JPS58120818A - Production of porous carbon fiber - Google Patents

Production of porous carbon fiber

Info

Publication number
JPS58120818A
JPS58120818A JP294082A JP294082A JPS58120818A JP S58120818 A JPS58120818 A JP S58120818A JP 294082 A JP294082 A JP 294082A JP 294082 A JP294082 A JP 294082A JP S58120818 A JPS58120818 A JP S58120818A
Authority
JP
Japan
Prior art keywords
fiber
pore volume
pore
fibers
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP294082A
Other languages
Japanese (ja)
Other versions
JPS6350447B2 (en
Inventor
Shokei Shimada
島田 将慶
Yasuhiro Iizuka
飯塚 康広
Hideki Komagata
駒形 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP294082A priority Critical patent/JPS58120818A/en
Publication of JPS58120818A publication Critical patent/JPS58120818A/en
Publication of JPS6350447B2 publication Critical patent/JPS6350447B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:Fibers in which the pores have a specific void volume and BET surface area and the reduction in the void volume is low, when dried, is preoxidized, then subjected to oxidative pore-opening treatment under an oxidative atmosphere to produce the titled fiber that is suitable for use in uranium recovery, because of its large surface area and high strength. CONSTITUTION:Porous fibers that have fine pores opening on the fiber surface in which the void volume of the pores with pore diameters of 200-10,000Angstrom is larger than 0.1cc/g, a BET surface area of 1-20m<2>/g and have the void volume reduction of lower than 0.08cc/g, when dried at 120 deg.C for 1hr, are preoxidized and subjected to oxidative pore-opening treatment in an oxidaive atmosphere at over 500 deg.C to give the objective carbon fiber with a pore volume of pores of 200-10,000Angstrom 0.1cc/g larger than.

Description

【発明の詳細な説明】 本発明は新規な多孔質炭素繊維の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing porous carbon fibers.

古くから活性炭は液体もしくは気体中の不純物の除去用
または有害物質の回収用吸着材として、あるいは触媒の
担体等に広く使用されてきた。これらの用途に向けられ
てきた活性炭は粉状または粒状のものであったが)さら
に近年繊維状の活性炭が開発されその形態、吸着性能に
起因して活性炭の用途も拡大した。
Activated carbon has long been widely used as an adsorbent for removing impurities in liquids or gases or recovering harmful substances, or as a carrier for catalysts. Activated carbon that has been used for these purposes has been in powder or granular form; however, in recent years, fibrous activated carbon has been developed, and its use has expanded due to its form and adsorption performance.

しかしながら従来より得られている繊維状の活性炭は、
その細孔の直径がほとんど50x以下のものであるし、
数百裏程度の細孔が存在するにしてもその細孔容積はほ
とんどのものがO,l ca/9に満たないものである
ため、使用分野によっては適格材料といえない面があっ
た。例えは上記細孔直径が50裏以下といった繊維状活
性炭をウラン回収とか電池電極用といった液系に使用し
た場合溶質の細孔内拡散速度が液中での溶質の拡散速度
よりも小さくなり細孔が有効に使用されない不都合がお
こる。一般に繊維状活性炭は有機質繊維を耐炎化、賦活
処理して作製されるが、かかる賦活の条件を種々変化せ
しめても前述の用途に好適な細孔の径を増大させること
は不可能であった。
However, the fibrous activated carbon that has been conventionally obtained is
The diameter of the pores is mostly less than 50x,
Even if there are several hundred pores, most of them have a pore volume of less than O,l ca/9, so they may not be suitable materials depending on the field of use. For example, when fibrous activated carbon with a pore diameter of 50 mm or less is used in a liquid system such as for uranium recovery or battery electrodes, the diffusion rate of the solute in the pores becomes smaller than the diffusion rate of the solute in the liquid. This causes the inconvenience of not being used effectively. Generally, fibrous activated carbon is produced by flame-proofing and activating organic fibers, but even if the activation conditions are varied, it has not been possible to increase the pore diameter suitable for the above-mentioned uses. .

しかして本発明者らは上述の点に鑑み鋭意研究の結果本
発明に至った。
However, in view of the above points, the present inventors conducted extensive research and arrived at the present invention.

本発明の第1の要点は孔直径:zoo−IQQOOXの
ものの細孔容積が0.1 cc79以上有する多孔性炭
素繊維をうるためには繊維表面に開口した微孔が存在し
該微孔のうち孔直径200〜10000Xのものの細孔
容積(以下細孔容積とは孔直径200〜10000にの
ものの細孔容積をいう)が0゜l ce/g以上であり
1かつEFT表面積が1〜20 tl/qであり、また
120℃、1時間乾燥したときの細孔容積の低下が0.
08 ac/q以下である多孔質繊維を出発原料として
用いることである。繊維表面に開口していないいわゆる
olosed porθをもつ多孔質繊維ではいくら耐
炎化、炭化、酸化開孔処理を行なっても繊維外部との物
質交換が可能な繊維表面に開口した孔を珊し、かつ細孔
容積の大きな多孔性炭素繊維を高い収率で得ることはむ
つかしい。また細孔容積がO6l cc/9以上であっ
てもBIT表面檀が20 as’/gをこえるものでは
脆弱な繊維となり細孔の安定性が欠ける。一方BIT表
面積がIR”79未満であったり孔の細孔容積がO,l
cc/g未満のものでは耐炎化1炭化、酸化処理しても
本発明による効果は411m < 2 o □ X以下
の孔が主として生ずるにすきない。また細孔容積の低下
がO,0acc/9以下の繊維を用いることによっては
じめて細孔容積O・lee/g以上の多孔質炭素繊維が
得られる。
The first point of the present invention is that in order to obtain a porous carbon fiber having a pore diameter of zoo-IQQOOX with a pore volume of 0.1 cc79 or more, open micropores exist on the fiber surface. The pore volume of pores with a pore diameter of 200 to 10,000X (hereinafter pore volume refers to the pore volume of pores with a pore diameter of 200 to 10,000X) is 0°l ce/g or more, and the EFT surface area is 1 to 20 tl. /q, and the decrease in pore volume when dried at 120°C for 1 hour is 0.
08 ac/q or less is used as a starting material. Porous fibers with so-called olosed porθ, which do not have openings on the fiber surface, have pores open on the fiber surface that allow material exchange with the outside of the fiber, and It is difficult to obtain porous carbon fibers with a large pore volume in high yield. Further, even if the pore volume is O6l cc/9 or more, if the BIT surface density exceeds 20 as'/g, the fiber becomes brittle and the pores lack stability. On the other hand, if the BIT surface area is less than IR"79 or the pore volume is O, l
If it is less than cc/g, even if it is flame-resistant, carbonized, or oxidized, the effect of the present invention will be insufficient, as pores of 411 m < 2 o □ X or less will mainly be produced. Moreover, porous carbon fibers with a pore volume of O.lee/g or more can only be obtained by using fibers with a pore volume reduction of O.0 acc/9 or less.

例えはアクリル系繊維を湿式紡糸して得られる膨潤ゲル
糸条(13ET表面積2o〜7am7g)の多孔質構造
を固定化することにより作製した多孔質繊維は1.20
℃S1時間乾燥時の細孔容積の低下が0・08cc/g
を越えてしまいこれに耐炎化、炭化、酸化処理を行なっ
ても安定した多孔質炭素繊維を得ることはできない。
For example, a porous fiber produced by fixing the porous structure of a swollen gel thread (13ET surface area 2o~7am7g) obtained by wet spinning acrylic fiber has a 1.20%
Decrease in pore volume after drying for 1 hour at °C is 0.08cc/g
However, even if flameproofing, carbonization, and oxidation treatments are performed on the fiber, stable porous carbon fiber cannot be obtained.

このような細孔容積が0.1 cc79以上であり、か
つBIT表面積が1〜20m″/gであり、また細孔容
積の低下がo、oacc/g以下である多孔質繊維は1
例えは繊維形成用紡糸原液中に孔形成助剤である架橋型
吸水性樹脂や孔形成安定剤を添加したり、あるいはパラ
フィン類を添加し糸条形成後このパラフィン類を抽出す
る等の手段を採用することにより製造される。繊維形成
用重合体はセルロース糸、アクリロニトリル系、フェノ
ール系繊維等を挙げることができ、繊維の集合形態とし
ては目的に応じてトウ、綿、フィラメント、紡績糸、不
織布S織布1紙等の種々の形態のものを選ぶことができ
る。
Such porous fibers have a pore volume of 0.1 cc79 or more, a BIT surface area of 1 to 20 m''/g, and a decrease in pore volume of 1 cc/g or less.
For example, methods such as adding a cross-linked water-absorbing resin or a pore-forming stabilizer as a pore-forming aid to the spinning dope for fiber formation, or adding paraffins and extracting the paraffins after yarn formation. Manufactured by adopting. Examples of fiber-forming polymers include cellulose thread, acrylonitrile fiber, phenol fiber, etc., and fiber aggregate forms include tow, cotton, filament, spun yarn, non-woven fabric S-woven fabric 1 paper, etc. depending on the purpose. You can choose the form of

このようにして得た多孔質繊維はこの後耐炎化に供され
る。耐炎化処理であるが、素材がアクリロニトリル糸繊
維の場合酸素、二酸化窒素ガス等を含む酸化性雰囲気下
、特に空気中で150〜300℃の温度で行なわれ、素
材がセルロース系繊維では150〜300℃の不活性雰
囲気下での方が収率が高められるので望ましい。なおフ
ェノール系繊維の場合はそれ自身不融化が行なわれて得
られたものゆえ格別の耐炎化処理を必要としない。
The porous fiber thus obtained is then subjected to flame resistance. When the material is acrylonitrile fiber, it is carried out in an oxidizing atmosphere containing oxygen, nitrogen dioxide gas, etc., especially in air, at a temperature of 150 to 300°C, and when the material is cellulose fiber, it is carried out at a temperature of 150 to 300°C. It is preferable to carry out the reaction under an inert atmosphere at ℃ because the yield can be increased. In the case of phenolic fibers, they do not require any special flame-retardant treatment because they have been made infusible themselves.

ところで本発明においては前述の多孔質繊維を上記の如
く耐炎化するわけであるが、かかる際出発繊維に金属特
にNa、 Oa、 Mg、 Or、 Ml、 Fe、 
Oo。
By the way, in the present invention, the above-mentioned porous fibers are made flame resistant as described above, and in this case, the starting fibers are made of metals, particularly Na, Oa, Mg, Or, Ml, Fe,
Oo.

Ni、 Ou、 Ziが存在するならこれらの合計含有
■(1種又は2種以上の金属の含有量)をLO重量%以
下にすることが好ましい。即ち、含有相が1.0重量%
を越えると高温酪化時に金属自身が酸化触媒として作用
し均一な高温酸化処理ができないばかりでなく、いたず
らに収率を落す原因ともなり好ましくない。従って出発
m維に過剰の金属が含有されている場合予じめ耐炎化に
先立ち酸等で抽出し含有量を1.0重量%以下に調整し
ておくことである。
If Ni, Ou, and Zi are present, it is preferable that their total content (1) (content of one or more metals) be LO weight % or less. That is, the phase contained is 1.0% by weight.
If it exceeds this value, the metal itself acts as an oxidation catalyst during high-temperature butylation, which not only makes it impossible to perform uniform high-temperature oxidation treatment, but also undesirably causes a drop in yield. Therefore, if the starting m-fiber contains an excessive amount of metal, the content should be adjusted to 1.0% by weight or less by extracting it with an acid or the like before making it flameproof.

本発明の第2の要点は上記の如く耐炎化された繊維にこ
の後500℃以上の酸化性雰囲気下で酸化開孔処理を施
すことである。酸化性雰囲気として二酸化炭素、水蒸気
、酸素等の酸化性ガスを含む雰囲気や燃焼廃ガス等が用
いられる。不活性雰囲気中で処理を行なうと孔が閉基す
る傾向をとり、繊維構造中の孔がさらに繊維表面に開口
する挙動はなされず孔容積の大きな本発明の如き多孔質
炭素繊維を得ることはできない。
The second point of the present invention is to subject the flame-resistant fibers as described above to an oxidative hole-opening treatment in an oxidizing atmosphere at a temperature of 500° C. or higher. As the oxidizing atmosphere, an atmosphere containing an oxidizing gas such as carbon dioxide, water vapor, or oxygen, combustion waste gas, or the like is used. When the treatment is carried out in an inert atmosphere, the pores tend to close, and the pores in the fiber structure do not open further to the fiber surface, making it difficult to obtain a porous carbon fiber with a large pore volume as in the present invention. Can not.

上記方法で製造した多孔質炭素繊維は、その特徴ある性
能を利用して種々の用途に使用することができるが)特
に液系での使用に適している。溶質の細孔内拡散係数を
液中での溶質の拡散係数と同じレベルにするには、細孔
直径をほぼ100〜200x以上にする必要があるが・
本発明による多孔質炭素繊維はその要求に応えられるも
のであることが分かる。該多孔質炭素繊維に特殊な吸着
剤を添着し、液中から各種物質を採取するいわゆる複合
吸着剤の担体としてもすぐれた性能を有してなるもので
ある0又炭素系であるため導電性のよいこと、化学反応
性の低いこと、前述液系での特性を合せもつ材料なので
、電極材料として特に有用である。中でも二次電池とし
て開発の進められているレドックスフロー2次電池の電
極材料として秀れている。
The porous carbon fiber produced by the above method can be used for various purposes by taking advantage of its characteristic performance, but is particularly suitable for use in liquid systems. In order to make the pore diffusion coefficient of the solute the same as the solute diffusion coefficient in the liquid, the pore diameter needs to be approximately 100 to 200x or more.
It can be seen that the porous carbon fiber according to the present invention can meet this requirement. A special adsorbent is attached to the porous carbon fiber, and it has excellent performance as a carrier for so-called composite adsorbents that collect various substances from liquids.Since it is carbon-based, it is electrically conductive. This material is particularly useful as an electrode material because it has good chemical properties, low chemical reactivity, and the properties mentioned above in liquid systems. Among them, it is excellent as an electrode material for redox flow secondary batteries, which are currently being developed as secondary batteries.

本発明において用いる細孔容積、BIDT表面積、細孔
容積の低下は下記の如く測定算出したものである0 (1)細孔容積(ce/g) 水銀圧入法によって測定する。外部絶対圧力P(kg/
cd)に対して次式で決まる細孔半径(^)と実質水銀
圧入容積とより累積細孔分布曲線を求め細孔径200X
と1ooooXの細孔容積の差から200〜100OO
Aの細孔容積を求める。
The pore volume, BIDT surface area, and pore volume reduction used in the present invention are measured and calculated as follows. (1) Pore volume (ce/g) Measured by mercury porosimetry. External absolute pressure P (kg/
cd), calculate the cumulative pore distribution curve from the pore radius (^) determined by the following formula and the actual mercury intrusion volume, and calculate the pore diameter 200X.
200-100OO from the difference in pore volume between
Find the pore volume of A.

ここでγは水銀の表面張力(48Q dyne/cx 
) 、θは水銀と炭素繊維との接触角で141°とする
Here, γ is the surface tension of mercury (48Q dyne/cx
), θ is the contact angle between mercury and carbon fiber, and is 141°.

(2)  BIT表面積(m’/ g)液体窒素の沸点
(77°K)における窒素ガスの吸着等混線からBIT
法によって求める。
(2) BIT surface area (m'/g) BIT from crosstalk such as adsorption of nitrogen gas at the boiling point of liquid nitrogen (77°K)
Required by law.

(3)細孔容積低下(%) 次式より算出する。(3) Pore volume decrease (%) Calculated using the following formula.

細孔容積の低下=vQ−v Vi120℃、1時間乾燥処理した試料繊維の細孔容積 Vos上記乾燥処理を施さない試料繊維の細孔容積 実施例1 7 りIJロニトリル(以下ANという)、メタアクリ
ル酸メチル、メチレンビスアクリルアミド、p−スチレ
ンスルホン酸ソーダを共重合して作った架橋型AN糸共
重合体エマルジョンをアルカリ処理し、得られた吸水性
樹脂水分散体を90%のAN、10%のアクリル酸メチ
ルを含有するAN系重合体のロダンソーダ水溶液である
紡糸原液にAN系重合体と吸水性樹脂の全量当り吸水性
樹脂が4%の割合となる様に加えた。該紡糸原液を0.
10m+φの紡糸口金を用いて常法に従って湿式紡糸し
、凝固、水洗)延伸を行ない、次に120℃、20分間
乾燥し繊維を緻密化した後125℃5分聞湿熱綬和処理
して0・41 cc/gの細孔容積及び、0.04 c
c/9の細孔容積低下及びl P、 #I”/9のBI
nT表面積有する5、0デニールの多孔質アクリル繊維
Aを得た0繊維Aを50℃、0.5NのHol中で30
分処理し、Holが認められなくなるまで充分水洗した
後乾燥して繊維Bを得た。繊維B中の金属含有率は0.
1重量%であった0繊維Bを空気中150℃より30℃
/hrの昇温速度で290℃までもたらし、耐炎化繊維
を得た。この耐炎化繊維を窒素気流中室温より400℃
ンhrの昇温速度で850℃までもたらし、この後15
容M%の水蒸気を含有する窒素気流に切替え、2時間酸
化開孔処理し、窒素気流中で冷却後収率26%で多孔質
炭素繊維を得た。該多孔質炭素繊維について細孔容積を
測定したところ0.55 cc/9であった。
Decrease in pore volume = vQ-v Vi Pore volume of sample fiber dried at 120°C for 1 hour Vos Pore volume of sample fiber not subjected to the above drying process Example 1 A cross-linked AN thread copolymer emulsion prepared by copolymerizing methyl acrylate, methylenebisacrylamide, and sodium p-styrene sulfonate was treated with alkali, and the resulting water-absorbing resin water dispersion was treated with 90% AN, 10% The water-absorbing resin was added to the spinning stock solution, which was a rhodan soda aqueous solution of an AN-based polymer containing 50% methyl acrylate, in a proportion of 4% based on the total amount of the AN-based polymer and the water-absorbing resin. The spinning stock solution was adjusted to 0.
The fibers were wet-spun using a 10 m + φ spinneret according to a conventional method, coagulated, washed with water) and stretched, then dried at 120°C for 20 minutes to densify the fibers, and then subjected to moist heat sintering at 125°C for 5 minutes to form a 0. Pore volume of 41 cc/g and 0.04 c
Pore volume reduction of c/9 and lP, BI of #I”/9
A porous acrylic fiber A of 5.0 denier having a surface area of
Fiber B was obtained by washing the fibers thoroughly with water until Hol was no longer observed and drying. The metal content in fiber B is 0.
0 fiber B, which was 1% by weight, was heated at 30°C from 150°C in air.
The temperature was raised to 290°C at a heating rate of /hr to obtain flame-resistant fibers. This flame-resistant fiber was heated from room temperature to 400°C in a nitrogen stream.
The temperature was raised to 850°C at a heating rate of 15 hours.
Switching to a nitrogen stream containing water vapor of M% by volume, oxidizing pore-opening treatment was performed for 2 hours, and after cooling in the nitrogen stream, porous carbon fibers were obtained at a yield of 26%. The pore volume of the porous carbon fiber was measured and found to be 0.55 cc/9.

比較として上述の如き耐炎化繊維を窒素気流中室温より
400℃/11rの昇温速度で850 ℃までもたらし
て作製した炭素繊維について細孔容積を測定したが、0
゜07 cc/gと低い値であった。
For comparison, we measured the pore volume of carbon fibers prepared by heating the above-mentioned flame-resistant fibers from room temperature to 850 °C in a nitrogen stream at a heating rate of 400 °C/11 r.
The value was as low as 0.07 cc/g.

比較例1 実施例1の多孔質アクリル繊維Aを作製する方法と同じ
であるが、IJ&水性樹脂の量をBIT表面積20 m
’/9を越える様に、かっ細孔容積の低下0,0Bee
/9以下となる様に6.7%添加し紡糸したか1糸切れ
がひん発し1満足な糸条はできなかった。
Comparative Example 1 The method for producing porous acrylic fiber A in Example 1 was the same, but the amount of IJ & aqueous resin was changed to a BIT surface area of 20 m
Decrease in pore volume to exceed '/9 0.0Bee
Either 6.7% was added and spun so that the yarn was less than /9, or one yarn breakage occurred and a satisfactory yarn could not be obtained.

比較例2 実施例1の多孔質アクリル繊維Aを作製する方法を採用
し、吸水性樹脂を1.0%添加し細孔容積0.09 c
c/g、BIT表面積2.4#1″/g、細孔容積の低
下o、o2cc、/9の多孔質繊維を作製し、酸処理、
耐炎化、炭化、高温酸化処理を実施例1と同様な方法で
行ない対原糸収率21%で多孔質炭素繊維を得たが、そ
の細孔容積は0.08cc/gLかなかった。
Comparative Example 2 The method of producing porous acrylic fiber A of Example 1 was adopted, and 1.0% of water-absorbing resin was added to give a pore volume of 0.09 c.
Porous fibers with a BIT surface area of 2.4 #1''/g and a pore volume reduction of o, o2cc, /9 were prepared, and acid treatment,
Flameproofing, carbonization, and high-temperature oxidation treatments were performed in the same manner as in Example 1 to obtain porous carbon fibers with a yield of 21% based on yarn, but the pore volume was less than 0.08 cc/gL.

実施例2 実施例1の繊維Aを作るのと同じ方法で吸水性樹脂を1
.5%添加し細孔容積0,14(4/g、BIT表面f
il 3−6111’/g、細孔容積の低下0.03c
c/9 の多孔質繊維をつくり、実施例1の繊維Bと同
様の後処理を行ない、対原糸収率19%多孔質繊維を得
たが、該繊維の細孔容積はOol 3 cc/9であっ
た。
Example 2 1 water absorbent resin was prepared using the same method as for making fiber A in Example 1.
.. Added 5%, pore volume 0.14 (4/g, BIT surface f
il 3-6111'/g, pore volume reduction 0.03c
c/9 porous fibers were made and subjected to the same post-treatment as Fiber B in Example 1 to obtain porous fibers with a yarn yield of 19%, but the pore volume of the fibers was Ool 3 cc/ It was 9.

実施例3 実施例1の繊維入を作るのと同じ方法だが、1/2のサ
イズの吸水性樹脂を5%添加し蔦細孔容積0.25 c
c/9、BIT表面積16 m’/9 、細孔容積の低
下o、 03 cc/9の多孔質繊維を得た0実施例1
の繊維Bと同じ後処理をし細孔容積0.26cc/Qの
多孔質繊維を対原糸収率23%で得ることができた。
Example 3 The same method as in Example 1 was used to make the fiber insert, but 5% of a water-absorbing resin of 1/2 the size was added to create a pore volume of 0.25 c.
Example 1 in which porous fibers with a BIT surface area of 16 m'/9 and a decrease in pore volume of 0.3 cc/9 were obtained.
By performing the same post-treatment as Fiber B, porous fibers with a pore volume of 0.26 cc/Q could be obtained at a yield of 23% based on fibers.

比較例3 吸水性樹脂を添加せず、乾燥緻密化工程を省略し、湿熱
緩和処理温度を110℃、乾燥温度を100℃にする他
は実施例1の多孔質アクリル繊維Aと同じ製造方法でフ
ィブリル構造よりなる微多孔質の5デニールのアクリル
繊維を3種(0,D、l)作製し、実施例1と同様な酸
処理飄耐炎化1炭化、高温酸化処理を行ない多孔質炭素
繊維を得た。アクリル繊維0. D、 Eはそれぞれ紡
糸の際の凝固浴組成を異ならしめて作製した0原料繊維
及び多孔質炭素繊維の性能を第1表に示す。
Comparative Example 3 Same manufacturing method as porous acrylic fiber A of Example 1 except that no water-absorbing resin was added, the drying and densification step was omitted, the wet heat relaxation treatment temperature was 110°C, and the drying temperature was 100°C. Three types of microporous 5-denier acrylic fibers (0, D, l) with a fibril structure were prepared, and the same acid treatment, flame resistance 1 carbonization, and high temperature oxidation treatment as in Example 1 were performed to obtain porous carbon fibers. Obtained. Acrylic fiber 0. Table 1 shows the performance of zero raw material fibers and porous carbon fibers D and E, which were produced using different coagulation bath compositions during spinning.

比較例4 実施例1で作った多孔質アクリル繊維Aの酸処理条件を
変え、金属含有率の異なる繊維F。
Comparative Example 4 The acid treatment conditions of the porous acrylic fiber A made in Example 1 were changed to produce fibers F with different metal contents.

Gを得、繊維A、 F、 Gを実施例1と同様に耐炎化
−炭化、賦活処理をして多孔質炭素繊維を作製した。金
属含有率1.2重量%を有していた繊維Aは1収率が低
く、又賦活の斑も大きく、繊維の一部は焼失しており、
均一な多孔質炭素繊維を作ることができなかった。繊維
A、 B、 ?。
Fibers A, F, and G were subjected to flameproofing, carbonization, and activation treatments in the same manner as in Example 1 to produce porous carbon fibers. Fiber A, which had a metal content of 1.2% by weight, had a low yield, large unevenness of activation, and part of the fiber was burned out.
It was not possible to make uniform porous carbon fiber. Fiber A, B, ? .

Gの金属含有率、収率、賦活斑の判定結果を第2表にま
とめて示す。
Table 2 summarizes the determination results of the metal content, yield, and activation spots of G.

特許出願人  東洋紡績株式会社Patent applicant: Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 繊維表面に開口した微孔が存在しヤ該微孔のうち孔直径
200〜1ooooXのものの細孔容積が0゜1 cc
7q以上であり、かつBIT表面積が1〜20 v?/
gであり、また120℃、1時間乾燥したときの上記細
孔容積の低下がo、oacc/g以下である多孔質繊維
を耐炎化処理し1次いで500℃以上の酸化性雰囲気下
で酸化開孔処理して孔直径200〜l OOOOAのも
のの細孔容積が0.1cc/q以上有する炭素繊維を製
造することを特徴とする多孔質炭素繊維の製造方法0
There are open micropores on the fiber surface, and the pore volume of those with a pore diameter of 200 to 100X is 0°1 cc.
Is it 7q or more and has a BIT surface area of 1 to 20 v? /
A porous fiber whose pore volume decreases when dried at 120°C for 1 hour is not more than oacc/g is flame-resistant treated and then oxidized and opened in an oxidizing atmosphere at 500°C or higher. A method for producing porous carbon fibers characterized by producing carbon fibers having a pore diameter of 200 to 1 OOOOA and a pore volume of 0.1 cc/q or more through pore treatment 0
JP294082A 1982-01-11 1982-01-11 Production of porous carbon fiber Granted JPS58120818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP294082A JPS58120818A (en) 1982-01-11 1982-01-11 Production of porous carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP294082A JPS58120818A (en) 1982-01-11 1982-01-11 Production of porous carbon fiber

Publications (2)

Publication Number Publication Date
JPS58120818A true JPS58120818A (en) 1983-07-18
JPS6350447B2 JPS6350447B2 (en) 1988-10-07

Family

ID=11543350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP294082A Granted JPS58120818A (en) 1982-01-11 1982-01-11 Production of porous carbon fiber

Country Status (1)

Country Link
JP (1) JPS58120818A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619796A (en) * 1983-12-08 1986-10-28 Oji Paper Company, Ltd. Process for preparation of porous carbon plates
US5370856A (en) * 1990-04-06 1994-12-06 Nippon Steel Corporation High strength carbon fiber and pre-carbonized fiber
JP2016521295A (en) * 2013-03-28 2016-07-21 イーエルジー カーボン ファイバー インターナショナル ゲーエムベーハー Pyrolysis system and method for recovering carbon fiber from carbon fiber-containing resin
CN109160972A (en) * 2018-08-03 2019-01-08 华南理工大学 A kind of elastomer and its preparation method and application with power electroresponse
WO2020016258A1 (en) * 2018-07-18 2020-01-23 Sgl Carbon Se Novel carbon fibre textile materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202183B2 (en) * 2008-08-21 2013-06-05 東邦テナックス株式会社 Surface porous carbon fiber, precursor fiber and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619796A (en) * 1983-12-08 1986-10-28 Oji Paper Company, Ltd. Process for preparation of porous carbon plates
US5370856A (en) * 1990-04-06 1994-12-06 Nippon Steel Corporation High strength carbon fiber and pre-carbonized fiber
JP2016521295A (en) * 2013-03-28 2016-07-21 イーエルジー カーボン ファイバー インターナショナル ゲーエムベーハー Pyrolysis system and method for recovering carbon fiber from carbon fiber-containing resin
WO2020016258A1 (en) * 2018-07-18 2020-01-23 Sgl Carbon Se Novel carbon fibre textile materials
CN109160972A (en) * 2018-08-03 2019-01-08 华南理工大学 A kind of elastomer and its preparation method and application with power electroresponse

Also Published As

Publication number Publication date
JPS6350447B2 (en) 1988-10-07

Similar Documents

Publication Publication Date Title
KR100805104B1 (en) Carbonaceous material having high surface area and conductivity and method of preparing same
US5089135A (en) Carbon based porous hollow fiber membrane and method for producing same
KR100485603B1 (en) Preparation of activated carbon fibers using nano fibers
KR20050014033A (en) Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers
JPH0617321A (en) Pitch-based activated carbon fiber
JP2016535175A (en) Activated carbon fiber and method for producing the same
JPS58120818A (en) Production of porous carbon fiber
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JP2005097792A (en) Ultrafine carbon fiber and method for producing the same
JP2014055381A (en) Acrylonitrile-based fiber and carbon material obtained by calcinating such fiber, and electrode containing such material
JPH02160924A (en) Porous carbon fiber and production thereof
JPH02242920A (en) Carbon fiber containing composite metal
EP1392899B1 (en) Activated biregional fibers and method for the manufacture of them
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JPH02160923A (en) Porous carbon fiber and production thereof
JPH05209368A (en) Production of polyphenylene sulfone fiber
JP3149504B2 (en) Fibrous activated carbon and its production method
KR100874459B1 (en) Carbonaceous material having high surface area and conductivity
JP2000345371A (en) Carbon thin film/metallic composite material and its production
KR20040026191A (en) Mesoporous Caborn Fibers and Method of Preparation Thereof
CN114351293B (en) Nano YAG (yttrium aluminum garnet) -doped polyacrylonitrile-based mesoporous activated carbon fiber and preparation method thereof
Kaludjerović Nanoporous Carbon Fibrous Materials
KR102519383B1 (en) Process for manufacturing high yield polyimide based activated carbon fiber and polyimide based activated carbon fiber using the same
JPH0491230A (en) Production of precursor
JPS62164734A (en) Production of cation-exchangeable fiber