminate film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577924B2 (en) * 1999-06-29 2010-11-10 三井金属鉱業株式会社 Method for producing sputtering target containing zinc oxide
JP2001011613A (en) * 1999-06-29 2001-01-16 Mitsui Mining & Smelting Co Ltd Production of sputtering target containing zinc oxide
WO2007125814A1 (en) * 2006-04-26 2007-11-08 Mitsubishi Materials Corporation ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
JP2008088544A (en) * 2006-04-26 2008-04-17 Mitsubishi Materials Corp ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
US8636927B2 (en) 2006-04-26 2014-01-28 Mitsubishi Materials Corporation ZnO deposition material and ZnO film formed of the same
JP2008255477A (en) * 2007-03-09 2008-10-23 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM
JP2009097088A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097091A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097089A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP2009097087A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
US8231812B2 (en) 2007-09-27 2012-07-31 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film
KR101208380B1 (en) * 2007-09-27 2012-12-05 미쓰비시 마테리알 가부시키가이샤 ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM
US8409477B2 (en) 2007-09-27 2013-04-02 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film
JP2009097090A (en) * 2007-09-27 2009-05-07 Mitsubishi Materials Corp ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
WO2016132825A1 (en) * 2015-02-18 2016-08-25 三菱マテリアル株式会社 Sputtering target and laminate film

Similar Documents

Publication Publication Date Title
JP4760154B2 (en) Oxide sintered body, oxide transparent conductive film, and production method thereof
JP4797712B2 (en) ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film
KR20080071973A (en) A method to deposit a coating by sputtering
JP2004091265A (en) Oxide sintered compact
JPH1088332A (en) Sputtering target, transparent conductive coating and its production
JP5580972B2 (en) Sputtering composite target
JP2002363732A (en) Transparent conductive film manufacturing method, and transparent substrate having transparent conductive film
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
US6217722B1 (en) Process for producing Ti-Cr-Al-O thin film resistors
JP2004006221A (en) Transparent conductive thin film, manufacturing method thereof, sintering body target for manufacturing the same, organic electroluminescent element and its manufacturing process
KR20090066047A (en) Conductive laminate and manufacturing method thereof
EP1070766A1 (en) Substrate for displays and method for its manufacture
KR20110089143A (en) Transparent conductive zinc oxide display film and production method therefor
EP1004687B1 (en) SUBSTRATE COATED WITH A TRANSPARENT CONDUCTIVE FILM and SPUTTERING TARGET FOR THE DEPOSITION OF SAID FILM
JP2003239063A (en) Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JP4370868B2 (en) Oxide sintered body, sputtering target, and method for producing oxide transparent electrode film
JPH01283369A (en) Sputtering target for forming electrically conductive transparent ito film
JP3004518B2 (en) Sputtering target and method for manufacturing the same
JP3154735B2 (en) Sputtering target and method for manufacturing the same
JP2006249554A (en) Sputtering target, preparing method therefor and sputtering method
KR102251877B1 (en) Thin metal layer substrate and fabrication method for the same
JPH0765167B2 (en) Sputtering target for ITO transparent conductive film
JPH0723532B2 (en) Method for forming transparent conductive film
JP2002050231A (en) Transparent conductive film, its manufacturing method and its application
JPH0813140A (en) Indium oxide sputtering target, its production, indium oxide film, and production of indium oxide film