KR100650618B1 - Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors - Google Patents

Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors Download PDF

Info

Publication number
KR100650618B1
KR100650618B1 KR1020050096694A KR20050096694A KR100650618B1 KR 100650618 B1 KR100650618 B1 KR 100650618B1 KR 1020050096694 A KR1020050096694 A KR 1020050096694A KR 20050096694 A KR20050096694 A KR 20050096694A KR 100650618 B1 KR100650618 B1 KR 100650618B1
Authority
KR
South Korea
Prior art keywords
raw material
reactor
activator
carbon raw
surface area
Prior art date
Application number
KR1020050096694A
Other languages
Korean (ko)
Inventor
이성영
홍익표
박세민
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020050096694A priority Critical patent/KR100650618B1/en
Application granted granted Critical
Publication of KR100650618B1 publication Critical patent/KR100650618B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials

Abstract

A method for fabricating activated carbons with high specific surface area for a capacitor electrode is provided to reduce the volume of a special reactor by suppressing explosive boiling by removing materials of low molecular weight causing a bubbling phenomenon when temperature increases. An available THF removal step(S10) controls the available amount of THF in a coal carbon material to be 5wt% or 10wt%. A mixing step(S20) mixes NaOH or KOH into the carbon material in a reactor, so that weight ratio of the carbon material and the activator becomes 1:2 or 1:6. An absorption step(S30) maintains internal temperature of the reactor as 400-500 degrees in order for the activator to be absorbed into the carbon material completely. An activating step(S40) induces activation reaction by increasing the internal temperature of the reactor to 600-900 degrees after the absorption step.

Description

캐패시터 전극용 고 비표면적을 갖는 활성탄 제조방법{METHOD FOR MANUFACTURING ACTIVATED CARBONS WITH HIGH SPECIFIC SURFACE AREA AS AN ELECTRODES OF CAPACITORS}METHODS FOR MANUFACTURING ACTIVATED CARBONS WITH HIGH SPECIFIC SURFACE AREA AS AN ELECTRODES OF CAPACITORS}

도 1은 본 발명에 따른 제조방법을 보인 플로우챠트.1 is a flow chart showing a manufacturing method according to the present invention.

본 발명은 활성탄 제조방법에 관한 것으로, 보다 상세하게는 석탄계 탄소원료의 테트라하이드로퓨란(이하 'THF'라 함) 가용분의 양을 5중량% 내지 10중량%로 조절한 후 활성화함으로써 보다 우수한 캐패시턴스를 갖도록 한 캐패시터 전극용 고 비표면적을 갖는 활성탄 제조방법에 관한 것이다.The present invention relates to a method for producing activated carbon, and more particularly, by adjusting the amount of soluble fraction of tetrahydrofuran (hereinafter referred to as 'THF') of coal-based carbon raw materials to 5% by weight to 10% by weight, thereby providing better capacitance. The present invention relates to a method for producing activated carbon having a high specific surface area for a capacitor electrode.

일반적으로, 캐패시터의 전극재로 사용되는 활성탄은 고연화점 피치와 같은 탄소원료에 수산화나트륨(NaOH), 수산화칼륨(KOH) 등의 활성화제를 첨가하여 활성화시킴으로써 만들어진다.In general, activated carbon used as an electrode material of a capacitor is made by activating by adding an activator such as sodium hydroxide (NaOH), potassium hydroxide (KOH) to a carbon raw material such as a high softening point pitch.

이러한 활성탄이 캐패시터의 전극재로 사용되기 위해서는 우수한 캐패시턴스를 가져야 하며, 활성화 수율이 높아야 한다.In order to use such activated carbon as the electrode material of the capacitor, it must have excellent capacitance and high activation yield.

그런데, 캐패시턴스는 활성탄의 비표면적이 클수록, 활성화 반응에 의해 만 들어지는 메조 기공이 많을수록 높아진다고 알려져 있다. By the way, it is known that the capacitance increases as the specific surface area of activated carbon increases and the more meso pores produced by the activation reaction.

이와 같은 이유로 활성탄의 캐패시턴스를 높이기 위한 방법이 개시된 바 있으며, 예컨대 일본 공개특허 평6-144817호가 그것이다.For this reason, a method for increasing the capacitance of activated carbon has been disclosed, for example Japanese Patent Laid-Open No. 6-144817.

개시된 바에 따르면, 고(高) 비표면적을 가진 활성탄을 제조하기 위해 탄소원료와 수산화칼륨 등의 활성화제를 중량비 1:2 내지 1:8이 되도록 공급하고, 불활성가스 분위기 또는 감압하에서 450∼550℃ 이하의 온도로 연속처리를 행한 후 다시 불활성가스 분위기하에서 600∼1000℃ 이하의 온도로 연속 활성화처리함으로써 고 비표면적을 가지는 활성탄을 연속식으로 제조하도록 한 것이다.According to the disclosure, in order to prepare activated carbon having a high specific surface area, a carbon raw material and an activator such as potassium hydroxide are supplied at a weight ratio of 1: 2 to 1: 8, and are supplied at 450 to 550 ° C. under an inert gas atmosphere or reduced pressure. After continuous treatment at the following temperature, activated carbon having a high specific surface area is continuously produced by continuous activation treatment at a temperature of 600 to 1000 ° C. or lower under an inert gas atmosphere.

그러나, 이러한 제조방법의 경우에는 600℃ 부근에서 탄소원료와 활성화제로 이루어진 슬러리가 폭발적으로 비등하여 넘쳐 흐르게 되고, 그 결과 활성화 수율을 저하시킴은 물론 비표면적이 감소되어 결국 캐패시턴스를 저하시키는 문제점이 있다.However, in the case of such a manufacturing method, the slurry consisting of the carbon raw material and the activator is explosively boiled and overflowed at around 600 ° C. As a result, the activation yield is lowered and the specific surface area is reduced, resulting in a problem of lowering the capacitance. .

뿐만 아니라, 폭발적인 비등에 대비하기 위해서는 탄소원료의 무게(g 혹은 kg) 대비 100배의 부피(ml 혹은 L)를 가진 특수 반응기를 사용하여야 하는데 이는 비용의 급증을 초래해 결국 제품의 경쟁력을 떨어뜨리는 문제점으로 작용하게 된다.In addition, to prepare for explosive boiling, a special reactor with a volume (ml or L) of 100 times the weight (g or kg) of the carbon raw material must be used, which leads to a sharp increase in costs, which in turn lowers the competitiveness of the product. It becomes a problem.

본 발명은 상술한 바와 같은 종래 기술이 갖는 제반 문제점을 감안하여 이를 해결하고자 창출한 것으로, 탄소원료의 THF 가용분을 적절하게 조절함으로써 온도 상승시 부품(Bubbling) 현상을 야기시키는 저분자량의 물질들을 제거하여 폭발적인 비등을 억제함으로써 특수 반응기의 부피를 줄일 수 있을 뿐만 아니라 탄소원료와 활성화제 간의 안정적인 접촉시간을 늘려 비표면적이 높은 활성탄을 제조할 수 있도록 하는데 그 주된 목적이 있다.The present invention has been made in view of the above-mentioned problems of the prior art, and has been created to solve this problem. By appropriately adjusting the THF soluble content of a carbon raw material, low molecular weight substances causing a phenomenon of bubbling at a temperature rise may be obtained. The main purpose is to reduce the volume of the special reactor by removing the explosive boiling to remove, as well as to increase the stable contact time between the carbon raw material and the activator to produce activated carbon having a high specific surface area.

본 발명은 상기한 기술적 과제를 달성하기 위한 고 비표면적을 갖는 활성탄 제조방법은, 석탄계 탄소원료에서 THF 가용분의 양을 5중량% 내지 10중량%로 조절하는 THF 가용분 제거단계와; 반응기 내에 장입된 탄소원료에 활성화제인 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)을 단독 혹은 혼합한 형태로 탄소원료와 활성화제의 중량비가 1:2 내지 1:6이 되도록 함께 첨가하여 혼합하는 혼합단계와; 상기 활성화제가 탄소원료에 완전히 흡수될 수 있도록 반응기 내부 온도를 400∼500℃ 온도로 유지시키는 흡수단계와; 상기 흡수단계후 상기 반응기 내부의 온도를 600∼900℃까지 승온하여 활성화 반응을 유도하는 활성화단계를 포함하여 이루어지는 것에 그 주된 기술적 특징이 있다.The present invention provides a method for producing activated carbon having a high specific surface area for achieving the above technical problem, the THF soluble component removal step of adjusting the amount of THF soluble component in coal-based carbon raw material to 5% by weight to 10% by weight; Mixing by adding and mixing together the carbon raw material charged in the reactor so that the weight ratio of the carbon raw material and the activator is 1: 2 to 1: 6 in the form of a single or mixed form of sodium hydroxide (NaOH) or potassium hydroxide (KOH) as an activator Steps; An absorption step of maintaining an internal temperature of the reactor at a temperature of 400 to 500 ° C. such that the activator can be completely absorbed into the carbon raw material; After the absorption step, the main technical feature is to include an activation step of inducing an activation reaction by raising the temperature in the reactor to 600 ~ 900 ℃.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예에 대해 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.

도 1은 본 발명에 따른 제조방법을 보인 플로우챠트이다.1 is a flow chart showing a manufacturing method according to the present invention.

본 발명은 활성화 반응을 촉진시켜 캐패시턴스의 능력을 높일 수 있도록 한 것으로, 활성화 반응이란 탄소원료에 활성화제를 첨가한 후 승온하여 활성탄의 표면에 메조 기공 등을 형성시킴으로써 활성탄이 캐패시터의 전극재로 사용될 때 우수한 캐패시턴스를 가질 수 있게 해주는 것을 말한다.The present invention is to increase the capacity of the capacitance by promoting the activation reaction, the activation reaction is activated carbon is used as the electrode material of the capacitor by forming a meso pore on the surface of the activated carbon after raising the temperature by adding the activator to the carbon raw material When it is said to have a good capacitance.

도 1에서와 같이, 본 발명에서 상기 활성화 반응은 크게 THF 가용분 제거단계(S10), 혼합단계(S20), 흡수단계(S30), 활성화단계(S40)로 이루어진다.As shown in Figure 1, the activation reaction in the present invention consists of THF soluble component removal step (S10), mixing step (S20), absorption step (S30), activation step (S40).

먼저, 상기 THF 가용분 제거단계(S10)는 탄소원료의 무게(kg)와 THF의 부피(L)의 비율을 다양하게 하여 혼합 및 교반한 후 종이 필터로 THF 및 THF 가용분을 통과, 제거시켜 원하는 THF 가용분을 갖는 탄소원료를 얻는다.First, the THF solubles removing step (S10) is mixed and stirred by varying the ratio of the weight (kg) of the carbon raw material and the volume (L) of THF, and then passed through the THF and THF solubles with a paper filter, to remove A carbon raw material having a desired THF soluble content is obtained.

상기 탄소원료로는 석탄계 반성코크스 및 석탄계 고연화점 피치가 바람직하며, 활성화제로는 수산화나트륨 또는 수산화칼륨이 바람직하다.The carbon raw material is preferably coal-based semi-coke and coal-based high softening point pitch, and sodium or potassium hydroxide is preferable as an activator.

특히, 활성화제로 사용되는 수산화나트륨과 수산화칼륨을 비교해 보면 수산화나트륨이 수산화칼륨보다 활성화도가 매우 낮다.In particular, when compared with sodium hydroxide and potassium hydroxide used as an activator, sodium hydroxide is much lower in activation than potassium hydroxide.

따라서, 수산화나트륨만을 첨가하는 경우에는 활성화도가 낮아 미세한 메조 기공이 많이 만들어지나 이로 인해 활성탄의 비표면적이 작아진다.Therefore, when only sodium hydroxide is added, the degree of activation is low, so that a lot of fine mesopores are made, thereby reducing the specific surface area of activated carbon.

반면, 수산화칼륨만을 첨가하는 경우에는 높은 활성화도로 인해 탄소원료의 표면을 크게 깍아 내기 때문에 활성탄의 비표면적을 증가시키지만 미세한 메조 기공의 수가 적어진다.On the other hand, when only potassium hydroxide is added, the surface of the carbon raw material is sharply scraped off due to its high degree of activation, thereby increasing the specific surface area of the activated carbon but decreasing the number of fine mesopores.

본 발명에서는 상기 수산화나트륨 또는 수산화카륨 중에서 선택된 하나를 첨가할 수도 있고 이들을 일정한 비율로 혼합하여 복합적으로 첨가할 수도 있다.In the present invention, one selected from the above sodium hydroxide or carium hydroxide may be added, or they may be mixed and mixed at a constant ratio.

THF 가용분은 저분자량의 유기화합물로서 석탄계 탄소원료가 이러한 저분자량의 유기화합물을 다량 함유할 경우에는 부품현상(Bubbling)을 일으킨다.THF soluble fraction is a low molecular weight organic compound, and when coal-based carbonaceous material contains a large amount of such a low molecular weight organic compound, it causes bubbling.

예컨대, 석탄계 탄소원료의 온도가 상승할 경우 저분자량의 유기화합물들은 용융되며 탄소원료 내 발생가스가 배출되는 탄소원료 입자 사이의 유로를 차단하므 로 발생가스압에 의하여 이러한 탄소원료의 부품현상이 발생하게 된다.For example, when the temperature of the coal-based carbon raw material rises, low molecular weight organic compounds are melted and block the flow path between the carbon raw material particles from which the generated gas in the carbon raw material is discharged. do.

이와 같이, THF 가용분을 제거하기 위하여 석탄계 탄소원료의 무게(kg)와 THF의 부피(L)의 비율을 조절하여 첨가, 교반한 후 필터로 THF 가용분을 통과, 제거하는데, THF가 탄소원료 내의 THF 가용분을 무한대로 용해 시킬 수 있는 것이 아니므로 탄소원료의 THF 가용분 함량에 따라 탄소원료의 무게(kg)와 THF의 부피(L)의 비율을 적절히 조절하여야 한다.In this way, in order to remove the THF soluble fraction, the ratio of the weight of the carbonaceous carbon raw material (kg) and the volume of the THF (L) is adjusted and added, followed by stirring and passing through the THF soluble component with a filter. Since it is not possible to dissolve THF soluble content in infinitely, the ratio of weight (kg) of carbon raw material and volume (L) of THF should be properly adjusted according to THF soluble content of carbon raw material.

본 발명에서는 석탄계 탄소원료의 THF 가용분 함량이 10중량% 보다 클 경우 부품현상이 심하게 되어 비표면적이 감소하고 부품현상에 의하여 활성화 수율이 낮아지므로 바람직하지 않고, THF 가용분 함량이 5중량% 보다 작을 경우에는 사용되는 THF의 양이 많아지고 필터로 THF 가용분을 통과, 제거하는데 걸리는 시간이 길어져서 경제적인 공정을 구축할 수 없으므로 바람직하지 않다.In the present invention, when the THF soluble content of the coal-based carbon raw material is greater than 10% by weight, the component phenomenon becomes severe and the specific surface area decreases and the activation yield is lowered by the component development, which is not preferable, and the THF soluble content is more than 5% by weight. If it is small, it is not preferable because the amount of THF used increases and the time taken to pass and remove the THF solubles through the filter becomes long, and thus an economical process cannot be established.

다음, 상기 혼합단계(S20)는 반응기 내에 장입된 탄소원료에 활성화제인 수산화나트륨과 수산화칼륨을, 탄소원료와 활성화제의 중량비율이 1:2 내지 1:6이 되도록 함께 첨가하여 혼합하는 단계이다.Next, the mixing step (S20) is a step of mixing by adding together the sodium hydroxide and potassium hydroxide as an activator to the carbon raw material loaded in the reactor so that the weight ratio of the carbon raw material and the activator is 1: 2 to 1: 6. .

여기에서, 활성화제가 탄소원료에 대해 중량비로 1:2보다 더 적게 첨가되면 활성화제의 종류에 관계없이 활성화 반응율이 너무 낮아 메조 기공 등의 형성이 저조하게 되므로 기준치 이상의 캐패시턴스를 얻지 못하며, 활성화제가 탄소원료에 대해 중량비율로 1:6보다 더 많이 첨가하게 되면 활성화 반응율이 너무 높아 활성화 수율이 저하되게 되므로 상기 범위로 조성하는 것이 특히 바람직하다.Here, when the activator is added less than 1: 2 by weight relative to the carbon raw material, the activation reaction rate is too low regardless of the type of activator, so that the formation of mesopores is poor, and thus, the activator does not obtain the capacitance above the standard value. When the amount of the raw material is added more than 1: 6 in the weight ratio, the activation reaction rate is so high that the activation yield is lowered.

상기 본 발명의 범위내에서 호적치를 찾기 위한 실험 결과 탄소원료와 활성 화제의 중량비는 1:4인 경우에 가장 높은 활성화 반응율을 보였다.As a result of the experiment for finding a suitable value within the scope of the present invention, the weight ratio of the carbon raw material and the activator showed the highest activation reaction rate when the ratio was 1: 4.

그 다음, 상기 흡수단계(S30)는 활성화제가 탄소원료에 완전히 흡수될 수 있도록 반응기 내의 온도를 400∼500℃로 유지시키는 단계이다.Then, the absorption step (S30) is a step of maintaining the temperature in the reactor to 400 ~ 500 ℃ so that the activator is completely absorbed by the carbon raw material.

이때, 활성화 반응은 후술하는 바와 같이 600℃ 이상의 온도에서 일어나지만 활성화제를 반응기 내에 첨가한 후 바로 600℃ 이상으로 승온하게 되면 활성화제가 탄소원료의 표면과 충분히 접촉하지 못하기 때문에 충분한 활성화 반응율을 얻지 못하게 되며, 이는 최종적인 캐패시턴스에 부정적인 영향을 준다.At this time, the activation reaction occurs at a temperature of 600 ℃ or more as described below, but if the temperature is raised to 600 ℃ immediately after the addition of the activator in the reactor, the activator is not sufficiently in contact with the surface of the carbon raw material does not obtain a sufficient activation reaction rate This negatively affects the final capacitance.

따라서, 활성화제가 탄소원료의 표면과 충분히 접촉할 때까지 일정한 온도로 유지시켜주어야 한다.Therefore, the activator should be maintained at a constant temperature until it is sufficiently in contact with the surface of the carbon raw material.

아울러, 유지온도가 400℃ 미만이 되면 활성화제의 활동도가 저하되고 500℃를 초과하게 되면 활성화제가 탄소원료의 표면과 충분히 접촉하지 못한 채로 활성화 반응이 일어날 우려가 있으므로 400~500℃로 유지시킴이 특히 바람직하다.In addition, if the holding temperature is less than 400 ℃ activity of the activator is lowered, if it exceeds 500 ℃ to maintain the 400 ~ 500 ℃ because the activator may not be in sufficient contact with the surface of the carbon raw material, the activation reaction may occur This is particularly preferred.

이때, 상기 흡수단계는 0.5∼1.5 시간 동안 이루어지는 것이 바람직한데, 만약 유지시간이 0.5 시간 미만이면 활성화제가 탄소원료와 충분히 접촉할 수 없으며, 1.5 시간 이상의 유지시간은 불필요하게 제조공정을 지연시키므로 바람직하지 않다.At this time, the absorption step is preferably made for 0.5 to 1.5 hours, if the holding time is less than 0.5 hours, the activator can not be in sufficient contact with the carbon raw material, the holding time of 1.5 hours or more undesirably delay the manufacturing process is not preferable not.

또한, 상기 흡수단계에서는 반응기 내로 불활성가스를 주입하는데, 질소, 아르곤, 헬륨과 같은 불활성가스는 비산화성 분위기를 형성하여 탄소원료가 승온과정에서 산화되는 것을 방지해 준다.In addition, in the absorption step, inert gas is injected into the reactor, inert gas such as nitrogen, argon and helium forms a non-oxidizing atmosphere to prevent the carbon raw material from being oxidized during the temperature increase process.

마지막으로, 상기 활성화단계(S40)는 활성화제가 탄소원료와 충분히 접촉한 상태에서 반응기 내의 온도를 600∼900℃가 되도록 승온하여 활성화 반응이 일어나게 해주는 단계이다.Finally, the activating step (S40) is a step to raise the temperature in the reactor to 600 ~ 900 ℃ in the state in which the activator is in sufficient contact with the carbon raw material to cause the activation reaction.

여기에서, 반응기 내의 온도가 600℃ 미만이 되면 활성화 반응율이 너무 낮아 기준치 이상의 캐패시턴스를 얻을 수 없으며, 900℃를 초과하게 되면 활성화 반응율이 너무 높아 활성화 수율이 저하되므로 활성화 반응은 상기 600∼900℃ 범위에서 이루어지는 것이 바람직하다.Here, when the temperature in the reactor is less than 600 ℃ activation reaction rate is too low to obtain a capacitance higher than the reference value, if it exceeds 900 ℃ activation reaction rate is too high because the activation yield is lowered, the activation reaction is in the 600 ~ 900 ℃ range It is preferred to be made from.

[실시예]EXAMPLE

이하, 본 발명의 실시예에 대하여 설명하기로 한다.Hereinafter, embodiments of the present invention will be described.

본 발명에 따른 제조방법의 효과를 알아보기 위해 THF 가용분을 제거한 반성코크스:수산화칼륨을 중량비 1:4로 하여 반응기에 장입하고, 질소 가스를 주입하면서 500℃에서 1시간 동안 유지시킨 후에 10℃/min의 승온속도로 800℃까지 온도를 상승시킨 상태에서 활성화 반응을 통해 제품을 만들었다.In order to examine the effect of the manufacturing method according to the present invention, THF solubles were removed and charged into a reactor with a weight ratio of 1: 4 in potassium hydroxide, and then maintained at 500 ° C. for 1 hour while injecting nitrogen gas, followed by 10 ° C. The product was made through an activation reaction with the temperature raised to 800 ° C. at a rate of temperature increase / min.

이후, 만들어진 제품을 증류수로 세정하고 건조시켜 활성탄을 제조한 후 각각의 물성을 측정하였는 바, 그 결과는 다음 표 1과 같다.Thereafter, the produced product was washed with distilled water and dried to prepare activated carbon, and then the physical properties thereof were measured. The results are shown in Table 1 below.

THF가용분함량(중량%)THF soluble content (wt%) THF/ 탄소원료비율THF / Carbon Raw Material Ratio 활성화수율 (중량%)Activation yield (% by weight) 비표면적 (㎡/g)Specific surface area (㎡ / g) 캐패시턴스 (F/g)Capacitance (F / g) 비교예1Comparative Example 1 18.218.2 00 41.041.0 30493049 40.840.8 비교예2Comparative Example 2 12.312.3 5:15: 1 40.340.3 28722872 57.457.4 발명예1Inventive Example 1 9.79.7 10:110: 1 63.263.2 35033503 62.662.6 발명예2Inventive Example 2 5.85.8 20:120: 1 64.864.8 33643364 60.760.7 비교예3Comparative Example 3 1.41.4 100:1100: 1 64.064.0 30943094 51.251.2

상기 표 1을 통해 알 수 있듯이, 비교예 1 및 비교예 2는 THF 가용분의 함량이 10중량% 이상인 경우이며 활성화 열처리시 용융 수산화칼륨 및 탄소원료가 비등하여 넘침에 따라서 활성화 수율이 낮음을 알 수 있다.As can be seen from Table 1, Comparative Example 1 and Comparative Example 2 is a case where the content of the THF soluble content is more than 10% by weight and the activation yield is low according to the overflow of the molten potassium hydroxide and carbon raw material during activation heat treatment Can be.

또한, 비교예3은 THF 가용분의 함량이 5중량% 이하인 경우이며 실시예의 경우보다 캐패시턴스도 떨어지고 THF/탄소원료의 비율이 크게 되어 THF의 소모량이 증가할 뿐만 아니라 많은 양의 THF-탄소원료 슬러리의 처리에 상당한 시간을 요하므로 바람직하지 않다.In addition, Comparative Example 3 is a case where the content of soluble THF is 5% by weight or less, and the capacitance is lower than that of the Example, and the ratio of THF / carbon raw material is increased, thereby increasing the consumption of THF as well as a large amount of THF-carbon raw material slurry. It is not preferable because it takes a considerable time for the treatment of.

이상에서 상세히 설명한 바와 같이, 본 발명에 따르면 석탄계 탄소원료의 THF 가용분의 양을 5중량% 내지 10중량%로 조절한 후 활성화함으로써 보다 우수한 캐패시턴스를 가지는 활성탄을 제조할 수 있게 된다.As described in detail above, according to the present invention by adjusting the amount of THF solubles of the coal-based carbon raw material to 5% by weight to 10% by weight, it is possible to produce activated carbon having a better capacitance.

Claims (3)

석탄계 탄소원료에서 THF 가용분의 양을 5중량% 내지 10중량%로 조절하는 THF 가용분 제거단계와;THF solubles removal step of adjusting the amount of THF solubles in coal-based carbon raw material to 5% to 10% by weight; 반응기 내에 장입된 탄소원료에 활성화제인 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)을 단독 혹은 혼합한 형태로 탄소원료와 활성화제의 중량비가 1:2 내지 1:6이 되도록 함께 첨가하여 혼합하는 혼합단계와;Mixing by adding and mixing together the carbon raw material charged in the reactor so that the weight ratio of the carbon raw material and the activator is 1: 2 to 1: 6 in the form of a single or mixed form of sodium hydroxide (NaOH) or potassium hydroxide (KOH) as an activator Steps; 상기 활성화제가 탄소원료에 완전히 흡수될 수 있도록 반응기 내부 온도를 400∼500℃ 온도로 유지시키는 흡수단계와;An absorption step of maintaining an internal temperature of the reactor at a temperature of 400 to 500 ° C. such that the activator can be completely absorbed into the carbon raw material; 상기 흡수단계후 상기 반응기 내부의 온도를 600∼900℃까지 승온하여 활성화 반응을 유도하는 활성화단계를 포함하여 구성되는 것을 특징으로 하는 캐패시터 전극용 고 비표면적을 갖는 활성탄 제조방법.After the absorption step, the activated carbon having a high specific surface area for a capacitor electrode, characterized in that it comprises an activation step of inducing an activation reaction by raising the temperature in the reactor to 600 ~ 900 ℃. 청구항 1에 있어서, 상기 석탄계 탄소원료는,The method according to claim 1, wherein the coal-based carbon raw material, 석탄계 반성코크스 혹은 석탄계 고연화점 피치인 것을 특징으로 하는 캐패시터 전극용 고 비표면적을 갖는 활성탄 제조방법.A method for producing activated carbon having a high specific surface area for a capacitor electrode, characterized in that the coal-based semi-coke or coal-based high softening point pitch. 청구항 1에 있어서, 상기 흡수단계에서 반응기 내부온도는,The method of claim 1, wherein the temperature inside the reactor in the absorption step, 0.5~1.5 시간동안 유지되는 것을 특징으로 하는 캐패시터 전극용 고 비표면적을 갖는 활성탄 제조방법.A method for producing activated carbon having a high specific surface area for a capacitor electrode, which is maintained for 0.5 to 1.5 hours.
KR1020050096694A 2005-10-13 2005-10-13 Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors KR100650618B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050096694A KR100650618B1 (en) 2005-10-13 2005-10-13 Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050096694A KR100650618B1 (en) 2005-10-13 2005-10-13 Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors

Publications (1)

Publication Number Publication Date
KR100650618B1 true KR100650618B1 (en) 2006-11-29

Family

ID=37713837

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050096694A KR100650618B1 (en) 2005-10-13 2005-10-13 Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors

Country Status (1)

Country Link
KR (1) KR100650618B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513946B1 (en) 2013-08-07 2015-04-22 인하대학교 산학협력단 Electrodes for asymmetric hybrid capacitors
KR20190073710A (en) * 2017-12-19 2019-06-27 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material
CN111710530A (en) * 2020-05-18 2020-09-25 大唐可再生能源试验研究院有限公司 Preparation method of low-order coal-based porous carbon and application of low-order coal-based porous carbon in supercapacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144817A (en) * 1992-10-30 1994-05-24 Osaka Gas Co Ltd Production of active carbon
KR20040108755A (en) * 2002-04-22 2004-12-24 구라레 케미칼 가부시키가이샤 Process for producing active carbon, polarizable electrode and electric double layer capacitor
KR20050014033A (en) * 2005-01-18 2005-02-05 (주) 아모센스 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers
WO2005038836A1 (en) 2003-10-17 2005-04-28 Nippon Oil Corporation Electric double layer capacitor, activated carbon for electrode thereof and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144817A (en) * 1992-10-30 1994-05-24 Osaka Gas Co Ltd Production of active carbon
KR20040108755A (en) * 2002-04-22 2004-12-24 구라레 케미칼 가부시키가이샤 Process for producing active carbon, polarizable electrode and electric double layer capacitor
WO2005038836A1 (en) 2003-10-17 2005-04-28 Nippon Oil Corporation Electric double layer capacitor, activated carbon for electrode thereof and method for producing same
KR20050014033A (en) * 2005-01-18 2005-02-05 (주) 아모센스 Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513946B1 (en) 2013-08-07 2015-04-22 인하대학교 산학협력단 Electrodes for asymmetric hybrid capacitors
KR20190073710A (en) * 2017-12-19 2019-06-27 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material
KR102040379B1 (en) * 2017-12-19 2019-11-05 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material
CN111710530A (en) * 2020-05-18 2020-09-25 大唐可再生能源试验研究院有限公司 Preparation method of low-order coal-based porous carbon and application of low-order coal-based porous carbon in supercapacitor

Similar Documents

Publication Publication Date Title
JP3446339B2 (en) Activated carbon production method
EP2362851B1 (en) Process for making porous activated carbon
JP4893944B2 (en) Nitrogen gas separation method and molecular sieve carbon
CN112876283B (en) Porous ceramic matrix and atomizing core with oil storage and locking functions
US9938152B2 (en) Method of making activated nano-porous carbon
JPH0897096A (en) Tantalum powder and electrolytic capacitor employing it
JP6676821B2 (en) Method of producing binder-based activated carbon with no binder
JP7028580B2 (en) Method for producing activated nanoporous carbon
KR100650618B1 (en) Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors
KR102113719B1 (en) Activated carbon and its manufacturing method
CN106629719A (en) Preparation technology for activated carbon
JPH07155589A (en) Production of carbon material having large specific surface area
CN1304281C (en) Preparing method for porous carbon with high specific surface area
JP2000313611A (en) Active carbon and its production
CN112299410A (en) High-purity and high-conductivity porous carbon and preparation method thereof
KR100723121B1 (en) Method for manufacturing activated carbons with high activation yield
US11369941B2 (en) Method for preparing porous carbon material by using coal tar generated in COG process
KR102293849B1 (en) The production method of activated carbon utilizing the botanical raw materials
JP2011001232A (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
CN115304064A (en) Production method and application of physical activated carbon
KR101561594B1 (en) Bamboo activationcarbon and fabricating method thereof
KR20060072797A (en) Method for manufacturing activated carbon with high specific capacitance
KR102522123B1 (en) Method of manufacturing activated carbon having high meso pore volume and specific surface area and activated carbon produced using the same
KR101090866B1 (en) Method for manufacturing activated carbon
CN114057192A (en) Coal-based activated carbon and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121121

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131120

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161121

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171121

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181031

Year of fee payment: 13