JP2011001232A - Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method - Google Patents

Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method Download PDF

Info

Publication number
JP2011001232A
JP2011001232A JP2009146782A JP2009146782A JP2011001232A JP 2011001232 A JP2011001232 A JP 2011001232A JP 2009146782 A JP2009146782 A JP 2009146782A JP 2009146782 A JP2009146782 A JP 2009146782A JP 2011001232 A JP2011001232 A JP 2011001232A
Authority
JP
Japan
Prior art keywords
activated carbon
organic compound
raw material
carbon
carbon raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009146782A
Other languages
Japanese (ja)
Other versions
JP5503196B2 (en
Inventor
Aki Fujimura
亜紀 藤村
Haruhiro Asami
晴洋 浅見
Junichi Yasumaru
純一 安丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2009146782A priority Critical patent/JP5503196B2/en
Publication of JP2011001232A publication Critical patent/JP2011001232A/en
Application granted granted Critical
Publication of JP5503196B2 publication Critical patent/JP5503196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing activated carbon, by which the physical properties of obtained activated carbon are highly controlled without performing a pretreatment of a carbon raw material.SOLUTION: The method for producing activated carbon is characterized in that a carbon raw material and an organic compound having a melting point of ≤250°C are mixed, and then are subjected to alkali activation.

Description

本発明は、活性炭の製造方法に関するものであり、特に賦活後の活性炭の細孔構造を制御する技術に関する。   The present invention relates to a method for producing activated carbon, and more particularly to a technique for controlling the pore structure of activated carbon after activation.

従来、活性炭はその優れた吸着能から電気二重層キャパシタ用電極や吸着剤として広く使用されている。このような用途で効果的に機能するために、活性炭には適切な物性(例えば、比表面積、細孔径など)を有することが要求される。ここで、賦活処理により得られる活性炭の比表面積などの物性は、賦活原料として使用する炭素原料の構造に大きく影響されることが知られている。従って、一般的には、活性炭の物性をより高度に制御するために、使用する炭素原料について、熱処理などの前処理が行われている。   Conventionally, activated carbon has been widely used as an electrode and an adsorbent for electric double layer capacitors because of its excellent adsorption ability. In order to function effectively in such applications, the activated carbon is required to have appropriate physical properties (for example, specific surface area, pore diameter, etc.). Here, it is known that the physical properties such as the specific surface area of the activated carbon obtained by the activation treatment are greatly influenced by the structure of the carbon raw material used as the activation raw material. Therefore, in general, in order to control the physical properties of the activated carbon to a higher degree, pretreatment such as heat treatment is performed on the carbon raw material to be used.

このような活性炭の製造方法として、例えば特許文献1には、石炭系重質油、石油系重質油および樹脂を熱処理して得られるタール油のうちから選ばれる1または2以上の物質由来のコークスを、有機溶剤で抽出処理するときの抽出残分を電極活物質に用いることを特徴とする電気二重層キャパシタ用電極活物質の製造方法が開示されている(特許文献1、請求項1)。   As a method for producing such activated carbon, for example, Patent Document 1 discloses that it is derived from one or more substances selected from coal-based heavy oil, petroleum-based heavy oil, and tar oil obtained by heat treatment of a resin. A method for producing an electrode active material for an electric double layer capacitor is disclosed, wherein an extraction residue obtained by extracting coke with an organic solvent is used as an electrode active material (Patent Documents 1 and 1). .

また活性炭の製造方法ではないが、例えば特許文献2には、原料石炭を、N−メチル−2−ピロリドン溶剤単独あるいは二硫化炭素およびN−メチル−2−ピロリドンの混合溶剤に、塩素またはフッ素化合物の存在下で接触させて原料石炭中の無灰炭を前記溶剤に抽出することを特徴とする無灰炭の製造方法が開示されている(特許文献2、請求項1)。   Although not a method for producing activated carbon, for example, Patent Document 2 discloses that raw material coal is mixed with N-methyl-2-pyrrolidone solvent alone or a mixed solvent of carbon disulfide and N-methyl-2-pyrrolidone with chlorine or a fluorine compound. There is disclosed a method for producing ashless coal, characterized in that the ashless coal in the raw coal is extracted into the solvent by contacting in the presence of (Patent Document 2, Claim 1).

特開2008−135587号公報JP 2008-135587 A 特許第3198305号公報Japanese Patent No. 3198305

従来、活性炭の物性を制御するために、使用する炭素原料について熱処理などの前処理が行われている。しかし、このような炭素原料の前処理を行う場合には、前処理工程のためのコストや処理時間が増加することとなり、製造工程全体の生産性が低下するという問題があった。   Conventionally, in order to control the physical properties of activated carbon, pretreatment such as heat treatment has been performed on the carbon raw material to be used. However, when such a carbon raw material is pretreated, the cost and time for the pretreatment process increase, resulting in a problem that the productivity of the entire production process is lowered.

本発明は上記事情に鑑みてなされたものであって、炭素原料の前処理を行うことなく、得られる活性炭の物性を高度に制御できる活性炭の製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, Comprising: It aims at providing the manufacturing method of the activated carbon which can control the physical property of the activated carbon obtained highly, without performing the pre-processing of a carbon raw material.

従来、融点が250℃以下の有機化合物は、沸点が低く、賦活温度(金属カリウムを用いる場合は600℃程度)に達する前に揮発してしまい、賦活反応に影響しないと考えられていた。そのため、このような沸点の低い有機化合物を賦活原料に用いることは検討されていなかった。本発明者らは、活性炭の物性を高度に制御できる方法を種々検討した結果、炭素原料に融点が250℃以下の有機化合物を混合してアルカリ賦活することにより、得られる活性炭の物性を高度に制御できることを見出し、本発明に想到した。   Conventionally, an organic compound having a melting point of 250 ° C. or lower has a low boiling point, and is volatilized before reaching an activation temperature (about 600 ° C. when metallic potassium is used), and it has been considered that the activation reaction is not affected. Therefore, use of such an organic compound having a low boiling point as an activation raw material has not been studied. As a result of various studies on methods capable of highly controlling the physical properties of the activated carbon, the inventors of the present invention have highly enhanced the physical properties of the obtained activated carbon by mixing the carbon raw material with an organic compound having a melting point of 250 ° C. or less and activating the alkali. The inventors have found that it can be controlled and have come up with the present invention.

すなわち、上記課題を解決することができた本発明の活性炭の製造方法は、炭素原料と融点が250℃以下の有機化合物を混合した後、アルカリ賦活することを特徴とする。有機化合物を混合することにより、単に賦活時間や、アルカリ賦活剤の使用量を調節する場合よりも、得られる活性炭の物性をより高度に制御することができる。炭素原料に有機化合物を混合することにより、得られる活性炭の物性を高度に制御できる理由は、昇温過程において有機化合物によって炭素原料の改質が起こるためと考えられる。   That is, the method for producing activated carbon of the present invention that has solved the above-mentioned problems is characterized by alkali activation after mixing a carbon raw material and an organic compound having a melting point of 250 ° C. or lower. By mixing the organic compound, the physical properties of the obtained activated carbon can be controlled to a higher degree than simply adjusting the activation time or the amount of the alkali activator used. The reason why the properties of the obtained activated carbon can be highly controlled by mixing the organic compound with the carbon raw material is considered to be because the carbon raw material is modified by the organic compound in the temperature rising process.

前記炭素原料と前記有機化合物との混合は、前記有機化合物の融点以上の温度で行うことが好ましい。前記有機化合物は、複素環式化合物または芳香族炭化水素が好ましい。前記有機化合物と前記炭素原料の質量比(有機化合物/炭素原料)は、0.05以上10以下が好ましい。   The mixing of the carbon raw material and the organic compound is preferably performed at a temperature equal to or higher than the melting point of the organic compound. The organic compound is preferably a heterocyclic compound or an aromatic hydrocarbon. The mass ratio of the organic compound to the carbon raw material (organic compound / carbon raw material) is preferably 0.05 or more and 10 or less.

前記炭素原料としては、石炭ピッチコークス、石炭、石油コークス、石炭コークス、石油ピッチコークス、合成樹脂、合成樹脂とセルロース系繊維との複合物およびこれらの炭化物よりなる群から選択される少なくとも1種を用いることが好ましい。   The carbon raw material includes at least one selected from the group consisting of coal pitch coke, coal, petroleum coke, coal coke, petroleum pitch coke, synthetic resin, composite of synthetic resin and cellulosic fiber, and carbides thereof. It is preferable to use it.

本発明には、上記の製造方法により得られた活性炭を電極構成材料に用いた電気二重層キャパシタも包含される。   The present invention also includes an electric double layer capacitor in which the activated carbon obtained by the above production method is used as an electrode constituent material.

本発明によれば、炭素原料の前処理を行うことなく、得られる活性炭の物性を高度に制御することができる。   According to the present invention, it is possible to highly control the physical properties of the obtained activated carbon without performing pretreatment of the carbon raw material.

製造例1〜4,7で得られた活性炭の細孔径分布を示す図である。It is a figure which shows the pore diameter distribution of the activated carbon obtained by manufacture example 1-4,7. 製造例5,6,8,9で得られた活性炭の細孔径分布を示す図である。It is a figure which shows the pore size distribution of the activated carbon obtained by manufacture example 5, 6, 8, 9.

本発明の活性炭の製造方法は、炭素原料と融点が250℃以下の有機化合物を混合した後、アルカリ賦活することを特徴とする。   The method for producing activated carbon of the present invention is characterized in that alkali activation is performed after mixing a carbon raw material and an organic compound having a melting point of 250 ° C. or lower.

本発明の製造方法において、炭素原料に有機化合物を混合することによって、活性炭の物性を高度に制御できる理由は、必ずしも明らかでないが、有機化合物によって炭素原料の改質が起こるためと考えられる。例えば、炭素原料として石炭ピッチコークスを使用した場合、有機化合物との混合時に、石炭ピッチコークスに含有される炭素前駆体成分(ピレン、ナフタセン、ペリレンなど)の少なくとも一部が液状有機化合物中へと溶出し、得られる固体残渣の表面に炭素前駆体成分が抜けた後の穴が無数に形成される。このように無数の穴が形成されることにより、表面に賦活反応に活性な点(例えば、エッジ面など)が増加するため、高比表面積化を図りつつ、平均細孔径の増大が抑制されると考えられる。   In the production method of the present invention, the reason why the properties of the activated carbon can be controlled to a high degree by mixing an organic compound with the carbon raw material is not necessarily clear, but it is considered that the carbon raw material is modified by the organic compound. For example, when coal pitch coke is used as the carbon raw material, at the time of mixing with the organic compound, at least a part of the carbon precursor components (pyrene, naphthacene, perylene, etc.) contained in the coal pitch coke is converted into the liquid organic compound. An infinite number of holes are formed on the surface of the resulting solid residue after elution and the carbon precursor component has escaped. By forming innumerable holes in this manner, the number of points active on the activation reaction (for example, edge surfaces) increases on the surface, so that the increase in average pore diameter is suppressed while increasing the specific surface area. it is conceivable that.

また、炭素原料として樹脂を使用した場合、溶剤を添加することにより、樹脂を構成する高分子の結合部分が切れやすくなり、賦活により形成される炭素構造が変化すると考えられる。炭素原料として樹脂炭化物を使用した場合、溶剤を添加することにより、樹脂炭化物中の溶出しやすい成分が、溶剤へと溶出することにより、賦活により形成される炭素構造が変化すると考えられる。   In addition, when a resin is used as the carbon raw material, it is considered that by adding a solvent, the bonding portion of the polymer constituting the resin is easily cut and the carbon structure formed by activation is changed. When resin carbide is used as the carbon raw material, it is considered that by adding a solvent, a component that is easily eluted in the resin carbide is eluted into the solvent, thereby changing the carbon structure formed by activation.

以下、本発明の活性炭の製造方法について詳細に説明する。本発明の製造方法は、炭素原料、融点が250℃以下の有機化合物(以下、単に「有機化合物」と称することがある)およびアルカリ賦活剤を混合する混合工程;得られた混合物を加熱するアルカリ賦活工程;をこの順序で含む。   Hereinafter, the manufacturing method of the activated carbon of this invention is demonstrated in detail. The production method of the present invention comprises a mixing step of mixing a carbon raw material, an organic compound having a melting point of 250 ° C. or lower (hereinafter sometimes simply referred to as “organic compound”) and an alkali activator; an alkali for heating the resulting mixture An activation step in this order.

前記混合工程では、炭素原料、融点が250℃以下の有機化合物およびアルカリ賦活剤を混合する。混合は、有機化合物の融点温度以上の温度で行うことが好ましい。なお、混合は炉に投入する前に行ってもよいし、各原料を別々に炉に投入して炉内で混合してもよい。   In the mixing step, a carbon raw material, an organic compound having a melting point of 250 ° C. or less, and an alkali activator are mixed. The mixing is preferably performed at a temperature equal to or higher than the melting point temperature of the organic compound. The mixing may be performed before being introduced into the furnace, or each raw material may be separately introduced into the furnace and mixed in the furnace.

前記炭素原料としては、木材、おが屑、ヤシガラ、セルロース系繊維(紙も含む)、合成樹脂(例えば、フェノール樹脂、ポリ塩化ビニル、ポリイミド、ポリアクリルニトリル(PAN))、石油ピッチ、コールタールピッチ、メソフェーズピッチおよびこれらの複合物などの炭素質物質;前記炭素質物質の炭化物;石炭、石油コークス、石炭コークス、石油ピッチコークス、石炭ピッチコークス、木炭などの炭化物;が挙げられる。これらの炭素原料は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、炭素原料としては、石炭ピッチコークス、石炭、石油コークス、石炭コークス、石油ピッチコークス、合成樹脂、合成樹脂とセルロース系繊維との複合物およびこれらの炭化物よりなる群から選択される少なくとも1種が好適である。   Examples of the carbon raw material include wood, sawdust, coconut shell, cellulosic fiber (including paper), synthetic resin (eg, phenol resin, polyvinyl chloride, polyimide, polyacrylonitrile (PAN)), petroleum pitch, coal tar pitch, Carbonaceous materials such as mesophase pitch and composites thereof; carbides of the carbonaceous materials; carbides such as coal, petroleum coke, coal coke, petroleum pitch coke, coal pitch coke, and charcoal. These carbon raw materials may be used alone or in combination of two or more. Among these, the carbon raw material is at least selected from the group consisting of coal pitch coke, coal, petroleum coke, coal coke, petroleum pitch coke, synthetic resin, composite of synthetic resin and cellulosic fiber, and carbides thereof. One is preferred.

前記炭素質物質を炭化物として使用する場合、炭素質物質の炭化処理は、通常、不活性ガス雰囲気下で加熱処理することによりなされる。該炭化処理の温度は、400℃以上が好ましく、より好ましくは500℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。また、炭化処理時間は、0.5時間以上が好ましく、より好ましくは1.0時間以上であり、4.0時間以下が好ましく、より好ましくは3.0時間以下である。   When the carbonaceous material is used as a carbide, carbonization of the carbonaceous material is usually performed by heat treatment in an inert gas atmosphere. The temperature of the carbonization treatment is preferably 400 ° C. or higher, more preferably 500 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. Further, the carbonization time is preferably 0.5 hours or longer, more preferably 1.0 hours or longer, 4.0 hours or shorter, more preferably 3.0 hours or shorter.

前記炭素原料の平均粒子径は10mm以下が好ましく、より好ましくは5mm以下、さらに好ましくは2mm以下である。炭化物の平均粒子径が10mm以下であれば、炭化物の比表面積を大きくすることができ、有機化合物による炭素原料の表面改質効果がより向上する。なお、炭素原料の平均粒子径の下限は特に限定されるものではないが、平均粒子径が小さすぎると粉体のハンドリングが悪くなる(例えば、作業時に粉体が舞い上がってしまう)傾向がある。そのため、炭素原料の平均粒子径は1μm以上が好ましく、より好ましくは3μm以上、さらに好ましくは5μm以上である。なお、平均粒子径とは、水に分散させた試料を、レーザ回折式粒度分布測定装置(例えば、島津製作所製の「SALD(登録商標)−2000」)により測定して、求められる体積平均粒子径である。   The carbon raw material preferably has an average particle size of 10 mm or less, more preferably 5 mm or less, and even more preferably 2 mm or less. If the average particle diameter of the carbide is 10 mm or less, the specific surface area of the carbide can be increased, and the surface modification effect of the carbon raw material by the organic compound is further improved. The lower limit of the average particle size of the carbon raw material is not particularly limited, but if the average particle size is too small, the handling of the powder tends to be poor (for example, the powder will rise during operation). Therefore, the average particle diameter of the carbon raw material is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more. The average particle diameter is a volume average particle obtained by measuring a sample dispersed in water with a laser diffraction particle size distribution measuring apparatus (for example, “SALD (registered trademark) -2000” manufactured by Shimadzu Corporation). Is the diameter.

本発明に用いられる融点が250℃以下の有機化合物は、室温(20℃)で液体状のもの、あるいは、室温(20℃)では固体状であるが賦活処理温度に昇温する過程で溶融するものである。また、得られる活性炭の細孔径を制御する効果がより大きくなることから、前記有機化合物の融点は、40℃以下が好ましく、より好ましくは20℃以下である。すなわち、有機化合物として、いわゆる有機溶媒を用いることが好ましい。なお、前記有機化合物の沸点は60℃以上が好ましく、より好ましくは100℃以上、さらに好ましくは200℃以上である。代表的な有機化合物の沸点としては、例えば、テトラヒドロフラン:66℃、トルエン:110.6℃、N−メチル−2−ピロリドン:202℃である。   The organic compound having a melting point of 250 ° C. or lower used in the present invention is liquid at room temperature (20 ° C.), or is solid at room temperature (20 ° C.) but melts in the process of raising the temperature to the activation treatment temperature. Is. Moreover, since the effect which controls the pore diameter of the activated carbon obtained becomes larger, the melting point of the organic compound is preferably 40 ° C. or lower, more preferably 20 ° C. or lower. That is, it is preferable to use a so-called organic solvent as the organic compound. The boiling point of the organic compound is preferably 60 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 200 ° C. or higher. The boiling points of typical organic compounds are, for example, tetrahydrofuran: 66 ° C., toluene: 110.6 ° C., and N-methyl-2-pyrrolidone: 202 ° C.

前記有機化合物としては、例えば、N−メチル−2−ピロリドン、キノリン、ピリジン、テトラヒドロフラン、ピラジン、キノキサリン、アクリジンなどの複素環式化合物;ベンゼン、トルエン、キシレン、メシチレン、ピレン、クリセン、ペリレン、などの芳香族炭化水素;ヘキサン、ヘプタン、シクロヘキサン、などの脂肪族炭化水素;クロロホルム、ジクロロエタンなどのハロゲン系脂肪族炭化水素;アセトン、メチルエチルケトンなどのケトン;酢酸エチルなどのエステル;メタノール、エタノール、プロパノールなどのアルコール;などが挙げられる。これらの有機化合物は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、複素環式化合物、芳香族炭化水素が好ましく、N−メチル−2−ピロリドン、トルエン、テトラヒドロフランよりなる群から選択される少なくとも1種がより好ましい。   Examples of the organic compound include heterocyclic compounds such as N-methyl-2-pyrrolidone, quinoline, pyridine, tetrahydrofuran, pyrazine, quinoxaline, and acridine; benzene, toluene, xylene, mesitylene, pyrene, chrysene, perylene, and the like. Aromatic hydrocarbons; aliphatic hydrocarbons such as hexane, heptane and cyclohexane; halogenated aliphatic hydrocarbons such as chloroform and dichloroethane; ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; methanol, ethanol and propanol Alcohol; and the like. These organic compounds may be used alone or in combination of two or more. Among these, a heterocyclic compound and an aromatic hydrocarbon are preferable, and at least one selected from the group consisting of N-methyl-2-pyrrolidone, toluene, and tetrahydrofuran is more preferable.

前記炭素原料と有機化合物との質量比(有機化合物/炭素原料)は、0.05以上が好ましく、より好ましくは0.5以上、さらに好ましくは1.0以上、特に好ましくは2.0以上であり、10以下が好ましく、より好ましくは5.0以下、さらに好ましくは3.0以下である。前記質量比(有機化合物/炭素原料)が0.05以上であれば、有機化合物を用いない場合よりも、得られる活性炭の比表面積を増加させる、または、細孔径分布を大径側もしくは小径側にシフトさせる効果がより大きくなり、10以下であれば、炉の容積に占める有機化合物の体積が多くなりすぎず、生産性がより良好となる。   The mass ratio of the carbon raw material to the organic compound (organic compound / carbon raw material) is preferably 0.05 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and particularly preferably 2.0 or more. Yes, preferably 10 or less, more preferably 5.0 or less, and still more preferably 3.0 or less. When the mass ratio (organic compound / carbon raw material) is 0.05 or more, the specific surface area of the obtained activated carbon is increased or the pore size distribution is larger or smaller than when no organic compound is used. If the effect of shifting to a larger value is 10 or less, the volume of the organic compound occupying the furnace volume does not increase too much, and the productivity becomes better.

前記アルカリ賦活剤としては、アルカリ金属化合物が好ましい。前記アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどの炭酸塩;などが挙げられる。これらのアルカリ賦活剤は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、水酸化カリウムが好適である。   As the alkali activator, an alkali metal compound is preferable. Examples of the alkali metal compound include hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; carbonates such as sodium carbonate, potassium carbonate, and lithium carbonate; These alkali activators may be used alone or in combination of two or more. Of these, potassium hydroxide is preferred.

前記炭素原料とアルカリ賦活剤との質量比(アルカリ賦活剤/炭素原料)は、1.0以上が好ましく、より好ましくは1.5以上、さらに好ましくは2.0以上であり、4.5以下が好ましく、より好ましくは4.0以下、さらに好ましくは3.5以下である。   The mass ratio of the carbon raw material to the alkali activator (alkali activator / carbon raw material) is preferably 1.0 or more, more preferably 1.5 or more, still more preferably 2.0 or more, and 4.5 or less. Is more preferable, 4.0 or less, more preferably 3.5 or less.

また、アルカリ賦活剤を添加する際、炭素原料との混合を十分とするために、アルカリ賦活剤を水溶液として使用しても良い。このときの水の使用量は、アルカリ賦活剤の0.05質量倍〜10質量倍が好ましい。なお、アルカリ賦活剤を水溶液として使用する場合には、賦活処理のための加熱を行う前に、アルカリ賦活剤水溶液に由来する水分の突沸防止のため、賦活処理における加熱温度よりも低温での加熱処理を行って、水分を除去しておくことが好ましい。   Moreover, when adding an alkali activator, in order to fully mix with a carbon raw material, you may use an alkali activator as aqueous solution. The amount of water used at this time is preferably 0.05 times by mass to 10 times by mass of the alkali activator. In addition, when using an alkali activator as an aqueous solution, before performing heating for the activation treatment, heating at a temperature lower than the heating temperature in the activation treatment is performed to prevent bumping of moisture derived from the alkaline activator aqueous solution. It is preferable to remove moisture by performing treatment.

また、本発明の製造方法においては、必要に応じて、炭素原料に有機化合物をなじませる目的で、炭素原料と有機化合物の混合物を数分〜数時間程度静置させてもよいし、混合物を有機化合物の沸点未満の温度で加熱処理してもよい。   In the production method of the present invention, if necessary, the mixture of the carbon raw material and the organic compound may be allowed to stand for several minutes to several hours for the purpose of allowing the carbon raw material to conform to the organic compound. You may heat-process at the temperature below the boiling point of an organic compound.

前記アルカリ賦活工程では、上述の炭素原料、有機化合物およびアルカリ賦活剤を混合した混合物を加熱し、賦活処理する。ここで、「賦活処理」とは、炭素原料の表面に細孔を形成して、比表面積および細孔容積を大きくする処理である。   In the alkali activation step, the mixture obtained by mixing the above-described carbon raw material, organic compound and alkali activator is heated and activated. Here, the “activation process” is a process for forming pores on the surface of the carbon raw material to increase the specific surface area and the pore volume.

本発明の製造方法に用いられる炉としては、ロータリーキルン、流動床炉、撹拌混合炉などの原料を均質に加熱できる装置などが挙げられる。   Examples of the furnace used in the production method of the present invention include apparatuses that can uniformly heat raw materials such as a rotary kiln, a fluidized bed furnace, and a stirring and mixing furnace.

前記有機化合物(他の原料と混合されたものも含む)を投入する際の炉内温度は、有機化合物の沸点温度未満に調節しておくことが好ましい。なお、例えば、有機化合物としてN−メチル−2−ピロリドンまたはトルエンを用いる場合、有機化合物を投入する際の炉内温度は200℃以下が好ましく、より好ましくは100℃以下、さらに好ましくは50℃以下である。なお、混合物を投入する際の炉内温度の下限は、特に限定されず、室温でよい。   The furnace temperature when the organic compound (including those mixed with other raw materials) is charged is preferably adjusted to be lower than the boiling temperature of the organic compound. For example, when N-methyl-2-pyrrolidone or toluene is used as the organic compound, the furnace temperature when the organic compound is added is preferably 200 ° C. or lower, more preferably 100 ° C. or lower, more preferably 50 ° C. or lower. It is. In addition, the minimum of the furnace temperature at the time of throwing in a mixture is not specifically limited, Room temperature may be sufficient.

炉内を加熱する際には、不活性ガスを流入させる。不活性ガスの流入量は、炉の容積や炭素原料の仕込み量に応じて適宜調整すればよい。なお、不活性ガスとしては、窒素、アルゴン、ヘリウムなどを用いることができる。炉を加熱する際の昇温速度は、1℃/分以上が好ましく、より好ましくは5℃/分以上、さらに好ましくは10℃/分以上であり、50℃/分以下が好ましく、より好ましくは30℃/分以下、さらに好ましくは20℃/分以下である。   When the inside of the furnace is heated, an inert gas is introduced. What is necessary is just to adjust the inflow amount of inert gas suitably according to the volume of a furnace, and the preparation amount of a carbon raw material. Note that nitrogen, argon, helium, or the like can be used as the inert gas. The heating rate when heating the furnace is preferably 1 ° C./min or more, more preferably 5 ° C./min or more, further preferably 10 ° C./min or more, preferably 50 ° C./min or less, more preferably 30 ° C./min or less, more preferably 20 ° C./min or less.

賦活処理を行う際の加熱温度は600℃以上が好ましく、より好ましくは650℃以上、さらに好ましくは700℃以上であり、950℃以下が好ましく、より好ましくは900℃以下、さらに好ましくは850℃以下である。また、賦活処理を行う際の加熱時間は0.1時間以上が好ましく、より好ましくは1.0時間以上、さらに好ましくは1.5時間以上であり、3.5時間以下が好ましく、より好ましくは3.0時間以下、さらに好ましくは2.5時間以下である。なお、加熱時の雰囲気は、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気が好ましい。   The heating temperature in performing the activation treatment is preferably 600 ° C. or higher, more preferably 650 ° C. or higher, further preferably 700 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower, and further preferably 850 ° C. or lower. It is. Further, the heating time in performing the activation treatment is preferably 0.1 hour or more, more preferably 1.0 hour or more, further preferably 1.5 hours or more, preferably 3.5 hours or less, more preferably It is 3.0 hours or less, more preferably 2.5 hours or less. The atmosphere during heating is preferably an inert gas atmosphere such as argon, helium, or nitrogen.

本発明の製造方法には、前記アルカリ賦活工程に加えて、洗浄工程、熱処理工程、粉砕工程を含ませてもよい。   In addition to the alkali activation step, the production method of the present invention may include a washing step, a heat treatment step, and a pulverization step.

洗浄工程は、賦活工程後の活性炭を洗浄し、乾燥させる工程である。賦活工程後の活性炭の表面には、アルカリ賦活剤として使用した水酸化アルカリ金属などが付着しているので、このような付着物を除去するために活性炭の洗浄を行う。   The washing step is a step of washing and drying the activated carbon after the activation step. Since the surface of the activated carbon after the activation step is attached with an alkali metal hydroxide used as an alkali activator, the activated carbon is washed to remove such deposits.

活性炭の洗浄としては、水洗、酸洗浄などを挙げることができる。   Examples of the cleaning of activated carbon include water cleaning and acid cleaning.

水洗方法は、特に限定されないが、例えば、活性炭を水に投入し、必要に応じて撹拌、分散させた後、濾取することにより行うことが好ましい。前記撹拌、分散は、機械的撹拌、気体吹込み、超音波照射によって行うことができるが、加熱煮沸させることによっても行うことができる。水洗時の水温は、30℃以上が好ましく、より好ましくは40℃以上、さらに好ましくは50℃以上である。撹拌、分散時間は0.5時間以上が好ましく、より好ましくは1時間以上、さらに好ましくは1.5時間以上である。   The washing method is not particularly limited, but for example, it is preferably performed by adding activated carbon to water, stirring and dispersing as necessary, and then filtering. The stirring and dispersion can be performed by mechanical stirring, gas blowing, and ultrasonic irradiation, but can also be performed by heating and boiling. The water temperature during washing is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher. The stirring and dispersing time is preferably 0.5 hours or more, more preferably 1 hour or more, and further preferably 1.5 hours or more.

酸洗浄では、無機酸、有機酸などを含有する洗浄液を用いて活性炭を洗浄する。なお、洗浄液の溶媒は特に限定されないが、通常は水である。酸洗浄を行うことによって、アルカリ賦活剤として使用した水酸化アルカリ金属などを効率よく除去できる。   In the acid cleaning, the activated carbon is cleaned using a cleaning liquid containing an inorganic acid, an organic acid, or the like. The solvent for the cleaning liquid is not particularly limited, but is usually water. By performing the acid cleaning, the alkali metal hydroxide used as the alkali activator can be efficiently removed.

前記無機酸としては、例えば、塩酸、硝酸、硫酸、リン酸、炭酸などが挙げられる。これらの無機酸は単独で使用してもよいし、2種以上を併用してもよい。無機酸を使用する場合、洗浄液中の無機酸濃度は、0.5mol/L以上が好ましく、より好ましくは1.0mol/L以上、さらに好ましくは1.5mol/L以上であり、3.5mol/L以下が好ましく、より好ましくは3.0mol/L以下、さらに好ましくは2.5mol/L以下である。無機酸を用いて酸洗浄する場合、例えば、活性炭と、無機酸を含有する洗浄液とを混合して、50℃〜100℃の温度で、30分間〜120分間撹拌すればよい。   Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and carbonic acid. These inorganic acids may be used alone or in combination of two or more. When the inorganic acid is used, the concentration of the inorganic acid in the cleaning liquid is preferably 0.5 mol / L or more, more preferably 1.0 mol / L or more, still more preferably 1.5 mol / L or more, and 3.5 mol / L. L or less is preferable, More preferably, it is 3.0 mol / L or less, More preferably, it is 2.5 mol / L or less. When acid cleaning is performed using an inorganic acid, for example, activated carbon and a cleaning liquid containing an inorganic acid may be mixed and stirred at a temperature of 50 ° C. to 100 ° C. for 30 minutes to 120 minutes.

前記有機酸としては、例えば、ギ酸、シュウ酸、マロン酸、コハク酸、酢酸、プロピオン酸などを挙げることができる。これらの有機酸は、単独で使用してもよいし、2種以上を併用してもよい。前記有機酸を含有する洗浄液中の有機酸の濃度は、1vol%以上が好ましく、より好ましくは2vol%以上、さらに好ましくは5vol%以上であり、100vol%以下が好ましく、より好ましくは80vol%、さらに好ましくは60vol%以下である。有機酸の濃度を1vol%以上とすることによって、有機酸による金属成分除去効果を得られるが、濃度が高くなりすぎると、製造コストが高くなる。有機酸を用いて酸洗浄する場合、例えば、活性炭と、有機酸を含有する洗浄液とを混合して、得られた混合物を20℃〜80℃の温度で、1分間〜120分間撹拌すればよい。洗浄後の活性炭は、50℃〜120℃で、0.5時間〜2.0時間乾燥させることが好ましい。   Examples of the organic acid include formic acid, oxalic acid, malonic acid, succinic acid, acetic acid, propionic acid, and the like. These organic acids may be used alone or in combination of two or more. The concentration of the organic acid in the cleaning liquid containing the organic acid is preferably 1 vol% or more, more preferably 2 vol% or more, further preferably 5 vol% or more, and preferably 100 vol% or less, more preferably 80 vol%, Preferably it is 60 vol% or less. By setting the concentration of the organic acid to 1 vol% or more, the metal component removal effect by the organic acid can be obtained, but if the concentration becomes too high, the manufacturing cost increases. When acid cleaning is performed using an organic acid, for example, activated carbon and a cleaning liquid containing an organic acid are mixed, and the resulting mixture may be stirred at a temperature of 20 ° C. to 80 ° C. for 1 minute to 120 minutes. . The activated carbon after washing is preferably dried at 50 to 120 ° C. for 0.5 to 2.0 hours.

本発明の製造方法においては、洗浄工程として、酸洗浄と水洗とを行うことが好ましく、より好ましくは酸洗浄を行った後、水洗を複数回行う態様である。   In the manufacturing method of this invention, it is preferable to perform acid washing and water washing as a washing | cleaning process, More preferably, after performing acid washing, it is the aspect which performs water washing several times.

熱処理工程は、賦活工程後あるいは洗浄工程後の活性炭を、さらに不活性ガス雰囲気下で熱処理する工程である。活性炭に熱処理を行うことにより、活性炭の表面の官能基量を調整することができる。   The heat treatment step is a step of further heat-treating the activated carbon after the activation step or after the cleaning step in an inert gas atmosphere. By performing heat treatment on the activated carbon, the amount of functional groups on the surface of the activated carbon can be adjusted.

前記熱処理としては、賦活工程直後の活性炭を不活性ガス雰囲気下で熱処理する態様;賦活工程後の活性炭を、酸洗浄および/または水洗した後、不活性ガス雰囲気下で熱処理する態様などを挙げることができる。前記不活性ガスとしては、例えば、アルゴン、窒素、ヘリウムなどを使用することができる。また、前記熱処理温度は、特に限定されないが、好ましくは400℃以上1000℃以下である。   Examples of the heat treatment include an aspect in which the activated carbon immediately after the activation process is heat-treated in an inert gas atmosphere; an aspect in which the activated carbon after the activation process is subjected to acid cleaning and / or water cleaning and then heat-treated in an inert gas atmosphere. Can do. As said inert gas, argon, nitrogen, helium etc. can be used, for example. The heat treatment temperature is not particularly limited, but is preferably 400 ° C. or higher and 1000 ° C. or lower.

粉砕工程は、活性炭の粒径を調整するための粉砕を行う工程である。活性炭の粉砕方法は、特に限定されるものでなく、ディスクミル、ボールミル、ビーズミルなどを用いて行えばよい。なお、活性炭の平均粒子径は1μm以上とすることが好ましく、より好ましくは2μm以上であり、15μm以下とすることが好ましく、より好ましくは10μm以下である。平均粒子径が余りに小さいと、電極における集電板と電極材料層との結着性が悪くなり、実用的な結着性を保持するためには電極材料層に要するバインダー量が増加するおそれがある。   The pulverization step is a step of performing pulverization for adjusting the particle size of the activated carbon. The method for pulverizing the activated carbon is not particularly limited, and may be performed using a disk mill, a ball mill, a bead mill, or the like. The average particle diameter of the activated carbon is preferably 1 μm or more, more preferably 2 μm or more, and preferably 15 μm or less, more preferably 10 μm or less. If the average particle diameter is too small, the binding property between the current collector plate and the electrode material layer in the electrode is deteriorated, and the amount of binder required for the electrode material layer may be increased in order to maintain the practical binding property. is there.

本発明の製造方法により得られる活性炭は、電気二重層キャパシタ用電極材料として用いることができ、当該電極材料を使用して、電気二重層キャパシタ用電極や電気二重層キャパシタを製造することが可能である。本発明の製造方法によれば、例えば、活性炭の高比表面積化を図りつつ形成される細孔径を制御することができる。換言すれば、所望の細孔径を維持したまま、さらなる高比表面積化を図ったり、所望の比表面積を維持したまま、さらなる細孔径の大径化を図ったりできる。従って、電解液中のイオンサイズに適した細孔径を有する細孔を形成しつつ、さらなる高比表面積化が可能となる。そのため、本発明の製造方法により得られた活性炭を電気二重層キャパシタに用いることにより、静電容量に優れる電気二重層キャパシタが得られる。   Activated carbon obtained by the production method of the present invention can be used as an electrode material for an electric double layer capacitor, and an electrode for an electric double layer capacitor or an electric double layer capacitor can be produced using the electrode material. is there. According to the production method of the present invention, for example, the pore diameter formed while increasing the specific surface area of activated carbon can be controlled. In other words, it is possible to further increase the specific surface area while maintaining the desired pore diameter, or to further increase the pore diameter while maintaining the desired specific surface area. Therefore, it is possible to further increase the specific surface area while forming pores having a pore diameter suitable for the ion size in the electrolytic solution. Therefore, by using the activated carbon obtained by the production method of the present invention for an electric double layer capacitor, an electric double layer capacitor having excellent capacitance can be obtained.

次に、本発明の電気二重層キャパシタについて説明する。本発明の電気二重層キャパシタは、前記の製造方法により得られた活性炭を電極構成材料に用いたことを特徴とする。   Next, the electric double layer capacitor of the present invention will be described. The electric double layer capacitor of the present invention is characterized in that activated carbon obtained by the above-described manufacturing method is used as an electrode constituent material.

電気二重層キャパシタ用電極としては、例えば、活性炭、導電性付与剤およびバインダーを混練し、さらに溶媒を添加してペーストを調製し、このペーストをアルミ箔などの集電板に塗布した後、溶媒を乾燥除去したものが挙げられる。   As an electrode for an electric double layer capacitor, for example, activated carbon, a conductivity-imparting agent and a binder are kneaded, a solvent is further added to prepare a paste, and this paste is applied to a current collector plate such as an aluminum foil. Is obtained by drying and removing.

前記電気二重層キャパシタ用電極に使用されるバインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン−ブタジエンゴム、石油ピッチ、フェノール樹脂などを使用できる。また、導電性付与剤としては、アセチレンブラック、ケッチェンブラックなどを使用できる。   As the binder used for the electrode for the electric double layer capacitor, fluorine-based polymer compounds such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, petroleum pitch, phenol resin, and the like can be used. As the conductivity imparting agent, acetylene black, ketjen black, or the like can be used.

電気二重層キャパシタは、一般的には、電極、電解液、およびセパレータを主要構成とし、一対の電極間にセパレータを配置した構造となっている。前記電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネートなどの有機溶剤に、アミジン塩を溶解した電解液;過塩素酸の4級アンモニウム塩を溶解した電解液;4級アンモニウムやリチウムなどのアルカリ金属の四フッ化ホウ素塩や六フッ化リン塩を溶解した電解液;4級ホスホニウム塩を溶解した電解液などが挙げられる。また、前記セパレータとしては、例えば、セルロース、ガラス繊維、または、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムが挙げられる。   An electric double layer capacitor generally has a structure in which an electrode, an electrolytic solution, and a separator are main components, and a separator is disposed between a pair of electrodes. Examples of the electrolytic solution include an electrolytic solution in which an amidine salt is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, and methyl ethyl carbonate; an electrolytic solution in which a quaternary ammonium salt of perchloric acid is dissolved; quaternary ammonium or lithium An electrolytic solution in which an alkali metal boron tetrafluoride salt or phosphorous hexafluoride salt is dissolved; an electrolytic solution in which a quaternary phosphonium salt is dissolved may be mentioned. Examples of the separator include cellulose, glass fiber, or a nonwoven fabric, cloth, or microporous film mainly composed of polyolefin such as polyethylene or polypropylene.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

比表面積、全細孔容積および平均細孔径の測定方法
活性炭0.2gを200℃にて真空加熱した後、窒素吸着装置(Micromeritics社製、「ASAP−2400」)を用いてN2ガス吸着法による吸着等温線を求め、BET法により比表面積および全細孔容積を求めた。また、平均細孔径は、BET法により求められた比表面積および細孔径1.0nm〜30nmの範囲における細孔容積を用いて、下記式(1)に基づいて算出した。
Method for measuring specific surface area, total pore volume and average pore diameter After 0.2 g of activated carbon was heated under vacuum at 200 ° C., N 2 gas adsorption method using a nitrogen adsorption device (“ASAP-2400” manufactured by Micromeritics) And the specific surface area and total pore volume were determined by the BET method. The average pore diameter was calculated based on the following formula (1) using the specific surface area determined by the BET method and the pore volume in the range of 1.0 to 30 nm.

製造例1
炭素原料としての石炭ピッチコークス(三菱化学社製、石炭ピッチコークス、平均粒子径75μm未満)20.00g、有機化合物としてのN−メチル−2−ピロリドン10.28g(有機化合物/炭素原料(質量比)=0.5)、水酸化カリウム50g(水酸化カリウム/炭素原料(質量比)=2.5)を、ステンレス容器に入れ、室温(25℃)でスパチュラを用いて混合を行った。
Production Example 1
20.00 g of coal pitch coke as carbon material (Mitsubishi Chemical Co., Ltd., coal pitch coke, average particle size less than 75 μm), 10.28 g of N-methyl-2-pyrrolidone as organic compound (organic compound / carbon raw material (mass ratio) ) = 0.5) and 50 g of potassium hydroxide (potassium hydroxide / carbon raw material (mass ratio) = 2.5) were placed in a stainless steel container and mixed at room temperature (25 ° C.) using a spatula.

次いで、得られた混合物を、炉内温度25℃のロータリーキルン(円筒炉、大阪精工社製)に収容し、窒素流通下(1L/分)で、炉内温度を800℃まで昇温した(昇温速度:10℃/分)。炉内温度が800℃に達した後、窒素流通下(1L/分)、2時間保持し、アルカリ賦活処理を行った。   Subsequently, the obtained mixture was accommodated in a rotary kiln (cylindrical furnace, manufactured by Osaka Seiko Co., Ltd.) having a furnace temperature of 25 ° C., and the furnace temperature was raised to 800 ° C. under nitrogen flow (1 L / min) (increased). (Temperature rate: 10 ° C./min). After the furnace temperature reached 800 ° C., it was maintained for 2 hours under nitrogen flow (1 L / min), and an alkali activation treatment was performed.

得られた賦活物とカリウム成分の混合物に、水1.6Lと塩酸(濃度:35質量%)0.4Lを加え、100℃で2時間加熱後、賦活物を濾取することにより塩酸洗浄を行った。その後、塩酸洗浄を終えた賦活物に水2Lを加え、100℃に加熱して2時間煮沸した後、賦活物を濾取することにより温水洗浄を行った。同様の操作を繰り返して温水洗浄をさらに1回行った。   To the obtained mixture of activated material and potassium component, 1.6 L of water and 0.4 L of hydrochloric acid (concentration: 35% by mass) were added, heated at 100 ° C. for 2 hours, and then the activated material was collected by filtration to wash hydrochloric acid. went. Thereafter, 2 L of water was added to the activated product after washing with hydrochloric acid, heated to 100 ° C. and boiled for 2 hours, and then the activated product was filtered to perform warm water washing. The same operation was repeated, and washing with warm water was further performed once.

塩酸洗浄1回と温水洗浄2回を経た賦活物を、110℃で2時間乾燥した。乾燥後の賦活物を、ディスクミルを用いて粉砕し、平均粒子径が8μmとなるように調整し、活性炭を得た。得られた活性炭について評価し、結果を表1に示した。   The activated product that had been washed once with hydrochloric acid and washed twice with warm water was dried at 110 ° C. for 2 hours. The activated product after drying was pulverized using a disk mill, and adjusted so that the average particle size was 8 μm to obtain activated carbon. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例2
有機化合物であるN−メチル−2−ピロリドン(NMP)の使用量を1.03g(有機化合物/炭素原料(質量比)=0.05)に変更したこと以外は、製造例1と同様にして活性炭を得た。得られた活性炭について評価し、結果を表1に示した。
Production Example 2
Except having changed the usage-amount of N-methyl-2-pyrrolidone (NMP) which is an organic compound into 1.03 g (organic compound / carbon raw material (mass ratio) = 0.05), it carried out similarly to manufacture example 1, and. Activated carbon was obtained. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例3
有機化合物であるN−メチル−2−ピロリドン(NMP)の使用量を51.40g(有機化合物/炭素原料(質量比)=2.6)に変更したこと以外は、製造例1と同様にして活性炭を得た。得られた活性炭について評価し、結果を表1に示した。
Production Example 3
Except having changed the usage-amount of N-methyl-2-pyrrolidone (NMP) which is an organic compound into 51.40g (organic compound / carbon raw material (mass ratio) = 2.6), it carried out similarly to manufacture example 1, and. Activated carbon was obtained. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例4
有機化合物を、トルエン43.35g(有機溶媒/炭素原料(質量比)=2.2)に変更したこと以外は、製造例1と同様にして活性炭を得た。得られた活性炭について評価し、結果を表1に示した。
Production Example 4
Activated carbon was obtained in the same manner as in Production Example 1 except that the organic compound was changed to 43.35 g of toluene (organic solvent / carbon raw material (mass ratio) = 2.2). The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例5
紙基材としてクラフト紙(坪量200g/m2)を用い、フェノール樹脂としてレゾール樹脂からなるフェノール樹脂ワニスを調製し、塗布樹脂量が紙基材70質量部に対し30質量部となるように紙基材に塗布し含浸させ、約160℃で乾燥してプリプレグを作製した。複数枚のプリプレグを積層し、両側をステンレス鋼製の鏡面板で挟み、さらにその両外側にクッション材を重ね、多段式油圧プレス機の熱盤間にセットした。この状態で、温度140℃、圧力6.9MPa(70kgf/cm2)、時間90分の条件で熱プレスした後、解板、耳切りを行って、寸法1020mm×1020mmで厚さ1.5mmの紙−フェノール樹脂積層板を得た。得られた紙−フェノール樹脂積層板を5mm以下に粉砕した。
Production Example 5
Kraft paper (basis weight 200 g / m 2 ) is used as a paper substrate, a phenol resin varnish made of a resol resin is prepared as a phenol resin, and the coating resin amount is 30 parts by mass with respect to 70 parts by mass of the paper substrate. A paper base was coated and impregnated, and dried at about 160 ° C. to prepare a prepreg. A plurality of prepregs were laminated, both sides were sandwiched between stainless steel mirror plates, and cushion materials were stacked on both sides, and set between the hot plates of a multistage hydraulic press. In this state, after heat-pressing under conditions of a temperature of 140 ° C., a pressure of 6.9 MPa (70 kgf / cm 2 ), and a time of 90 minutes, the stencil and edge cutting were performed, and the dimensions were 1020 mm × 1020 mm and the thickness was 1.5 mm. A paper-phenolic resin laminate was obtained. The obtained paper-phenol resin laminate was pulverized to 5 mm or less.

炭素材料としての紙−フェノール樹脂積層板(平均粒子径5mm未満)20.01g、有機化合物としてのN−メチル−2−ピロリドン51.40g(有機化合物/炭素原料(質量比)=2.6)、水酸化カリウム50g(水酸化カリウム/炭素原料(質量比)=2.5)を、ステンレス容器に入れ、室温(25℃)でスパチュラを用いて混合を行った。   20.01 g of paper-phenol resin laminate (average particle diameter less than 5 mm) as a carbon material, 51.40 g of N-methyl-2-pyrrolidone as an organic compound (organic compound / carbon raw material (mass ratio) = 2.6) Then, 50 g of potassium hydroxide (potassium hydroxide / carbon raw material (mass ratio) = 2.5) was put in a stainless steel container and mixed with a spatula at room temperature (25 ° C.).

次いで、得られた混合物を、炉内温度25℃のロータリーキルン(円筒炉、大阪精工社製)に収容し、窒素流通下(1L/分)で、炉内温度を800℃まで昇温した(昇温速度:10℃/分)。炉内温度が800℃に達した後、窒素流通下(1L/分)、2時間保持し、アルカリ賦活を行った。次いで、製造例1と同様に塩酸洗浄、温水洗浄および粉砕を行い、活性炭を得た。得られた活性炭について評価し、結果を表1に示した。   Subsequently, the obtained mixture was accommodated in a rotary kiln (cylindrical furnace, manufactured by Osaka Seiko Co., Ltd.) having a furnace temperature of 25 ° C., and the furnace temperature was raised to 800 ° C. under nitrogen flow (1 L / min) (increased). (Temperature rate: 10 ° C./min). After the furnace temperature reached 800 ° C., the alkali was activated by maintaining for 2 hours under nitrogen flow (1 L / min). Next, hydrochloric acid washing, warm water washing and pulverization were performed in the same manner as in Production Example 1 to obtain activated carbon. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例6
上記製造例4で作製した紙−フェノール樹脂積層板(平均粒子径5mm未満)を、窒素雰囲気下、700℃で2時間加熱処理し、紙−フェノール樹脂積層板炭化物を得た。
Production Example 6
The paper-phenolic resin laminate (average particle diameter less than 5 mm) prepared in Production Example 4 was heat-treated at 700 ° C. for 2 hours in a nitrogen atmosphere to obtain a paper-phenolic resin laminate carbide.

炭素原料としての紙−フェノール樹脂積層板炭化物20.00g、有機化合物としてのトルエン43.35g(有機化合物/炭素原料(質量比)=2.2)、水酸化カリウム50g(水酸化カリウム/炭素原料(質量比)=2.5)を、ステンレス容器に入れ、室温(25℃)でスパチュラを用いて混合を行った。   Paper-phenol resin laminate carbon 20.00g as carbon raw material, toluene 43.35g as organic compound (organic compound / carbon raw material (mass ratio) = 2.2), potassium hydroxide 50g (potassium hydroxide / carbon raw material) (Mass ratio) = 2.5) was placed in a stainless steel container and mixed at room temperature (25 ° C.) using a spatula.

次いで、得られた混合物を、炉内温度25℃のロータリーキルン(円筒炉、大阪精工社製)に収容し、窒素流通下(1L/分)で、炉内温度を800℃まで昇温した(昇温速度:10℃/分)。炉内温度が800℃に達した後、窒素流通下(1L/分)、2時間保持し、アルカリ賦活を行った。次いで、製造例1と同様に塩酸洗浄、温水洗浄および粉砕を行い、活性炭を得た。得られた活性炭について評価し、結果を表1に示した。   Subsequently, the obtained mixture was accommodated in a rotary kiln (cylindrical furnace, manufactured by Osaka Seiko Co., Ltd.) having a furnace temperature of 25 ° C., and the furnace temperature was raised to 800 ° C. under nitrogen flow (1 L / min) (increased). (Temperature rate: 10 ° C./min). After the furnace temperature reached 800 ° C., the alkali was activated by maintaining for 2 hours under nitrogen flow (1 L / min). Next, hydrochloric acid washing, warm water washing and pulverization were performed in the same manner as in Production Example 1 to obtain activated carbon. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例7〜9
有機化合物を使用しなかったこと以外は、製造例1、5、6と同様のアルカリ賦活剤使用量(水酸化カリウム/炭素原料(質量比)=2.5)および熱処理条件にて活性炭を得た。得られた活性炭について評価し、結果を表1に示した。
Production Examples 7-9
Except that no organic compound was used, activated carbon was obtained using the same alkali activator usage (potassium hydroxide / carbon raw material (mass ratio) = 2.5) and heat treatment conditions as in Production Examples 1, 5, and 6. It was. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例1〜4、7は、炭素原料として石炭ピッチコークスを使用し、有機化合物の種類および使用量のみを変更したものである。これらの製造例で得られた活性炭を比較すると、有機化合物としてN−メチル−2−ピロリドンを使用した製造例1〜3では、有機化合物を使用していない製造例7に比べて、比表面積が大きくなり、かつ、平均細孔径が小さくなっている。なお、製造例1〜3を比較すると、有機化合物の使用量が多くなるほど賦活後の活性炭の回収量が増加し、有機化合物の使用量が少なくなるほど活性炭の比表面積が高くなることがわかる。また、有機化合物としてトルエンを使用した製造例4では、製造例7に比べて比表面積が2倍以上に大きくなり、かつ、平均細孔径が小さくなっている。   Production Examples 1 to 4 and 7 use coal pitch coke as a carbon raw material and change only the type and amount of the organic compound. Comparing the activated carbons obtained in these production examples, the production surfaces 1 to 3 using N-methyl-2-pyrrolidone as the organic compound have a specific surface area as compared to Production Example 7 using no organic compound. It is large and the average pore diameter is small. In addition, when the manufacture examples 1-3 are compared, it turns out that the collection amount of activated carbon after activation increases, so that the usage-amount of an organic compound increases, and the specific surface area of activated carbon becomes high, so that the usage-amount of an organic compound decreases. Further, in Production Example 4 using toluene as the organic compound, the specific surface area is twice or more larger than that in Production Example 7, and the average pore diameter is small.

製造例5、8は、炭素原料として紙−フェノール樹脂積層板を使用し、有機化合物の使用量のみを変更したものである。これらの製造例で得られた活性炭を比較すると、有機化合物としてN−メチル−2−ピロリドンを使用した製造例5では、有機化合物を使用していない製造例8に比べて、比表面積および平均細孔径がいずれも小さくなっている。ここで、図2を見ると製造例8では細孔径2nm以上の細孔が多く形成されているのに対して、製造例5では細孔径2nm以上の細孔の形成が抑制されている。   In Production Examples 5 and 8, a paper-phenolic resin laminate is used as a carbon raw material, and only the amount of the organic compound used is changed. When the activated carbons obtained in these production examples are compared, the production surface 5 using N-methyl-2-pyrrolidone as the organic compound is more specific than the production surface 8 in which no organic compound is used. The hole diameter is all small. Here, referring to FIG. 2, in Production Example 8, many pores having a pore diameter of 2 nm or more are formed, whereas in Production Example 5, formation of pores having a pore diameter of 2 nm or more is suppressed.

製造例6、9は、炭素原料として紙−フェノール樹脂積層板炭化物を使用し、有機化合物の使用量のみを変更したものである。これらの製造例で得られた活性炭を比較すると、有機化合物としてトルエンを使用した製造例6では、有機化合物を使用していない製造例9に比べて、比表面積および平均細孔径がいずれも大きくなっている。   Production Examples 6 and 9 use paper-phenol resin laminate carbide as a carbon raw material, and change only the amount of organic compound used. When the activated carbons obtained in these production examples are compared, in Production Example 6 using toluene as the organic compound, both the specific surface area and the average pore diameter are larger than those in Production Example 9 using no organic compound. ing.

本発明は、活性炭の物性を制御できるため、適切な物性(例えば、比表面積、細孔径など)を有することが要求される活性炭の製造に有用である。   The present invention can control the physical properties of activated carbon, and thus is useful for the production of activated carbon required to have appropriate physical properties (for example, specific surface area, pore diameter, etc.).

Claims (6)

炭素原料と融点が250℃以下の有機化合物を混合した後、アルカリ賦活することを特徴とする活性炭の製造方法。   A method for producing activated carbon, comprising: mixing a carbon raw material and an organic compound having a melting point of 250 ° C. or less and then activating the alkali. 前記炭素原料と前記有機化合物との混合を、前記有機化合物の融点以上の温度で行う請求項1に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the carbon raw material and the organic compound are mixed at a temperature equal to or higher than the melting point of the organic compound. 前記有機化合物が、複素環式化合物または芳香族炭化水素である請求項1または2に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the organic compound is a heterocyclic compound or an aromatic hydrocarbon. 前記有機化合物と前記炭素原料の質量比(有機化合物/炭素原料)が、0.05以上10以下である請求項1〜3のいずれか一項に記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 1 to 3, wherein a mass ratio of the organic compound and the carbon raw material (organic compound / carbon raw material) is 0.05 or more and 10 or less. 前記炭素原料が、石炭ピッチコークス、石炭、石油コークス、石炭コークス、石油ピッチコークス、合成樹脂、合成樹脂とセルロース系繊維との複合物およびこれらの炭化物よりなる群から選択される少なくとも1種である請求項1〜4のいずれか一項に記載の活性炭の製造方法。   The carbon raw material is at least one selected from the group consisting of coal pitch coke, coal, petroleum coke, coal coke, petroleum pitch coke, synthetic resin, composite of synthetic resin and cellulosic fiber, and carbides thereof. The manufacturing method of activated carbon as described in any one of Claims 1-4. 請求項1〜5のいずれか一項に記載の製造方法により得られた活性炭を電極構成材料に用いたことを特徴とする電気二重層キャパシタ。   An electric double layer capacitor, wherein the activated carbon obtained by the production method according to claim 1 is used as an electrode constituent material.
JP2009146782A 2009-06-19 2009-06-19 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method Active JP5503196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146782A JP5503196B2 (en) 2009-06-19 2009-06-19 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146782A JP5503196B2 (en) 2009-06-19 2009-06-19 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method

Publications (2)

Publication Number Publication Date
JP2011001232A true JP2011001232A (en) 2011-01-06
JP5503196B2 JP5503196B2 (en) 2014-05-28

Family

ID=43559532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146782A Active JP5503196B2 (en) 2009-06-19 2009-06-19 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method

Country Status (1)

Country Link
JP (1) JP5503196B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521218A (en) * 2010-03-09 2013-06-10 エスゲーエル カーボン ソシエタス ヨーロピア Method for producing base activated carbon
JP2017014079A (en) * 2015-07-02 2017-01-19 株式会社神戸製鋼所 Method for producing active carbon, active carbon, and electrode material for electric double layer capacitor
CN109161915A (en) * 2018-09-30 2019-01-08 东北大学 The method for preparing activated carbon for super capacitors powder using coal based on fused salt
CN115020121A (en) * 2022-06-08 2022-09-06 中国矿业大学 Lignite residue based porous carbon material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315810A (en) * 1996-05-28 1997-12-09 Nippon Chem Ind Co Ltd Production of activated carbon for adsorbing acidic gas
JP2003168635A (en) * 2001-11-30 2003-06-13 Asahi Kasei Corp Activated carbon for electrode of electric double layer capacitor
JP2005200259A (en) * 2003-01-14 2005-07-28 Kansai Coke & Chem Co Ltd Porous carbon and manufacturing method of porous carbon as well as manufacturing method of porous carbon for electrical double layer capacitor, porous carbon for electrical double layer obtained from the method and electrical double layer capacitor using the same
JP2007186411A (en) * 2005-12-16 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same
JP2008297201A (en) * 2002-07-30 2008-12-11 Kuraray Chem Corp Activated carbon, method for production thereof, polarizing electrode and electric double layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315810A (en) * 1996-05-28 1997-12-09 Nippon Chem Ind Co Ltd Production of activated carbon for adsorbing acidic gas
JP2003168635A (en) * 2001-11-30 2003-06-13 Asahi Kasei Corp Activated carbon for electrode of electric double layer capacitor
JP2008297201A (en) * 2002-07-30 2008-12-11 Kuraray Chem Corp Activated carbon, method for production thereof, polarizing electrode and electric double layer capacitor
JP2005200259A (en) * 2003-01-14 2005-07-28 Kansai Coke & Chem Co Ltd Porous carbon and manufacturing method of porous carbon as well as manufacturing method of porous carbon for electrical double layer capacitor, porous carbon for electrical double layer obtained from the method and electrical double layer capacitor using the same
JP2007186411A (en) * 2005-12-16 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013055648; 高分子辞典 第3版, 20050630, 第724頁, 株式会社朝倉書店 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521218A (en) * 2010-03-09 2013-06-10 エスゲーエル カーボン ソシエタス ヨーロピア Method for producing base activated carbon
JP2017014079A (en) * 2015-07-02 2017-01-19 株式会社神戸製鋼所 Method for producing active carbon, active carbon, and electrode material for electric double layer capacitor
CN109161915A (en) * 2018-09-30 2019-01-08 东北大学 The method for preparing activated carbon for super capacitors powder using coal based on fused salt
CN115020121A (en) * 2022-06-08 2022-09-06 中国矿业大学 Lignite residue based porous carbon material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5503196B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
CA3055280C (en) Method for producing activated carbon
TWI646049B (en) Porous carbon material, method for producing porous carbon material, electrode material, and adsorbent
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP2011136856A (en) Activated carbon for electric double-layer capacitor electrode, and method for producing the same
JP2011020907A (en) Activated carbon and electric double layer capacitor using the same
JP2012101948A (en) Method for producing activated carbon
JP5503196B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
US10547050B2 (en) High specific surface area hard carbon-based electrode active material through carbonization process control and electrode active material by thereof
JP6371787B2 (en) Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon
JP5619367B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5563239B2 (en) Method for producing porous carbon material
JP2009269765A (en) Method for manufacturing mesopore activated carbon
KR101381710B1 (en) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
KR20180128071A (en) Method for producing carbon fiber, electrode for carbon fiber and electric double layer capacitor
JP2004014762A (en) Carbon material for electric double layered capacitor and its manufacturing method
KR102173010B1 (en) Method for manufacturing electrode material for capacitors
JP6509643B2 (en) Method of producing activated carbon
JP6426582B2 (en) Porous carbon
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
KR102069839B1 (en) Activated carbon for supercapacitor electrode, electrode for supercapacitor containing the same, and method for preparing the activated carbon
AU2021106597A4 (en) A process for converting flexible printed circuit boards to useful materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250