JPS58122738A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58122738A
JPS58122738A JP57004724A JP472482A JPS58122738A JP S58122738 A JPS58122738 A JP S58122738A JP 57004724 A JP57004724 A JP 57004724A JP 472482 A JP472482 A JP 472482A JP S58122738 A JPS58122738 A JP S58122738A
Authority
JP
Japan
Prior art keywords
film
dyn
semiconductor device
stress
internal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57004724A
Other languages
Japanese (ja)
Inventor
Riichiro Aoki
利一郎 青木
Shinji Miyazaki
伸治 宮崎
Tsunehisa Ueno
上野 恒久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57004724A priority Critical patent/JPS58122738A/en
Publication of JPS58122738A publication Critical patent/JPS58122738A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent migration of water including impurity and obtain a semiconductor device having excellent characteristic by stacking an Si3N4 film on an SiO2 film at 500 deg.C or less and forming a thin protection film having the structure with an internal stress of 1X10<9>dyn/cm<2> or more as a compressive stress. CONSTITUTION:An SiO2 or PSG film 26b is provided on a field effect transistor (FET) and its internal stress is set to a compressive stress of 1X10<9>dyn/cm<2>. An Si3N4 film 26a is stacked and formed by the plasma CVD method at a temperature of 500 deg.C or less so that a gate electrode 24 does not dissolve and an internal stress of film 26a is set to about 8X10<9>dyn/cm<2>. According to this double structure, a tensile stress of sealing resin is eased, crack is hardly generated, migration of water containing impurity such as Na into elements on a Si substrate 20 can be prevented and element characteristic can also be improved.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、半導体装置に関する。[Detailed description of the invention] Technical field of invention The present invention relates to a semiconductor device.

発明の技術的背景とその間照点 半導体装置の最外層には、通常その信頼性を高めるため
にパッシベーション膜と称せられる保護膜が横着されて
いる。パッシベーション膜は、素子の信頼性を高めるた
めに次の要件を満す必要がある。■動作時の素子の特性
変動を引合起こすN1等のアルカリ金属を含んだ水分を
値断する所謂不純物ブロッキング効果を有すること。■
ピンホール、クランク等が存在すると前述の不純物ブロ
ッキング効果が失われるので、欠陥のない膜であること
Technical background of the invention and its illumination point A protective film called a passivation film is usually attached to the outermost layer of a semiconductor device in order to improve its reliability. The passivation film must satisfy the following requirements in order to improve the reliability of the device. (2) It has a so-called impurity blocking effect that eliminates water containing alkali metals such as N1, which cause variations in device characteristics during operation. ■
If pinholes, cranks, etc. are present, the aforementioned impurity blocking effect will be lost, so the film must be free of defects.

ζζで、パッシベーション膜のタラツクの発生は、半導
体装置が通常組立て後に製品の原価を低減させる為に樹
脂封止され、この樹脂中に引張り応力が発生してこの引
張り応力によって助長される。従って、パッシベーショ
ン膜は、封止樹脂の引張り応力を緩和する圧縮応力を有
していることが望ましい・ 而して、通常パッシベーション膜としては、酸化膜(s
1o雪)或はリンドープトガラス膜(以下、P2O膜と
記す。)が使用されているう第1図は、パッシベーショ
ン膜トシてPa″Gllを使用した半導体装@1gの一
例を示すものである0この牛導体装置四は、第2図に示
す如く、所定領域にp+ r11不純物からなるソース
1、ドレイン2を形成したNWi半導体基板1のチャネ
ル領域上にゲート酸化膜4を介してアルミニウムからな
るゲート電極5を形成すると共に、Nyti1半導体基
板1の他の露出表面をフィールド酸化膜6で覆ったもの
に、ゲート電極lをマスクにしてゲート電極5の直下の
領域とソース1、ドレイン1に痔がるP″′″″瀧の不
純物領域rをイオン注入法により形成し、然る後、その
表面に第1図に示す如(、PgG膜1を形成したもので
ある。
In ζζ, the occurrence of tardage in the passivation film is facilitated by the tensile stress generated in the resin when semiconductor devices are usually sealed with resin to reduce the cost of the product after assembly. Therefore, it is desirable that the passivation film has a compressive stress that relieves the tensile stress of the sealing resin.
Figure 1 shows an example of a semiconductor device using Pa''Gll as a passivation film. 0 As shown in FIG. 2, this conductor device 4 is made of aluminum via a gate oxide film 4 on the channel region of an NWi semiconductor substrate 1 in which a source 1 and a drain 2 made of p+r11 impurities are formed in predetermined regions. In addition to forming the gate electrode 5, the other exposed surface of the Nyti1 semiconductor substrate 1 is covered with a field oxide film 6, and using the gate electrode 1 as a mask, a hemorrhoid is formed in the area directly under the gate electrode 5, the source 1, and the drain 1. A PgG film 1 is formed on the surface of the impurity region r as shown in FIG. 1 by ion implantation.

しかしながら、このようにパッシベーション膜としてP
aG膜1を用いた半導体装置酋では、PBG膜1のNa
勢のアルカリ金属に対するブロッキング効果が弱いため
、不純物領域rにNa等が侵入してN−型化する。その
結果、半導体装置狸の特性変動が生じる。第3図は、こ
の特性変動の状態を示すものであり、横軸にプレツシュ
アークツカーテスト(PCT、!5気圧、128Cの高
at雰目下に放置)した後にバイアステンペレイチュア
(BT、85tl’、7Vの電界をかける)を施した回
数をサイクルで表わしたものを表示し、このサイクルに
対して発振周波数Δfosc(KHz)の変化を縦軸に
表示した場合の実験結果を曲線(1)にて示している。
However, in this way, P as a passivation film is
In a semiconductor device using the aG film 1, Na of the PBG film 1
Since the blocking effect against alkali metals is weak, Na and the like invade the impurity region r and make it N-type. As a result, variations in the characteristics of the semiconductor device occur. Figure 3 shows the state of this characteristic variation, and the horizontal axis shows the bias temperature (BT, 85 tl ', applying an electric field of 7 V) is displayed in cycles, and the vertical axis shows the change in the oscillation frequency Δfosc (KHz). The curve (1) shows the experimental results. It is shown in

同結果から明らかなように、サイクル数の増加に従って
水分中の不純物が侵入して不純物領域1が「型化するた
めに、周波数変動が生じていることが判る。
As is clear from the same results, as the number of cycles increases, impurities in moisture invade and the impurity region 1 becomes "shaped", which causes frequency fluctuations.

このような問題を解消するために、パッシベーション膜
中のピンホールを皆無にする事、或は、ir3の不純物
領域7の濃度を高くしておく事が考えられる。しかしな
がら、前者の手段は技術的にほぼ不可能なものであり、
また、後者の手段の場合には、生産性を著しく低下させ
る欠点がある。
In order to solve this problem, it is possible to eliminate all pinholes in the passivation film or to increase the concentration of the ir3 impurity region 7. However, the former method is technically almost impossible;
Furthermore, the latter method has the disadvantage of significantly reducing productivity.

発明の目的 本発明は、不純物を含んだ水分の侵入を阻止して優れた
素子特性を有し、しかも容易に製造することができる半
導体装置を提供することをその目的とするものである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a semiconductor device that prevents moisture containing impurities from entering, has excellent device characteristics, and can be easily manufactured.

発明の概要 本発明は、酸化膜からなる下層上に5ooc以下の温度
で形成された窒化シリコン膜からなる上層を設けて、か
つその内部応力をIX 10”dyn/−以上の圧縮応
力になるようにした二層構造の薄膜でパッジページ冒ン
膜を形成することにより、不純物を含んだ水分の侵入を
阻止して優れた素子特性を有し、しかも、製造が容易な
半導体装置である。
Summary of the Invention The present invention provides an upper layer made of a silicon nitride film formed at a temperature of 5ooc or less on a lower layer made of an oxide film, and the internal stress of the upper layer is made to be a compressive stress of IX 10"dyn/- or more. By forming the Padgepage impregnated film with a double-layered thin film, the semiconductor device has excellent device characteristics by preventing the intrusion of moisture containing impurities, and is easy to manufacture.

発明の実施例 第4図は、本発明の一実施例の断面図である。Examples of the invention FIG. 4 is a cross-sectional view of one embodiment of the present invention.

図中20は%NIl半導体基板である昏半導体基板z0
の所定領域には、p” ilの不純物領域からなるソー
ス11、ドレイン21が形成されている。
In the figure, 20 is a semiconductor substrate z0, which is a %NIl semiconductor substrate.
A source 11 and a drain 21 made of p''il impurity regions are formed in predetermined regions.

ソース21、ドレイン21間のチャネル上には、ゲー)
II化114xgを介して例えばアルミニウムからなる
ゲート電極24が形成されている0ソース21.  ド
レイン22及び半導体基板JOの露出表面上には、フィ
ールド酸化膜15が形成されている。フィールド酸化膜
25及びゲート電@j4上には、上層3151と下層1
6bの二層構造の薄膜からなるパッシベーション膜2−
が形成されている。なお、:11&、2111は、ゲー
ト電極24の直下の半導体基板20領域にソース11及
びドレイン22に接続するように形成されたP−型の不
純物領域である。
There is a gate on the channel between the source 21 and the drain 21.
A gate electrode 24 made of aluminum, for example, is formed through a diode 114xg. A field oxide film 15 is formed on the drain 22 and the exposed surface of the semiconductor substrate JO. On the field oxide film 25 and the gate electrode @j4, there are an upper layer 3151 and a lower layer 1.
Passivation film 2- consisting of a thin film with a two-layer structure shown in 6b
is formed. Note that :11&, 2111 are P- type impurity regions formed in a region of the semiconductor substrate 20 directly under the gate electrode 24 so as to be connected to the source 11 and the drain 22.

ここで、パッシベーション膜26の上層26aは、厚さ
が約1.5μmの窒化シリコン膜で形成されている。窒
化シリコン膜は、その直下のゲート電極24が溶融しな
いように500C以下の雰囲気下で例えばプラズマCV
D法で形成するのが値ましい。窒化シリコン膜の内部応
力は、約8.0 X 10’ dyn/−の圧縮応力と
なるように設定されている。パッジベーン膜2#の下層
zgbは、厚さが約toooXのリンケイ酸化ガラス膜
(P2O腺)で形成されている。下層J6ibは、リン
を含有しない単なる酸化膜で形成しても良い。また、下
層26bの内部応力は、1x10°dyn /−以上の
圧縮応力となるように設定されている。つまり、パッシ
ベーション膜2#は、その内部応力としてI X 10
” dyn/−以上の圧縮応力を有するように設定され
ている。
Here, the upper layer 26a of the passivation film 26 is formed of a silicon nitride film with a thickness of about 1.5 μm. The silicon nitride film is heated, for example, by plasma CVD in an atmosphere of 500C or lower to prevent the gate electrode 24 immediately below from melting.
It is preferable to form using the D method. The internal stress of the silicon nitride film is set to be a compressive stress of approximately 8.0 x 10' dyn/-. The lower layer zgb of the pudge vane film 2# is formed of a phosphorus silicate glass film (P2O gland) with a thickness of about tooX. The lower layer J6ib may be formed of a simple oxide film that does not contain phosphorus. Further, the internal stress of the lower layer 26b is set to be a compressive stress of 1x10[deg.]dyn/- or more. In other words, the passivation film 2# has an internal stress of I x 10
” is set to have a compressive stress of dyn/- or more.

而して、このように構成された半導体装置互」番こよれ
ば、パッシベーション膜26が窒化シリコン族とP8G
jlの二層構造で形成されており、窒化シリコン膜のフ
ィールド酸化膜25に対する絶縁性は、下層Jibを形
成するPEG膜によって補償されている。その結果、第
5図中曲Iw頭にて示す如く、高温下でバイアス電圧を
長期間に1って印加しても、しきい値電圧vthの値は
ほぼ一定である。これに対して同図中曲線Yにて示す如
く、パッシベーション膜が一層構造の窒化シリコン膜で
形成された従来の半導体装置では、48時間以内のバイ
アス印加時間でしきい値電圧vtbの値は急激に低下し
、それ以降のバイアス印加時間帯においては4000時
間まで徐々に増加し、高温バイアス下では極めて不安定
な素子特性を示すことが判る。これは、アルミニウムな
どからなる低融点の電極の溶融を防止するために、5o
oc以下の低温で窒化シリコン―を形成すると、81N
が化学量論組成比の8i、N、からはずれて81過剰と
なり、 s i−s i結合の形で含才れる過剰の81
のダングリングボンドの挙動のために絶縁性が電界を印
加した際に不安定になるためと考えられる。
When the semiconductor device configured in this way is used, the passivation film 26 is composed of silicon nitride group and P8G.
Jib has a two-layer structure, and the insulation of the silicon nitride film with respect to the field oxide film 25 is compensated by the PEG film forming the lower layer Jib. As a result, as shown at the beginning of curve Iw in FIG. 5, even if a bias voltage of 1 is applied for a long period of time at a high temperature, the value of the threshold voltage vth remains almost constant. On the other hand, as shown by curve Y in the same figure, in a conventional semiconductor device in which the passivation film is formed of a layered silicon nitride film, the value of the threshold voltage vtb suddenly changes within 48 hours of bias application. It can be seen that the bias voltage decreases to 4,000 hours, and then gradually increases up to 4,000 hours in the bias application period after that, indicating that the device characteristics are extremely unstable under high-temperature bias. This is done in order to prevent melting of low melting point electrodes made of aluminum etc.
When silicon nitride is formed at a low temperature below 81N
deviates from the stoichiometric ratio of 8i,N, resulting in an excess of 81, and the excess 81 contained in the form of s i-s i bonds
This is thought to be because the insulation becomes unstable when an electric field is applied due to the behavior of dangling bonds.

才り、パッシベーション膜26は、上層26mと下層z
gbの二層構造に形成されており、しかも、内部応力は
、I X 10” dyn /−以上の圧縮応力に設定
されているので、第6図中曲#(X’)にて示す如く、
下層26bのPSG膜中のクラック発生頻度はほとんど
皆無であることが判る。
The passivation film 26 has an upper layer 26m and a lower layer z.
gb two-layer structure, and the internal stress is set to a compressive stress of I x 10" dyn /- or more, as shown by curve # (X') in Fig. 6.
It can be seen that the frequency of crack occurrence in the PSG film of the lower layer 26b is almost non-existent.

これに対して、同図中白# (Yうにて示す如く、一層
構造のP8Ggからなるパッシベーション膜では、内部
応力をlX10”dyn /−以上の圧縮応力に設定し
ても、依然、クラックの発生を皆無にはできないことが
判る。
On the other hand, as shown by the white # (Y) in the same figure, in a passivation film made of P8Gg with a single layer structure, cracks still occur even if the internal stress is set to a compressive stress of lX10"dyn/- or more. It turns out that we cannot completely eliminate it.

このようにパッシベーション膜26として窒化シリコン
膜からなる上層xttaとPSG膜からなる下層jll
bとで構成された二層構造を採用しているので、絶縁性
を高めてしかもクラックの発生をほとんど阻止すること
ができ、マa等の不純物を含んだ水分が半導体基板2o
に形成された素子内に侵入するのを防止して素子特性を
向上させることができる。このことは%第3図の特性線
(mで示されたpc丁とBTの試験サイクル数と発振局
波数の変化についての結果から明らかである。また、素
子特性を向上させるために、P−型の不純物領域211
,218の鎖度を高める工程等を何ら必要としないので
、簡略化された工程襖で容易に製造することができる。
In this way, the passivation film 26 consists of an upper layer xtta made of a silicon nitride film and a lower layer jll made of a PSG film.
Since it adopts a two-layer structure consisting of B and B, it can improve insulation and almost prevent the occurrence of cracks.
It is possible to prevent the intrusion into an element formed in the same manner as to improve the element characteristics. This is clear from the results of the change in the number of test cycles and the oscillation station wave number of PC and BT, which are indicated by the characteristic line (m) in Figure 3.Also, in order to improve the device characteristics, P- Mold impurity region 211
, 218 is not required, so it can be easily manufactured using a simplified process.

冑、実施例では、゛半導体基板2oにMO811の素子
を形成したものについて説明したが、仁の他にもバイポ
ーラ腹の素子等、所望の素子を形成しても良いことは勿
論である。
In the embodiment, an MO811 element was formed on the semiconductor substrate 2o, but it is of course possible to form any desired element such as a bipolar anti-node element in addition to the semiconductor substrate 2o.

発明の詳細 な説明した如く、本発明に係る半導体装置によれば、不
純物を含んだ水分の侵入を阻止して優れた素子特性を有
し、しかも製造が容易である等顕著な効果を奏するもの
である。
As described in detail, the semiconductor device according to the present invention has excellent device characteristics by preventing the intrusion of moisture containing impurities, and has remarkable effects such as being easy to manufacture. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の半導体装置の構造を示す断面図、第2
図は、回生導体装置の製造方法を示す説明図、第3図は
、発珈周波数の変化とPCTと1丁の試験サイクル数と
の関係を示す特性図、菖4図は、本発明の一実施例の断
面図、第5図は、し会い値電圧とバイアス印加時間との
関係を示す特性図、第6図は、クラック発生頻度とP2
O膜の応力との関係を示す特性図である。 20・・・半導体基板、21・・・ソース、22・・・
ドレイン、211,238・・・不純物領域srs・・
・ゲート酸化膜、24・・・ゲート電極、25・・・フ
ィールド酸化膜、26・・・パッシベーション膜、1#
ト・・上層、26b・・・下層、10・・・半導体装置
O 出願人代理人 弁理士 鈴 江 武 彦第4図 30 第5図
FIG. 1 is a sectional view showing the structure of a conventional semiconductor device, and FIG.
The figure is an explanatory diagram showing the manufacturing method of the regenerative conductor device, Figure 3 is a characteristic diagram showing the relationship between the change in emission frequency, PCT, and the number of test cycles for one piece, and Figure 4 is an illustration of the method of manufacturing the regenerative conductor device. A cross-sectional view of the example, FIG. 5 is a characteristic diagram showing the relationship between threshold voltage and bias application time, and FIG. 6 is a characteristic diagram showing the relationship between the crack occurrence frequency and P2
FIG. 3 is a characteristic diagram showing the relationship with stress of an O film. 20... Semiconductor substrate, 21... Source, 22...
Drain, 211, 238... impurity region srs...
・Gate oxide film, 24... Gate electrode, 25... Field oxide film, 26... Passivation film, 1#
G... Upper layer, 26b... Lower layer, 10... Semiconductor device O Applicant's agent Patent attorney Takehiko Suzue Figure 4 30 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 所望の素子が形成された所定導電渥の半導体基板と、前
記素子を覆うように前記素子上に形成されたパッシベー
ション膜とを^備する半導体装置憂とおいて、パッジペ
ージlン膜を窒化シリコン膜からなる上層と、酸化膜か
らなる下層とで形成し、かつ、該上層及び皺下層の内部
応力が1x10”dyn/−以上の圧縮応力を有する二
層構造の薄膜で形成したことを特徴とする半導体装置。
In a semiconductor device comprising a semiconductor substrate with a predetermined conductive pattern on which a desired element is formed, and a passivation film formed on the element to cover the element, the passivation film is replaced with a silicon nitride film. and a lower layer consisting of an oxide film, and the upper layer and the lower layer have a compressive internal stress of 1 x 10" dyn/- or more. Semiconductor equipment.
JP57004724A 1982-01-14 1982-01-14 Semiconductor device Pending JPS58122738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57004724A JPS58122738A (en) 1982-01-14 1982-01-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57004724A JPS58122738A (en) 1982-01-14 1982-01-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58122738A true JPS58122738A (en) 1983-07-21

Family

ID=11591834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57004724A Pending JPS58122738A (en) 1982-01-14 1982-01-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58122738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105547A (en) * 1987-10-19 1989-04-24 Seiko Epson Corp Semiconductor device
EP0634053A1 (en) * 1992-03-30 1995-01-18 Vlsi Technology, Inc. METHOD AND STRUCTURE FOR SUPPRESSING CHARGE LOSS IN EEPROMs/EPROMs AND INSTABILITIES IN SRAM LOAD RESISTORS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519850A (en) * 1978-07-31 1980-02-12 Hitachi Ltd Semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519850A (en) * 1978-07-31 1980-02-12 Hitachi Ltd Semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105547A (en) * 1987-10-19 1989-04-24 Seiko Epson Corp Semiconductor device
EP0634053A1 (en) * 1992-03-30 1995-01-18 Vlsi Technology, Inc. METHOD AND STRUCTURE FOR SUPPRESSING CHARGE LOSS IN EEPROMs/EPROMs AND INSTABILITIES IN SRAM LOAD RESISTORS
EP0634053A4 (en) * 1992-03-30 1995-03-15 Vlsi Technology Inc METHOD AND STRUCTURE FOR SUPPRESSING CHARGE LOSS IN EEPROMs/EPROMs AND INSTABILITIES IN SRAM LOAD RESISTORS.

Similar Documents

Publication Publication Date Title
JP5827397B2 (en) Resin-sealed semiconductor device and method for manufacturing resin-sealed semiconductor device
WO2014083647A1 (en) Method for manufacturing resin-sealed semiconductor device, and resin-sealed semiconductor device
US3541676A (en) Method of forming field-effect transistors utilizing doped insulators as activator source
JPH046835A (en) Compound semiconductor device
JPS58122738A (en) Semiconductor device
KR970052024A (en) SOH eye substrate manufacturing method
JPWO2018193554A1 (en) Semiconductor device manufacturing method
JPS60224231A (en) Semiconductor device
JPH03179778A (en) Insulating board for forming thin film semiconductor
JPH02114669A (en) Mesa type triac
KR0163934B1 (en) Oxide gate insulating layer of polycrystalline silicon and method of manufacturing thereof, polycrystalline silicon thin transister using the same
JPH0419707B2 (en)
JPS5871661A (en) Manufacture of thin film transistor with anodic oxidation insulating film
JPS61140177A (en) Semiconductor device
JPS6314477A (en) Semiconductor device
JPS5914672A (en) Manufacture of thin film transistor
JPH0513584A (en) Semiconductor device and manufacture of the same
JPS59939A (en) Semiconductor device
KR900007053B1 (en) Semiconductor device
JPS6455853A (en) Semiconductor device and manufacture thereof
JPS63160365A (en) Insulating substrate for semiconductor device
JPS60250668A (en) Semicondutor device
JPS61288430A (en) Semiconductor device
JPS609130A (en) Semiconductor device
JPH03212969A (en) Ferroelectric device