JPH0542764B2 - - Google Patents

Info

Publication number
JPH0542764B2
JPH0542764B2 JP61052947A JP5294786A JPH0542764B2 JP H0542764 B2 JPH0542764 B2 JP H0542764B2 JP 61052947 A JP61052947 A JP 61052947A JP 5294786 A JP5294786 A JP 5294786A JP H0542764 B2 JPH0542764 B2 JP H0542764B2
Authority
JP
Japan
Prior art keywords
substrate
base material
transparent conductive
conductive film
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61052947A
Other languages
Japanese (ja)
Other versions
JPS62216112A (en
Inventor
Akira Tazaki
Makoto Yoshida
Shuichi Ajiki
Kazuhiro Myamoto
Kazuo Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Stanley Electric Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Stanley Electric Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP5294786A priority Critical patent/JPS62216112A/en
Publication of JPS62216112A publication Critical patent/JPS62216112A/en
Publication of JPH0542764B2 publication Critical patent/JPH0542764B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、基板上に透明導電膜を形成する方法
に関するものである。 〔従来の技術及び発明が解決しようとする問題
点〕 従来、この種透明導電膜の製造方法には、所
謂、蒸着法及びスパツタリング法があり、夫々例
えば第2図及び第3図に示される如き装置が使用
されている。図中、11,11′はIo−So合金又
はその酸化物で成る母材、12,12′は透明導
電膜がその上に形成されるべき基板、13,1
3′は該基板を加熱するためのヒーター、14,
14′は反応室15,15′内の雰囲気を形成すべ
く該反応室15,15′内へ導入される酸素とア
ルゴン、ヘリウム等の不活性気体とより成る混合
ガス、16,16′は反応済のガス等を反応室1
5,15′より排気せしめる排気系、17は放電
用電源であり、かかる装置において、反応室1
5,15′内の圧力を蒸着法では10-4
10-6Torr、スパツタリング法では10-2〜10Torr、
基板12,12′を共に200〜400℃とすることに
より各々透明導電膜の製造が行なわれている。
尚、蒸着法の場合、母材11と基板12との間に
バイアス電圧を印加することによる両者間に生ず
る放電を利用する所謂、イオンプレーテイング法
によつても行なわれ得る。斯して得られた透明導
電膜は透明で導電性を有し、具体的には可視光透
過率90%以上及び比抵抗1×10-3Ωcm以下という
測定結果が得られている。 しかしながら、かかる従来の製造方法において
は、基板12,12′は200〜400℃程度まで加熱
されていることを要し、このため耐熱性の低い基
板に対しては適用され得ず、又、成膜反応中に外
部からの不純物が混入し透明導電膜の純度を低下
せしめ、更には成膜反応終了後形成された透明導
電膜の温度が該加熱温度から常温まで極度に低下
するためその際の熱歪によつて該膜内に内部応力
が残留する等の不都合があつた。本発明はかかる
実情に鑑み、室温程度の温度で行なわれ得ると共
に種々の材質で成る基板に対して適用されて著し
く品質の改良された透明導電膜が形成され得る製
造方法を提供することを目的とする。 〔問題点を解決するための手段及び作用〕 本発明方法では、母材を加熱することによる生
ぜしめられた蒸気と酸素を含む活性化せしめられ
たガスとが、酸化反応を介して実質上室温程度に
保持された基板上に堆積せしめられて透明導電膜
が形成される。従つて、基板には、従来の如き耐
熱性は最早不要となるから、本発明方法は種々の
材質でなる広範囲の基板に対し適用され得ると共
に、該基板上には内部応力のない極めて高品質の
透明導電膜が形成され得る。 〔実施例〕 第1図は本発明方法に好適に用いられる装置の
概略的構成を示しているが、図中、1はインジウ
ム、錫若しくはこれらの合金又はこれらの酸化物
でなる母材、2は室温とほほ同程度に維持されて
いる基板であり、この基板は接地してある。3は
熱電子で成る電子線3′に所定の電界及び磁界を
印加することにより該電子線3′を適宜加速又は
偏向させこれを母材1へ衝突せしめる電子線加熱
装置、4は反応室5内へ導入される酸素又はこれ
とアルゴン若しくはヘリウム等の不活性ガスとの
体積比cが0≦c<100(c=不活性ガスの体積/
酸素の体積)とされている混合ガスで成る反応ガ
ス、6は加速された熱電子により反応ガス4をイ
オン化等活性化せしめこれを反応室4内へ放出さ
せ得る熱陰極型活性化装置、7は該熱陰極型活性
化装置6に対する基板2の電位を少なくとも数百
ボルトまでの負電位になし得活性化された反応ガ
ス4を加速して基板2へ向わしめる加速用電源、
8は排気系である。 次に上記装置による基板2上への成膜方法につ
いて説明すれば、反応室5内の圧力は排気系8に
より排気された十分に低く維持されていて、先
づ、母材1を電子線加熱装置3により加熱すると
該母材1は融点に達し、更に加熱されて反応室5
内へ蒸発せしめられる(矢印1′)。この加熱の
際、電子線3′により母材1に極所的に集中して
加熱されるので、この熱が基板2へ影響すること
はなく従つて該基板2の温度はほぼ室温に保持さ
れている。一方、反応ガス4は熱陰極型活性化装
置6内を通過する際イオン化せしめられる等活性
化状態となり、更に該イオンは加速用電源7によ
る該活性化装置6及び基板2間の電界によつて加
速せしめられるので、ガス流4′となつて基板2
に向つて流動せしめられる。尚、このガス流4′
によつてもたらされる基板2における電流密度は
10mA/m2〜10A/m2に達し、又、加速用電源7
による電界が零の場合には反応ガス4はそれによ
つては加速されないが、この場合にも該ガス4は
反応室5内へ拡散して基板2へ到達し得る。この
時の反応室5内の圧力は10-5〜10-3Torrである。
かくして、母材1が蒸発せしめられてなる蒸気及
び反応ガス4を構成する夫々の分子は基板2上若
しくはその近傍で相互に衝突して反応し合い、そ
の結果、該基板2上に酸化膜が形成せしめられ
る。かかる成膜速度は0.5Å/sec〜500Å/secの
範囲で適宜調節され得、形成された透明導電膜は
その可視光透過率90%以上、比抵抗10-3Ωcm以下
となる。 更に具体的には、表1に示される成膜条件a、
bの下で夫々表2に示される成膜結果A、Bが得
られ、何れの場合も表2の如く形成された透明導
電膜はその可視光透過率が90%以上、比抵抗
10-3Ωcm以下である。
[Industrial Field of Application] The present invention relates to a method of forming a transparent conductive film on a substrate. [Prior art and problems to be solved by the invention] Conventionally, methods for producing this type of transparent conductive film include the so-called vapor deposition method and sputtering method, for example, as shown in FIGS. 2 and 3, respectively. The device is in use. In the figure, 11 and 11' are base materials made of an I o -S o alloy or its oxide, 12 and 12' are substrates on which a transparent conductive film is to be formed, and 13 and 1
3' is a heater for heating the substrate; 14;
14' is a mixed gas consisting of oxygen and an inert gas such as argon or helium, which is introduced into the reaction chambers 15, 15' to form an atmosphere in the reaction chambers 15, 15'; 16, 16' are reaction gases; Transfer the finished gas, etc. to reaction chamber 1.
5 and 15', an exhaust system 17 is a discharge power source, and in this device, the reaction chamber 1
In the vapor deposition method, the pressure within 5,15' is 10 -4 ~
10 -6 Torr, 10 -2 to 10 Torr for sputtering method,
Transparent conductive films are manufactured by heating both substrates 12 and 12' to 200 to 400°C.
In the case of the vapor deposition method, the so-called ion plating method may also be used, which utilizes the discharge generated between the base material 11 and the substrate 12 by applying a bias voltage between the two. The transparent conductive film thus obtained is transparent and conductive, and specifically has been measured to have a visible light transmittance of 90% or more and a specific resistance of 1×10 -3 Ωcm or less. However, in such a conventional manufacturing method, the substrates 12, 12' must be heated to about 200 to 400°C, and therefore cannot be applied to substrates with low heat resistance. During the film reaction, external impurities enter and reduce the purity of the transparent conductive film, and furthermore, after the film formation reaction is completed, the temperature of the formed transparent conductive film drops extremely from the heating temperature to room temperature. There were disadvantages such as residual internal stress within the film due to thermal strain. In view of the above circumstances, an object of the present invention is to provide a manufacturing method that can be carried out at a temperature around room temperature, can be applied to substrates made of various materials, and can form a transparent conductive film with significantly improved quality. shall be. [Means and effects for solving the problems] In the method of the present invention, the steam generated by heating the base material and the activated gas containing oxygen are heated to substantially room temperature through an oxidation reaction. A transparent conductive film is formed by depositing the transparent conductive film on the substrate held at a certain level. Therefore, since the conventional heat resistance is no longer necessary for the substrate, the method of the present invention can be applied to a wide range of substrates made of various materials, and the substrate has extremely high quality without internal stress. A transparent conductive film can be formed. [Example] Fig. 1 shows a schematic configuration of an apparatus suitably used in the method of the present invention, in which 1 is a base material made of indium, tin, an alloy thereof, or an oxide thereof; is a substrate maintained at approximately the same temperature as room temperature, and this substrate is grounded. Reference numeral 3 refers to an electron beam heating device that applies predetermined electric and magnetic fields to an electron beam 3' consisting of thermionic electrons to appropriately accelerate or deflect the electron beam 3' and cause it to collide with the base material 1; 4, a reaction chamber 5; The volume ratio c of oxygen introduced into the interior and an inert gas such as argon or helium is 0≦c<100 (c=volume of inert gas/
6 is a hot cathode type activation device capable of ionizing or otherwise activating the reaction gas 4 with accelerated thermionic electrons and releasing it into the reaction chamber 4; 7; is an accelerating power source capable of bringing the potential of the substrate 2 to a negative potential of at least several hundred volts with respect to the hot cathode type activation device 6, and accelerating the activated reaction gas 4 toward the substrate 2;
8 is an exhaust system. Next, the method of forming a film on the substrate 2 using the above apparatus will be explained. The pressure inside the reaction chamber 5 is maintained sufficiently low by being exhausted by the exhaust system 8, and the base material 1 is first heated with an electron beam. When heated by the device 3, the base material 1 reaches its melting point, and is further heated to the reaction chamber 5.
(arrow 1'). During this heating, the base material 1 is heated locally by the electron beam 3', so this heat does not affect the substrate 2, and the temperature of the substrate 2 is maintained at approximately room temperature. ing. On the other hand, the reaction gas 4 is ionized and activated when passing through the hot cathode type activation device 6, and the ions are further generated by the electric field between the activation device 6 and the substrate 2 by the acceleration power source 7. As it is accelerated, it becomes a gas flow 4' and the substrate 2
It is forced to flow towards. Furthermore, this gas flow 4'
The current density in the substrate 2 caused by is
It reaches 10mA/ m2 to 10A/ m2 , and the acceleration power supply 7
If the electric field is zero, the reaction gas 4 is not accelerated thereby, but in this case too it can diffuse into the reaction chamber 5 and reach the substrate 2. The pressure inside the reaction chamber 5 at this time is 10 -5 to 10 -3 Torr.
In this way, the vapor produced by evaporating the base material 1 and the molecules constituting the reaction gas 4 collide with each other on or near the substrate 2 and react with each other, and as a result, an oxide film is formed on the substrate 2. Forced to form. The film forming rate can be adjusted appropriately within the range of 0.5 Å/sec to 500 Å/sec, and the formed transparent conductive film has a visible light transmittance of 90% or more and a specific resistance of 10 −3 Ωcm or less. More specifically, the film forming conditions a shown in Table 1,
Under b, film formation results A and B shown in Table 2 were obtained, and in both cases, the transparent conductive film formed as shown in Table 2 had a visible light transmittance of 90% or more and a specific resistance.
10 -3 Ωcm or less.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

上述のように本発明方法は、基板の材質に制約
されないから適用範囲が拡大され得ると共に、形
成された透明導電膜の品質は向上し且つ成膜によ
る基板の変形が防止され得る等の利点を有する。
As described above, the method of the present invention is not limited by the material of the substrate, so the range of application can be expanded, and the method has advantages such as improving the quality of the formed transparent conductive film and preventing deformation of the substrate due to film formation. have

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による製造方法に用いられる装
置の構成を示す図、第2図及び第3図は従来の製
造方法に適用される装置の夫々構成を示す図であ
る。 1……母材、2……基板、3……電子線加熱装
置、4……反応ガス、5……反応室、6……熱陰
極型活性化装置、7……加速用電源。
FIG. 1 is a diagram showing the configuration of an apparatus used in the manufacturing method according to the present invention, and FIGS. 2 and 3 are diagrams showing the respective configurations of the apparatus applied to the conventional manufacturing method. DESCRIPTION OF SYMBOLS 1... Base material, 2... Substrate, 3... Electron beam heating device, 4... Reaction gas, 5... Reaction chamber, 6... Hot cathode type activation device, 7... Acceleration power source.

Claims (1)

【特許請求の範囲】 1 反応室内で母材を加熱して蒸発させ、基板上
に透明導電膜を形成せしめるようにした透明導電
膜の製造方法において、 10-5乃至10-3Torrに保持された雰囲気下で、
上記母材を電子線加熱装置により加熱し蒸発せし
めると共に、酸素と不活性気体とを混合してなる
反応ガスを上記基板における電流密度が10mA/
m2乃至10A/m2となるように熱陰極型活性化装置
により活性化せしめつつ加速用電源により該基板
に向けて加速流動せしめ、 上記母材の蒸気と上記反応ガスとを実質上室温
程度に保持された上記基板上又はその近傍で反応
させるようにしたことを特徴とする透明導電膜の
製造方法。 2 母材は、インジウム、錫若しくはこれらの合
金又はこれら酸化物よりなることを特徴とする、
特許請求の範囲1に記載の製造方法。
[Claims] 1. A method for producing a transparent conductive film in which a base material is heated and evaporated in a reaction chamber to form a transparent conductive film on a substrate, wherein the base material is heated at a temperature of 10 -5 to 10 -3 Torr. Under the atmosphere,
The base material is heated and evaporated using an electron beam heating device, and a reactive gas consisting of a mixture of oxygen and an inert gas is applied to the substrate at a current density of 10 mA/
The vapor of the base material and the reaction gas are heated to substantially room temperature by activating the base material with a hot cathode activation device and accelerating the flow toward the substrate using an accelerating power source so that the current is 10 A/m 2 to 10 A/m 2 . A method for producing a transparent conductive film, characterized in that the reaction is carried out on or near the substrate held by the substrate. 2. The base material is made of indium, tin, an alloy thereof, or an oxide thereof,
A manufacturing method according to claim 1.
JP5294786A 1986-03-11 1986-03-11 Manufacture of transparent conductive film Granted JPS62216112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5294786A JPS62216112A (en) 1986-03-11 1986-03-11 Manufacture of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5294786A JPS62216112A (en) 1986-03-11 1986-03-11 Manufacture of transparent conductive film

Publications (2)

Publication Number Publication Date
JPS62216112A JPS62216112A (en) 1987-09-22
JPH0542764B2 true JPH0542764B2 (en) 1993-06-29

Family

ID=12929066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5294786A Granted JPS62216112A (en) 1986-03-11 1986-03-11 Manufacture of transparent conductive film

Country Status (1)

Country Link
JP (1) JPS62216112A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100186286B1 (en) * 1995-12-22 1999-05-15 한갑수 Sensor for methane gas using tin oxide and sensor for propane gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200757A (en) * 1983-04-26 1984-11-14 Konishiroku Photo Ind Co Ltd Vapor depositing method
JPS60132319A (en) * 1983-12-20 1985-07-15 Fuji Xerox Co Ltd Method for formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200757A (en) * 1983-04-26 1984-11-14 Konishiroku Photo Ind Co Ltd Vapor depositing method
JPS60132319A (en) * 1983-12-20 1985-07-15 Fuji Xerox Co Ltd Method for formation of thin film

Also Published As

Publication number Publication date
JPS62216112A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
US3961103A (en) Film deposition
US3904505A (en) Apparatus for film deposition
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
JPH0542764B2 (en)
JP3128573B2 (en) Method of forming high-purity thin film
JPS61292817A (en) Formation of transparent conducting metal oxide film
JPS6350463A (en) Method and apparatus for ion plating
JP2905512B2 (en) Thin film forming equipment
JPS6224505A (en) Formation of light transmitting conductive film
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPH11279756A (en) Formation of transparent conductive film
JPS63213664A (en) Ion plating device
JPS5674836A (en) Production of magnetic recording medium
JPS628409A (en) Formation of transparent conducting metal oxide film
JPS5668932A (en) Manufacture of magnetic recording medium
JPS5952526A (en) Method for sputtering metal oxide film
JPS6017070A (en) Method and device for forming thin film
JPS59217332A (en) Manufacture of silicon dioxide film
JP2544405B2 (en) Method for forming transparent sapphire thin film
JPH03115561A (en) Method for coating film and coating device
JPH02228469A (en) Ion plating method
JPH02213463A (en) Production of transparent electrically conductive film
JPH01123061A (en) Formation of silicon dioxide thin film
JPH01176072A (en) Ion plating device
JPS63303050A (en) Manufacture of thin zircon nitride film