KR20050014033A - Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers - Google Patents

Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers

Info

Publication number
KR20050014033A
KR20050014033A KR1020050004575A KR20050004575A KR20050014033A KR 20050014033 A KR20050014033 A KR 20050014033A KR 1020050004575 A KR1020050004575 A KR 1020050004575A KR 20050004575 A KR20050004575 A KR 20050004575A KR 20050014033 A KR20050014033 A KR 20050014033A
Authority
KR
South Korea
Prior art keywords
activated carbon
fiber
carbon fiber
nano
nanofibers
Prior art date
Application number
KR1020050004575A
Other languages
Korean (ko)
Other versions
KR100605006B1 (en
Inventor
김찬
이도영
Original Assignee
(주) 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 아모센스 filed Critical (주) 아모센스
Priority to KR1020050004575A priority Critical patent/KR100605006B1/en
Publication of KR20050014033A publication Critical patent/KR20050014033A/en
Application granted granted Critical
Publication of KR100605006B1 publication Critical patent/KR100605006B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides

Abstract

PURPOSE: A manufacturing method of activated carbon fiber is characterized by carbonizing nano fiber non-woven fabric without activating to form countless pores on a surface of the fiber. The activated carbon fiber has a large specific surface area. The activated carbon fiber is useful for electrode material, raw material of a catalyst carrier and high functional absorptive material. CONSTITUTION: Activated carbon fiber is obtained by the steps of: mixing precursor material of carbon fiber, inorganic compound and a solvent to manufacture a spinning solution; electric-spinning the spinning solution to manufacture nano fiber composited inorganic salt; heating the composited nano fiber in air at 0.5-5deg.C/min. of heating velocity to 250-350deg.C, followed by maintaining the nano fiber at the final temperature for 0.1-3hours to oxidization-stabilize the fiber; and then carbonizing the fiber at 500-1500deg.C under an inert condition or under a vacuum condition.

Description

전기방사법으로 제조한 나노섬유의 탄소화에 의한 나노세공 분포를 갖는 활성탄소섬유의 제조방법{Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers}Preparation method of activated carbon fibers having nanopore distribution by carbonization of nanofibers produced by electrospinning method {Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers}

본 발명은 활성화 공정을 거치지 않고 탄소화에 의해 나노세공분포를 갖는활성탄소나노섬유 부직포 제조에 관한 것이다.The present invention relates to the production of activated carbon nanofiber nonwoven fabric having nanopore distribution by carbonization without undergoing an activation process.

활성탄소섬유는 유기섬유를 방사한 후 산화안정화 처리하거나, 탄소화 및 산화안정화 처리된 섬유를 기체(스팀, CO2, 공기)와 무기화합물(ZnCl2, KOH, H3PO4) 등을 이용하여 섬유표면에 무수한 미세기공을 형성시키는 방법으로 제조된다.Activated carbon fiber is oxidative stabilized after spinning the organic fiber, or carbonized and oxidative stabilized fiber using gas (steam, CO 2 , air) and inorganic compounds (ZnCl 2 , KOH, H 3 PO 4 ) To form a myriad of micropores on the fiber surface.

상기 활성탄소섬유에 사용되는 전구체 재료로는 폴리아크릴로나이트릴(polyacrylonitrile, PAN), 셀룰로오스(cellulose), 피치(pitch), 페놀수지(phenol-resin) 등이 이용된다. 상기 재료를 용액방사나 용융방사에 의해 섬유를 제조한 다음, 고온 탄소화나 활성화 처리시 섬유의 융착이나 용융이 발생하지 않도록 산화안정화 처리한 다음, 이를 불활성 분위기하에서 500 - 1500℃ 온도 범위에서 탄소화 처리하여 탄소섬유를 제조한다.Precursor materials used in the activated carbon fibers include polyacrylonitrile (PAN), cellulose, pitch, phenol resin, and the like. The fibers are prepared by solution spinning or melt spinning, and then subjected to oxidative stabilization to prevent fusion or melting of fibers during high temperature carbonization or activation, and then carbonization at a temperature in the range of 500 to 1500 ° C. under an inert atmosphere. Treatment to produce carbon fibers.

제조된 안정화(불융화) 섬유나 탄소섬유는 산화성 기체나 각종 염류를 이용하여 700 - 1200 ℃ 온도범위에서 활성화하여 섬유표면에 무수한 미세공을 형성시키는 방법에 의해 활성탄소섬유가 제조되나, 이러한 방법은 제조공정상 에너지 낭비가 심하고, 세공구조를 제어하는데 제약이 있다. 특히 각종 염류를 이용한 약품활성화 방법은, 반응로(탄화로, 활성화로)의 부식과 함께 연속공정 및 대량생산에 어려움이 있으며, 사용전 산처리 및 중화처리를 하여 사용하는 불편함이 있다. 또한, 용액방사나 용융방사 방법으로 제조된 활성탄소섬유의 경우 직경이 10 - 20 ㎛ 범위가 대부분이어서 빠른 흡착, 탈착을 요구하는 기능이 요구되는 응용분야의 경우 한계가 있다.Activated carbon fibers are produced by stabilizing (immobilized) fibers or carbon fibers by activating an oxidizing gas or various salts in a temperature range of 700 to 1200 ° C. to form a myriad of fine pores on the fiber surface. Is a waste of energy in the manufacturing process, there is a restriction in controlling the pore structure. In particular, the chemical activation method using various salts, there is a difficulty in the continuous process and mass production with corrosion of the reactor (carbonization, activation furnace), there is inconvenience to use the acid treatment and neutralization treatment before use. In addition, in the case of activated carbon fibers produced by solution spinning or melt spinning methods, the diameter is in the range of 10-20 μm, so there are limitations in applications requiring a function of requiring fast adsorption and desorption.

본 발명의 목적은 상기한 바와 같은 단점을 갖는 활성화 단계를 거치지 않고 활성탄소 나노섬유 부직포를 제조하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing activated carbon nanofiber nonwovens without undergoing an activation step having the disadvantages described above.

즉, 본 발명은 산화안정화된 나노섬유 부직포를 활성화처리 단계를 거치지 않고 탄소화 처리에 의해 방사시 섬유내부에 함유된 각종 염류가 빠져나오면서 섬유 표면에 무수한 미세공을 형성시켜 체적대비 비표면적이 크고, 세공구조를 조절할 수 있는 활성탄소나노섬유 부직포 제조 방법을 제공하고자 한다.That is, the present invention forms a myriad of fine pores on the surface of the fiber while spinning the carbon nanofibers without spinning the oxidation-stabilized nanofiber nonwoven fabric by the carbonization treatment to form a myriad of fine pores on the surface of the fiber has a large specific surface area To provide a method of manufacturing an activated carbon nanofiber nonwoven fabric that can control the pore structure.

또한, 본 발명은 각종 촉매 담지재, 각종 전극재료(슈퍼캐퍼시터, 연료전지), 고성능 흡착재료 등으로 응용이 가능한 탄소 나노 섬유를 제공하고자 한다.In addition, the present invention is to provide carbon nanofibers that can be applied to various catalyst supporting materials, various electrode materials (supercapacitors, fuel cells), high performance adsorption materials and the like.

도 1은 전기방사 방식을 이용한 활성탄소섬유제조 공정도.1 is an activated carbon fiber manufacturing process using an electrospinning method.

도 2는 PAN에 ZnCl2를 5중량% 함유하여 복합방사한 섬유의 전자현미경 사진.Figure 2 is an electron microscope photograph of a composite spun fibers to contain 5% by weight of ZnCl 2 in the PAN.

도 3은 PAN에 ZnCl2를 0 - 5 중량% 함유하여 복합방사한 섬유의 열중량 분석(thermogravimetric analysis)를 나타낸 그래프.Figure 3 is a graph showing the thermogravimetric analysis of the composite spun fiber containing 0-5% by weight of ZnCl 2 in PAN.

도 4는 ZnCl25중량%를 함유한 나노복합섬유를 800℃ 에서 탄소화한 나노섬유의 전자현미경 사진.Figure 4 is an electron micrograph of the nanofibers carbonized nanocomposite fiber containing 5% by weight of ZnCl 2 at 800 ℃.

도 5는 800 ℃에서 탄소화하여 77K에서 질소 등온흡착을 나타낸 그래프.5 is a graph showing nitrogen isothermal adsorption at 77 K by carbonization at 800 ℃.

도 6는 DFT(Density Functional Theory, 밀도 함수 이론)분석에 의한 세공구조 변화를 나타낸 그래프.Figure 6 is a graph showing the pore structure change by Density Functional Theory (DFT) analysis.

이하 본 발명의 구성을 상세히 설명하면 다음과 같다.Hereinafter, the configuration of the present invention in detail.

본 발명은, 탄소섬유전구체 재료, 무기화합물 및 용매를 혼합하여 방사용액을 제조하는 단계; 상기 제조한 방사용액을 전기방사하여 무기염류가 복합화된 나노섬유를 얻는 단계; 상기 제조한 복합 나노섬유를 공기중에서 0.5 ~ 5℃/min의 승온속도로 250 ~ 350℃까지 승온한 후, 상기 최종온도에서 0.1 ~ 3시간 유지하여 산화 안정화시키는 단계; 상기 산화안정화된 섬유를 불활성 분위기 또는 진공상태에서 500 ~ 1500℃의 온도범위에서 탄소화시키는 단계를 포함하는 것을 특징으로 하는 활성탄소 나노섬유의 제조방법을 제공한다.The present invention comprises the steps of preparing a spinning solution by mixing a carbon fiber precursor material, an inorganic compound and a solvent; Electrospinning the prepared spinning solution to obtain nanofibers having an inorganic salt complexed thereto; Heating the prepared composite nanofibers to 250 to 350 ° C. at a heating rate of 0.5 to 5 ° C./min in air, and then oxidizing and stabilizing the mixture at 0.1 to 3 hours at the final temperature; It provides a method for producing activated carbon nanofibers, comprising the step of carbonizing the oxidative stabilized fibers in a temperature range of 500 ~ 1500 ℃ in an inert atmosphere or vacuum.

또한, 본 발명은 상기 탄소섬유전구체 재료가 폴리아크릴로나이트릴, 셀룰로오스, 피치 및 페놀수지 등으로 구성되는 그룹으로부터 선택되는 1종 이상인 것을 특징으로 하는 활성탄소나노섬유의 제조방법을 제공한다.The present invention also provides a method for producing activated carbon nanofibers, characterized in that the carbon fiber precursor material is at least one member selected from the group consisting of polyacrylonitrile, cellulose, pitch and phenol resin.

또한, 본 발명은, 상기 무기화합물은 ZnCl2, KOH 및 H3PO4으로 이루어지는 그룹으로부터 선택되는 1종 이상인 것을 특징으로 하는 활성탄소나노섬유의 제조방법을 제공한다.The present invention also provides a method for producing activated carbon nanofibers, characterized in that the inorganic compound is at least one member selected from the group consisting of ZnCl 2 , KOH and H 3 PO 4 .

또한, 본 발명은 상기 탄소섬유전구체 재료를 용해할 수 있는 용매가 N,N-디메틸포름 아미드(DMF), 디메틸아세트 아미드(DMAc), 테트라하이드로 퓨란(THF), 질산, 황산, DMSO, Dioxanone 으로부터 선택되는 1종 이상인 것을 특징으로 하는 활성탄소나노섬유 제조방법을 제공한다.In addition, the present invention is a solvent capable of dissolving the carbon fiber precursor material is N, N- dimethylformamide (DMF), dimethylacetamide (DMAc), tetrahydrofuran (THF), nitric acid, sulfuric acid, DMSO, Dioxanone It provides an activated carbon nanofiber manufacturing method characterized in that at least one selected.

또한, 본 발명은, 상기 활성탄소섬유의 직경이 50 - 500 nm 이고, 비표면적이 500 - 3500 ㎡/g인 것을 특징으로 하는 활성탄소나노섬유의 제조방법을 제공한다.The present invention also provides a method for producing activated carbon nanofibers, wherein the activated carbon fibers have a diameter of 50 to 500 nm and a specific surface area of 500 to 3500 m 2 / g.

이하, 첨부된 도면을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

먼저, 섬유성형성 고분자와 무기염류를 탄소섬유 전구체 고분자를 용해할 수 있는 용매에 용해하여 방사용액을 제조한다. 상기 섬유성형성 고분자로는 탄소섬유전구체 고분자인 폴리아크릴로나이트릴, 셀룰로오스, 페놀, 피치로 이루어지는 그룹으로부터 선택된 1종 이상을 사용할 수 있으며, 무기화합물로는 ZnCl2, KOH, H3PO4으로부터 이루어지는 그룹으로부터 선택된 1종 이상을 사용할 수 있다. 상기 탄소섬유 전구체 고분자를 용해할 수 있는 방사용매로는, N,N-디메칠포름아미드(DMF), 디메칠아세트 아미드(DMAc), 테트라하이드로 퓨란(THF), 질산, 황산, DMSO, Dioxanone 등의 유기용매 및 산등을 사용할 수 있다.First, a spinning solution is prepared by dissolving a fibrous forming polymer and an inorganic salt in a solvent capable of dissolving a carbon fiber precursor polymer. As the fibrous forming polymer, one or more selected from the group consisting of polyacrylonitrile, cellulose, phenol, and pitch, which are carbon fiber precursor polymers, may be used. As the inorganic compound, ZnCl 2 , KOH, and H 3 PO 4 may be used. One or more types selected from the group consisting of can be used. Examples of the spinning solvent that can dissolve the carbon fiber precursor polymer include N, N-dimethylformamide (DMF), dimethylacetamide (DMAc), tetrahydrofuran (THF), nitric acid, sulfuric acid, DMSO, Dioxanone, and the like. Organic solvents and acids can be used.

다음으로 상기 방사용액을 고전압하에서 전기방사하여 탄소섬유전구체 고분자와 무기염류가 혼합된 형태의 복합섬유를 제조한다. 이때 전기방사는 통상의 전기방사장치를 사용하여 상온, 진공, 온도조절 등의 환경에서 방사를 실시한다.Next, the spinning solution is electrospun under high voltage to produce a composite fiber in which a carbon fiber precursor polymer and an inorganic salt are mixed. At this time, the electrospinning is carried out in an environment such as room temperature, vacuum, temperature control using a conventional electrospinning device.

상기 제조된 복합섬유를 온도조절기와 공기유량을 조절할 수 있는 전기로에 넣고 상온에서 최종온도가 250 ~ 350℃가 되도록 0.5 - 5℃/min 의 승온속도로 승온하여 산화안정화 처리를 하여 불융화 섬유를 얻는다. 이때 ZnCl2등의 염류는 탈수반응을 촉진시켜 불융화 처리를 보다 신속하게 하는 효과가 있으며, 부분적으로 섬유로부터 탈리되기도 한다.Put the prepared fiber into an electric furnace that can control the temperature controller and air flow rate and the temperature is raised at a temperature increase rate of 0.5-5 ℃ / min so that the final temperature is 250 ~ 350 ℃ at room temperature to give an oxidation stabilized treatment Get At this time, salts such as ZnCl 2 have an effect of accelerating the dehydration reaction to speed up the incompatibility treatment, and may be partially detached from the fiber.

제조된 불융화 섬유는 불활성 분위기나 진공상태에서 500 - 1500℃의 온도범위에서 탄소화 처리하여 활성탄소섬유를 얻는다. 이와 같이 얻어진 섬유의 직경은 대략 50 - 500 nm 범위이고, 비표면적은 500 - 3500 ㎡/g 이다.The prepared infusible fibers are carbonized at an inert atmosphere or in a vacuum at a temperature in the range of 500-1500 ° C. to obtain activated carbon fibers. The diameter of the fibers thus obtained is in the range of approximately 50-500 nm and the specific surface area is 500-3500 m 2 / g.

이와 같이, 본 발명의 전구체 방사용액의 처리에 의해 탄소화 과정만으로 체적당 비표면적이 큰 활성탄소섬유의 제조는 각종 산업체에서 촉매담체재료, 전기이중층 슈퍼캐퍼시터용 전극재료, 연료전지 전극재료, 각종 고성능 흡착재료 등으로 다양하게 응용이 가능하다. 또한 본 발명에 의해 제조된 활성탄소섬유를 분쇄하여 사용할 수도 있다.As described above, the production of activated carbon fibers having a large specific surface area per volume only by the carbonization process by treatment of the precursor spinning solution of the present invention has been widely used in various industries, such as catalyst carrier materials, electrode materials for electric double layer supercapacitors, fuel cell electrode materials, Various applications are possible with high performance adsorption materials. In addition, the activated carbon fibers produced by the present invention may be used by grinding.

이하 실시예를 통하여 본 발명을 더욱 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited only to the following examples.

실시예Example

실시예 1Example 1

10 중량%의 폴리아크릴로나이트릴과, ZnCl21-10 중량%를 N,N-디메틸포름아마이드(DMF) 용매에 첨가하고, 60℃에서 1시간 교반한 후 상온에서 다시 24시간 교반하여 방사용액을 제조하였다. 상기 제조한 방사용액은 20kV, 집전체와 방사구와의 거리 20cm, 상온에서 전기방사하여 폴리아크릴로나이트릴에 염화아연이 복합화된 나노섬유를 얻었다. 5중량%의 ZnCl2을 함유하는 복합나노섬유의 전자현미경 사진은 도 2에 나타내었다. 이때 얻어진 섬유의 평균직경은 250nm 정도였다. 염화아연의 첨가량에 따른 복합나노섬유의 열적거동은 도 3에 나타내었는데, 염화아연의 첨가량이 증가할수록 열적거동이 증가하는 것을 알 수 있다. 상기 얻어진 복합섬유를 2℃/min로 승온하여 300℃에서 1시간 공기중에서 산화안정화 처리하여 불융화 섬유를 얻었다. 이때 평균직경은 거의 변화가 없었으며, 산화안정화 처리에 의해 표면이 갈색 또는 흑색으로 변하는 것을 관찰 할 수 있다.10% by weight of polyacrylonitrile and 1-10% by weight of ZnCl 2 are added to a solvent of N, N-dimethylformamide (DMF), and stirred at 60 ° C for 1 hour, followed by another 24 hours at room temperature. The use solution was prepared. The prepared spinning solution was electrospun at 20 kV, a distance of 20 cm between the current collector and the spinneret, and room temperature to obtain nanofibers in which zinc chloride was mixed with polyacrylonitrile. Electron micrograph of the composite nano-fiber containing 5 wt% of ZnCl 2 are shown in Fig. The average diameter of the fiber obtained at this time was about 250 nm. The thermal behavior of the composite nanofibers according to the amount of zinc chloride added is shown in Figure 3, it can be seen that the thermal behavior increases as the amount of zinc chloride increases. The obtained composite fiber was heated to 2 ° C./min, and subjected to oxidative stabilization in air at 300 ° C. for 1 hour to obtain an incompatible fiber. At this time, the average diameter was almost unchanged, and it can be observed that the surface changed to brown or black by oxidative stabilization treatment.

상기 산화안정화 처리된 불융화 섬유를 질소가스나 아르곤가스 등의 불활성 분위기에서 500 - 1500℃ 범위로 탄소화 처리하여 탄소섬유를 제조하였다. 도 4에는 염화아연이 5중량% 첨가된 섬유를 800℃에서 1시간 탄소화 처리된 섬유의 전자현미경 사진을 나타냈다. 얻어진 탄소섬유의 77K에서 질소 등온 흡착곡선을 도 5에 나타내었는데, 상기 도 5에서 보여지는 바와 같이 염화아연의 양이 증가할수록 질소 흡착량이 상대적으로 증가하는 것을 알 수 있으며, 얻어진 등온곡선으로부터 밀도함수이론(DFT, density functional theory)을 사용하여 세공구조를 평가했다(도6). 도 6으로부터, 얻어진 활성탄소 나노섬유의 경우 대부분 마이크로 세공으로 구성되어 있음을 알 수 있었다. 이와 같이 본 발명에 의하면 활성화 공정을 거치지 않고 탄소화 처리에 의해 간단히 활성탄소섬유를 얻을 수 있었다.The oxidative stabilized insoluble fiber was carbonized in an inert atmosphere such as nitrogen gas or argon gas in the range of 500-1500 ° C. to prepare carbon fiber. Figure 4 shows an electron micrograph of the fiber carbonized fiber treated with zinc chloride 5% by weight at 800 ℃ 1 hour. The nitrogen isothermal adsorption curve at 77 K of the obtained carbon fiber is shown in FIG. 5, and as shown in FIG. 5, the nitrogen adsorption amount is relatively increased as the amount of zinc chloride is increased. The pore structure was evaluated using a density functional theory (DFT) (FIG. 6). 6 shows that the activated carbon nanofibers were mostly composed of micropores. As described above, according to the present invention, the activated carbon fibers could be obtained simply by carbonization without undergoing an activation process.

실시예 2Example 2

20중량%의 폴리아크릴로나이트릴에 대해 ZnCl21- 10 중량%를 N,N-디메틸포름아마이드(DMF)와 디메틸아세트아미드(DMAc)의 50/50 중량부의 용매에 첨가하고, 60℃에서 1시간 교반한 후 다시 상온에서 24시간 교반하여 방사용액을 제조하였다. 제조된 방사용액은 20kV, 집전체와 방사구와의 거리 20cm, 상온에서 전기방사하여 폴리아크릴로나이트릴에 염화아연이 복합화된 나노섬유를 얻고, 실시예 1과 같은 방법에 의해 산화안정화 및 탄소화처리하여 활성탄소섬유를 얻었다. 얻어진 활성탄소섬유의 직경은 250nm, 비표면적은 500 - 3500 ㎡/g의 범위였다.To 20% by weight of polyacrylonitrile, 1-10% by weight of ZnCl 2 is added to 50/50 parts by weight of a solvent of N, N-dimethylformamide (DMF) and dimethylacetamide (DMAc) and at 60 ° C. After stirring for 1 hour and again stirred at room temperature for 24 hours to prepare a spinning solution. The prepared spinning solution was electrospun at 20 kV, a distance of 20 cm between the current collector and the spinneret, and electrospun at room temperature to obtain nanofibers in which zinc chloride was mixed with polyacrylonitrile, and subjected to oxidation stabilization and carbonization by the same method as in Example 1. Treatment gave an activated carbon fiber. The diameter of the obtained activated carbon fiber was 250 nm, and the specific surface area was 500-3500 m <2> / g.

본 발명의 방법은 탄소섬유 전구체와 무기화합물을 혼합하여 방사용액을 제조하고 이를 전기방사 한 후 산화안정화 및 탄소화를 거치는 것으로서, 본 발명에 의하면 활성화 과정을 거치지 않고 활성탄소나노섬유를 용이하게 제조할 수 있는 효과가 있다. 또한, 본 발명의 방법에 의해 제조된 활성탄소나노섬유는 체적대비 비표면적이 커, 각종 전극소재, 촉매담체재료, 고성능 흡착재료 등 폭넓은 산업분야에 매우 유용한 활성탄소섬유를 제공할 수 있다.The method of the present invention is to prepare a spinning solution by mixing a carbon fiber precursor and an inorganic compound, and then subjected to oxidation stabilization and carbonization after electrospinning it, according to the present invention to easily prepare activated carbon nanofibers without going through an activation process It can work. In addition, the activated carbon nanofibers produced by the method of the present invention have a large specific surface area to volume, and can provide very useful activated carbon fibers in a wide range of industries such as various electrode materials, catalyst carrier materials, and high performance adsorption materials.

Claims (5)

탄소섬유전구체 재료, 무기화합물 및 용매를 혼합하여 방사용액을 제조하는 단계,Preparing a spinning solution by mixing a carbon fiber precursor material, an inorganic compound and a solvent, 상기 제조한 방사용액을 전기방사하여 무기염류가 복합화된 나노섬유를 얻는 단계,Electrospinning the spinning solution prepared above to obtain nanofibers in which inorganic salts are complexed, 상기 제조한 복합 나노섬유를 공기중에서 0.5 ~ 5℃/min의 승온속도로 250 ~ 350℃까지 승온한 후, 상기 최종온도에서 0.1 ~ 3시간 유지하여 산화안정화시키는 단계,After heating the prepared composite nanofibers in the air at a temperature increase rate of 0.5 ~ 5 ℃ / min 250 ~ 350 ℃, and oxidative stabilization by maintaining 0.1 to 3 hours at the final temperature, 상기 산화안정화된 섬유를 불활성 분위기 또는 진공 상태에서 500 ~ 1500℃의 온도범위에서 탄소화시키는 단계를 포함하는 것을 특징으로 하는 활성탄소 나노섬유의 제조방법.Method for producing activated carbon nanofibers, comprising the step of carbonizing the oxidative stabilized fibers in a temperature range of 500 ~ 1500 ℃ in an inert atmosphere or vacuum. 제1항에 있어서, 상기 탄소섬유전구체 재료가 폴리아크릴로나이트릴(polyacrylonitrile), 셀룰로오스(cellulose), 피치(pitch) 및 페놀수지(phenol-resin)로 구성되는 그룹으로부터 선택되는 1종 이상인 것을 특징으로 하는 활성탄소나노섬유의 제조방법.The method of claim 1, wherein the carbon fiber precursor material is at least one member selected from the group consisting of polyacrylonitrile, cellulose, pitch, and phenol-resin. Method for producing activated carbon nanofibers. 제1항에 있어서, 상기 무기화합물이 ZnCl2, KOH 및 H3PO4으로 이루어진 그룹으로부터 선택되는 1종 이상인 것을 특징으로 하는 활성탄소나노섬유 제조방법.The method of claim 1, wherein the inorganic compound is ZnCl 2 , KOH and H 3 PO 4 The method for producing activated carbon nanofibers, characterized in that at least one member selected from the group consisting of. 제1항에 있어서, 상기 탄소섬유전구체 재료를 용해할 수 있는 용매가 N,N-디메틸포름 아미드(DMF), 디메틸아세트 아미드(DMAc), 테트라하이드로 퓨란(THF), 질산, 황산, DMSO, Dioxanone 으로부터 선택되는 1종 이상인 것을 특징으로 하는 활성탄소나노섬유 제조방법.The solvent of claim 1, wherein the solvent capable of dissolving the carbon fiber precursor material is N, N-dimethylformamide (DMF), dimethylacetamide (DMAc), tetrahydrofuran (THF), nitric acid, sulfuric acid, DMSO, Dioxanone. Activated carbon nanofiber manufacturing method, characterized in that at least one selected from. 제1항에 있어서, 상기 활성탄소섬유의 직경이 50 - 500 nm 이고, 비표면적이 500 - 3500 ㎡/g인 것을 특징으로 하는 활성탄소나노섬유 제조방법.The method of claim 1, wherein the activated carbon fiber has a diameter of 50 to 500 nm and a specific surface area of 500 to 3500 m 2 / g.
KR1020050004575A 2005-01-18 2005-01-18 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers KR100605006B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050004575A KR100605006B1 (en) 2005-01-18 2005-01-18 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050004575A KR100605006B1 (en) 2005-01-18 2005-01-18 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers

Publications (2)

Publication Number Publication Date
KR20050014033A true KR20050014033A (en) 2005-02-05
KR100605006B1 KR100605006B1 (en) 2006-07-28

Family

ID=37225218

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050004575A KR100605006B1 (en) 2005-01-18 2005-01-18 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers

Country Status (1)

Country Link
KR (1) KR100605006B1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603022B1 (en) * 2005-03-29 2006-07-24 한국과학기술연구원 Porous carbon nanofiber prepared using halogenated polymers and preparation method thereof
KR100650618B1 (en) * 2005-10-13 2006-11-29 재단법인 포항산업과학연구원 Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors
KR100701627B1 (en) * 2005-12-22 2007-03-29 한국생산기술연구원 Manufacturing method of nano sized activated carbon fiber comprising metal oxide and electrode for super capacitor using the same nano sized activated carbon fiber manufactured thereby
KR100715155B1 (en) * 2005-05-03 2007-05-10 주식회사 아모메디 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers
KR100759103B1 (en) * 2006-06-19 2007-09-19 주식회사 나노테크닉스 Method of preparing for pan/phenolic-resin-based carbon nanofibers and activated carbon nanofibers by electrospinning
KR100759102B1 (en) * 2006-05-29 2007-09-19 주식회사 나노테크닉스 Preparation method of two-phase carbon nanofibers and activated carbon nanofibers by electrospinning from polyacrylonitrile/pitch blend solutions
KR100805104B1 (en) * 2005-08-31 2008-02-21 삼성에스디아이 주식회사 Carbonaceous material having high surface area and conductivity and method of preparing same
CN100387762C (en) * 2006-07-10 2008-05-14 浙江大学 Polyacrylonitrile mesopore-macropore ultrafine carbon fiber and its preparation method
WO2008069633A1 (en) * 2006-12-08 2008-06-12 Lg Chem, Ltd. Manufacturing methods of mesoporous carbon structure with spray drying or spray pyrolysis and composition thereof
KR100895267B1 (en) * 2007-07-24 2009-04-29 연세대학교 산학협력단 AC/CNT Composite Electrode Using Electrostatic attraction and Method for Manufacturing the Same
KR101137980B1 (en) * 2009-10-14 2012-04-26 인하대학교 산학협력단 Method of preparing for cabonfiber form polystyrene by electospinning
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
KR101243846B1 (en) * 2005-12-22 2013-03-20 재단법인 포항산업과학연구원 Preparation method of superfine pitch fiber
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
US8709972B2 (en) 2007-02-14 2014-04-29 Nanocarbons Llc Methods of forming activated carbons
KR101396035B1 (en) * 2011-12-23 2014-05-19 한국생산기술연구원 Method for manufacturing activated carbon fibers using electro spinning and manufacturing
KR20160142613A (en) 2015-06-03 2016-12-13 가톨릭대학교 산학협력단 Tubular saffolds
KR200487156Y1 (en) 2017-06-01 2018-08-13 이찬우 Mirror mask
KR20180003445U (en) 2017-06-01 2018-12-11 이찬우 Change type mirror mask
KR102425161B1 (en) * 2021-06-28 2022-07-27 한국화학연구원 Method for manufacturing nitrogen-doped porous carbon nanofiber and nitrogen-doped porous carbon nanofiber manufactured therefrom
CN115106057A (en) * 2022-05-12 2022-09-27 山西新华防化装备研究院有限公司 Preparation method of high-temperature gas adsorption material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675923B1 (en) * 2005-12-01 2007-01-30 전남대학교산학협력단 Metal oxide incorporated activated carbon nanofibers by co-electrospinning, their applications of electrode for supercapacitors, and the producing method of the same
KR100732532B1 (en) 2005-12-01 2007-06-27 전남대학교산학협력단 A method of ultra-fine carbon fibers and activated carbon fibers by electrospinning from phenolic-resin and fiber produced using the same
KR100954538B1 (en) 2007-12-04 2010-04-22 주식회사 아모그린텍 Packing paper using the nanofibers of functional subjoin
KR100967622B1 (en) 2008-03-06 2010-07-05 전남대학교산학협력단 Manufacturing method of Fibrous Adsorbent by blend electrospinning for VOC absorbent
KR100983059B1 (en) 2008-07-24 2010-09-17 한국에너지기술연구원 Porous Carbon Fiber Using MgO and the Fuel Cell Catalyst Support Using the same
US20100167177A1 (en) * 2008-11-06 2010-07-01 Industry Foundation Of Chonnam National University Carbon nanofiber with skin-core structure, method of producing the same, and products comprising the same
KR100995154B1 (en) 2010-02-11 2010-11-18 전남대학교산학협력단 Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same
KR101226816B1 (en) 2010-12-31 2013-01-25 주식회사 효성 Method for measuring pH of solvent for carbon fiber
KR101329105B1 (en) 2013-04-18 2013-11-14 삼공물산 주식회사 Manufacturing method of gask-mask
KR101329104B1 (en) * 2013-04-18 2013-11-14 삼공물산 주식회사 Manufacturing method of rayon -type activated carbon fiber using potassium permanganate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040095804A (en) * 2003-04-28 2004-11-16 김찬 Preparation of nanotubular carbon nanofiber by using electrospinning

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603022B1 (en) * 2005-03-29 2006-07-24 한국과학기술연구원 Porous carbon nanofiber prepared using halogenated polymers and preparation method thereof
KR100715155B1 (en) * 2005-05-03 2007-05-10 주식회사 아모메디 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
KR101337483B1 (en) * 2005-08-25 2013-12-06 루디야드 라일 이스트반 Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
KR100805104B1 (en) * 2005-08-31 2008-02-21 삼성에스디아이 주식회사 Carbonaceous material having high surface area and conductivity and method of preparing same
KR100650618B1 (en) * 2005-10-13 2006-11-29 재단법인 포항산업과학연구원 Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors
KR100701627B1 (en) * 2005-12-22 2007-03-29 한국생산기술연구원 Manufacturing method of nano sized activated carbon fiber comprising metal oxide and electrode for super capacitor using the same nano sized activated carbon fiber manufactured thereby
KR101243846B1 (en) * 2005-12-22 2013-03-20 재단법인 포항산업과학연구원 Preparation method of superfine pitch fiber
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
KR100759102B1 (en) * 2006-05-29 2007-09-19 주식회사 나노테크닉스 Preparation method of two-phase carbon nanofibers and activated carbon nanofibers by electrospinning from polyacrylonitrile/pitch blend solutions
KR100759103B1 (en) * 2006-06-19 2007-09-19 주식회사 나노테크닉스 Method of preparing for pan/phenolic-resin-based carbon nanofibers and activated carbon nanofibers by electrospinning
CN100387762C (en) * 2006-07-10 2008-05-14 浙江大学 Polyacrylonitrile mesopore-macropore ultrafine carbon fiber and its preparation method
US8057774B2 (en) 2006-12-08 2011-11-15 Lg Chem, Ltd. Manufacturing methods of mesoporous carbon structure with spray drying or spray pyrolysis and composition thereof
WO2008069633A1 (en) * 2006-12-08 2008-06-12 Lg Chem, Ltd. Manufacturing methods of mesoporous carbon structure with spray drying or spray pyrolysis and composition thereof
US8709972B2 (en) 2007-02-14 2014-04-29 Nanocarbons Llc Methods of forming activated carbons
KR100895267B1 (en) * 2007-07-24 2009-04-29 연세대학교 산학협력단 AC/CNT Composite Electrode Using Electrostatic attraction and Method for Manufacturing the Same
KR101137980B1 (en) * 2009-10-14 2012-04-26 인하대학교 산학협력단 Method of preparing for cabonfiber form polystyrene by electospinning
KR101396035B1 (en) * 2011-12-23 2014-05-19 한국생산기술연구원 Method for manufacturing activated carbon fibers using electro spinning and manufacturing
KR20160142613A (en) 2015-06-03 2016-12-13 가톨릭대학교 산학협력단 Tubular saffolds
KR200487156Y1 (en) 2017-06-01 2018-08-13 이찬우 Mirror mask
KR20180003445U (en) 2017-06-01 2018-12-11 이찬우 Change type mirror mask
KR102425161B1 (en) * 2021-06-28 2022-07-27 한국화학연구원 Method for manufacturing nitrogen-doped porous carbon nanofiber and nitrogen-doped porous carbon nanofiber manufactured therefrom
CN115106057A (en) * 2022-05-12 2022-09-27 山西新华防化装备研究院有限公司 Preparation method of high-temperature gas adsorption material

Also Published As

Publication number Publication date
KR100605006B1 (en) 2006-07-28

Similar Documents

Publication Publication Date Title
KR100605006B1 (en) Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers
Huang et al. Fabrication of porous fibers via electrospinning: strategies and applications
US10563323B2 (en) Method for production of carbon nanofiber mat or carbon paper
KR100805104B1 (en) Carbonaceous material having high surface area and conductivity and method of preparing same
Nataraj et al. Polyacrylonitrile-based nanofibers—A state-of-the-art review
JP4456600B2 (en) Method for producing porous carbon nanofiber using camphor and carbon nanofiber produced by this method
US8993199B2 (en) Flexible carbon fiber nonwoven fabric
KR100623881B1 (en) Preparation method of polyacrylonitrilePAN/polyimidePI composite nano-fibers by electrospinning, and carbon fibers, activated carbon fibers therefrom
KR100485603B1 (en) Preparation of activated carbon fibers using nano fibers
KR101485867B1 (en) Porous carbon structure comprising polymers of intrinsic microporosity and preparation method thereof
KR20110068293A (en) Gas sensor using porous nano-fiber containing metal oxide and manufacturing method thereof
KR101439896B1 (en) Method for preparing controlled porous carbon nano sheet and porous carbon nano sheet made by the same
CN106521715A (en) Preparing method of microporous carbon fiber with high specific surface area
KR101308736B1 (en) Tin oxide embedded carbon nanofiber and method of manufacturing the same, and lithium secondary battery using the same
KR20090055299A (en) Carbonaceous material and method of preparing same
Chen et al. Advanced functional nanofibers: strategies to improve performance and expand functions
JP2008169511A (en) Method for producing ultrafine carbon fiber by sheath-core melt-spinning method
KR20130073481A (en) Method for manufacturing aramid nano fiber having heat resistance using electro spinning and manufacturing method for activated carbon fibers
JP2017066540A (en) Production method of carbon fiber and carbon fiber sheet
KR101221615B1 (en) Preparation method of carbon nano-fiber using electrospinning
KR100874459B1 (en) Carbonaceous material having high surface area and conductivity
KR100487247B1 (en) Mesoporous Caborn Fibers and Method of Preparation Thereof
JP6336947B2 (en) Polyvinyl alcohol-based carbon nanofibers manufactured at low yield and high yield by electrospinning method
JP6657712B2 (en) Method for producing carbon fiber and carbon fiber sheet
CN108707999A (en) A method of preparing active carbon nanofibers by presoma of sodium lignin sulfonate

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee