JP2005097792A - Ultrafine carbon fiber and method for producing the same - Google Patents

Ultrafine carbon fiber and method for producing the same Download PDF

Info

Publication number
JP2005097792A
JP2005097792A JP2003333930A JP2003333930A JP2005097792A JP 2005097792 A JP2005097792 A JP 2005097792A JP 2003333930 A JP2003333930 A JP 2003333930A JP 2003333930 A JP2003333930 A JP 2003333930A JP 2005097792 A JP2005097792 A JP 2005097792A
Authority
JP
Japan
Prior art keywords
carbon fiber
ultrafine carbon
water
ultrafine
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003333930A
Other languages
Japanese (ja)
Inventor
Nozomi Sugo
望 須郷
Hideji Iwasaki
秀治 岩崎
Hideki Nakagawa
秀樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Kuraray Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003333930A priority Critical patent/JP2005097792A/en
Publication of JP2005097792A publication Critical patent/JP2005097792A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrafine carbon fiber excellent in heat resistance, chemical resistance, etc., and to provide a method for producing the same. <P>SOLUTION: The ultrafine carbon fiber has <0.05 mass% transition metal content, 20-1,000 nm average diameter, ≥10 average aspect ratio and ≤0.36 nm crystal lattice spacing (d<SB>002</SB>) measured by X-ray diffraction method. The method for producing the ultrafine carbon fiber comprises removing a water-soluble resin from a sea-island type conjugated fiber composed of the water-soluble resin which is a sea component and a water-insoluble resin which is an island component by water extraction, carrying out infusibilization treatment of the fiber under the atmosphere containing an oxidative gas and then carrying out carbonization treatment of the fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は極細炭素繊維及びその製造方法に関する。さらに詳しくは、耐熱性、耐薬品性等に優れた極細炭素繊維と、その極細炭素繊維を工業的に有利な方法で製造する方法に関する。   The present invention relates to an ultrafine carbon fiber and a method for producing the same. More specifically, the present invention relates to an ultrafine carbon fiber excellent in heat resistance, chemical resistance and the like, and a method for producing the ultrafine carbon fiber by an industrially advantageous method.

炭素繊維は、耐熱性、耐薬品性、導電性、軽量性等に優れており、断熱材、シール材、電極材などの幅広い分野で利用されている。このような炭素繊維の中で、特に繊維径の小さい極細炭素繊維は、比表面積や吸着速度が大きいことから、高性能の吸着材や、高密度の炭素繊維織布、不織布、さらに触媒担体への応用も期待されている。また、繊維径が小さいため分散性に優れることから、他の材料と混合して高分散型の導電性材料へ利用することも期待されている。   Carbon fibers are excellent in heat resistance, chemical resistance, electrical conductivity, light weight, etc., and are used in a wide range of fields such as heat insulating materials, sealing materials, and electrode materials. Among these carbon fibers, ultrafine carbon fibers with a particularly small fiber diameter have a large specific surface area and adsorption rate, so they can be used as high-performance adsorbents, high-density carbon fiber woven fabrics, non-woven fabrics, and catalyst carriers. Applications are also expected. In addition, since the fiber diameter is small, it is excellent in dispersibility. Therefore, it is expected to be mixed with other materials and used as a highly dispersed conductive material.

従来、このような極細炭素繊維の製造方法としては、例えば、ポリエチレンとフェノール樹脂からなる海島型複合繊維から、海成分であるポリエチレンを抽出除去して極細繊維を取り出し、さらに炭化する炭素繊維の製造方法が知られている(特許文献1参照)。
しかしながら、特許文献1の方法では、海成分であるポリエチレンは後工程で炭化させて除去するため、ポリエチレンをリサイクル使用することができない。海成分であるポリエチレンを溶剤で除去する方法も考えられるが、多量の有機溶剤を使用する必要があるため、作業環境を著しく悪化させるという問題がある。
また別の極細炭素繊維の製造方法として、触媒金属源のガスと炭化水素のガスを高温で処理することによって炭素繊維を製造する、いわゆる気相成長炭素繊維の製造方法が知られている(特許文献2参照)。
しかし、特許文献2の方法では、触媒金属が極細炭素繊維の末端に残存したり、金属が混入するため、その除去が必要であるいう問題がある。
特開2001−073226号公報 特開2003−138432号公報
Conventionally, as a method for producing such an ultrafine carbon fiber, for example, from a sea-island type composite fiber made of polyethylene and a phenol resin, the sea component polyethylene is extracted and removed, the ultrafine fiber is taken out, and further carbonized carbon fiber is produced. A method is known (see Patent Document 1).
However, according to the method of Patent Document 1, polyethylene, which is a sea component, is carbonized and removed in a subsequent process, so that polyethylene cannot be recycled. Although a method of removing polyethylene, which is a sea component, with a solvent is also conceivable, it is necessary to use a large amount of an organic solvent.
As another ultrafine carbon fiber production method, a so-called vapor grown carbon fiber production method is known in which carbon fiber is produced by treating a catalyst metal source gas and a hydrocarbon gas at a high temperature (patent). Reference 2).
However, the method of Patent Document 2 has a problem that the catalyst metal remains at the end of the ultrafine carbon fiber or the metal is mixed in, so that it needs to be removed.
JP 2001-073226 A JP 2003-138432 A

本発明の目的は、耐熱性、耐薬品性等に優れた極細炭素繊維と、生産性に優れた極細炭素繊維の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the ultrafine carbon fiber excellent in heat resistance, chemical-resistance, etc., and the ultrafine carbon fiber excellent in productivity.

本発明者らは、上記目的を達成すべく鋭意検討した結果、海成分である水溶性樹脂と島成分である非水溶性樹脂からなる海島型複合繊維に、特定の処理を施すことにより得られる極細炭素繊維が、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors can obtain a sea-island type composite fiber composed of a water-soluble resin as a sea component and a water-insoluble resin as an island component by performing a specific treatment. The inventors have found that ultrafine carbon fibers can achieve the above object, and have completed the present invention.

すなわち本発明は、
(1)遷移金属の含有量が0.05質量%未満、平均直径が20〜1000nm、平均アスペクト比が10以上で、かつX線回折法で測定した結晶格子面間隔(d002)が0.36nm以下である極細炭素繊維、及び
(2)海成分である水溶性樹脂と島成分である非水溶性樹脂からなる海島型複合繊維から、水溶性樹脂を水抽出によって除去した後、酸化性ガスを含む雰囲気下で不融化処理を行い、次いで炭化処理することを特徴とする極細炭素繊維の製造方法
を提供するものである。
That is, the present invention
(1) The transition metal content is less than 0.05% by mass, the average diameter is 20 to 1000 nm, the average aspect ratio is 10 or more, and the crystal lattice spacing (d 002 ) measured by the X-ray diffraction method is 0.00. After removing the water-soluble resin by water extraction from the ultra-fine carbon fiber of 36 nm or less and (2) the sea-island type composite fiber composed of the water-soluble resin as the sea component and the water-insoluble resin as the island component, the oxidizing gas An infusible treatment is performed in an atmosphere containing, and then a carbonization treatment is provided.

本発明によれば、耐熱性、耐薬品性等に優れた極細炭素繊維を提供することができる。本発明の極細炭素繊維は、断熱材、シール材、電極材などとして好適である。二次電池等においては、金属が充放電サイクルの進行と共に樹脂状に成長するデンドライト化現象が発生すると、このデンドライトがセパレータを貫通して正極と接触したりすることによって、ショートして充放電サイクル寿命を短縮するという問題が生じるが、本発明の極細炭素繊維は、デンドライト化現象を生じにくいため、特に電極材として好適である。
また、本発明方法によれば、極細炭素繊維を、生産性に優れた工業的に有利な方法で製造することができる。
According to the present invention, an ultrafine carbon fiber excellent in heat resistance, chemical resistance, and the like can be provided. The ultrafine carbon fiber of the present invention is suitable as a heat insulating material, a sealing material, an electrode material and the like. In secondary batteries, etc., when a dendrite phenomenon occurs in which the metal grows in a resinous form as the charge / discharge cycle progresses, the dendrite penetrates the separator and contacts the positive electrode, causing a short circuit and the charge / discharge cycle. Although the problem of shortening the lifetime occurs, the ultrafine carbon fiber of the present invention is particularly suitable as an electrode material because it hardly causes a dendrite phenomenon.
Moreover, according to the method of the present invention, ultrafine carbon fibers can be produced by an industrially advantageous method having excellent productivity.

本発明の極細炭素繊維は、遷移金属の含有量が0.05質量%未満、平均直径が20〜1000nm、平均アスペクト比が10以上で、かつX線回折法で測定した結晶格子面間隔(d002)が0.36nm以下である。
本発明でいう遷移金属の含有量とは、鉄、ニッケル、コバルトの総量を示し、湿式処理後、高周波プラズマ(ICP)発光分析法によって求めることができる。
本発明の極細炭素繊維の遷移金属の含有量は、0.05質量%未満、好ましくは0.005質量%以下であり、更に好ましくは0.001質量%以下である。遷移金属の含有量が0.05質量%未満であるのは、本発明の極細炭素繊維が、遷移金属含有化合物を用いて製造されるいわゆる気相成長炭素繊維ではないことを示すものであり、遷移金属の含有量が0.05質量%以上の場合は、例えば、電極用素材として用いた場合にデンドライトの成長などの問題が生じるおそれがあり、好ましくない。
The ultrafine carbon fiber of the present invention has a transition metal content of less than 0.05 mass%, an average diameter of 20 to 1000 nm, an average aspect ratio of 10 or more, and a crystal lattice spacing measured by an X-ray diffraction method (d 002 ) is 0.36 nm or less.
The transition metal content in the present invention refers to the total amount of iron, nickel, and cobalt, and can be determined by high frequency plasma (ICP) emission spectrometry after wet processing.
The transition metal content of the ultrafine carbon fiber of the present invention is less than 0.05% by mass, preferably 0.005% by mass or less, and more preferably 0.001% by mass or less. The transition metal content of less than 0.05% by mass indicates that the ultrafine carbon fiber of the present invention is not a so-called vapor-grown carbon fiber produced using a transition metal-containing compound, When the content of the transition metal is 0.05% by mass or more, there is a possibility that problems such as dendrite growth may occur when used as an electrode material, which is not preferable.

本発明の極細炭素繊維における平均直径は20〜1000nm、好ましくは50〜800nmである。また、極細炭素繊維の平均アスペクト比は、炭素繊維としての特性を発揮させるためには10以上、好ましくは50以上200以下が必要である。
極細炭素繊維の平均直径及び平均アスペクト比は、走査型電子顕微鏡によるSEM観察から求めることができる。
The average diameter in the ultrafine carbon fiber of the present invention is 20 to 1000 nm, preferably 50 to 800 nm. Further, the average aspect ratio of the ultrafine carbon fiber needs to be 10 or more, preferably 50 or more and 200 or less in order to exhibit the characteristics as the carbon fiber.
The average diameter and average aspect ratio of the ultrafine carbon fiber can be determined from SEM observation using a scanning electron microscope.

結晶格子面間隔(d002)は、黒鉛としての結晶性を示す指標であり、X線回折により得ることができる。本発明の極細炭素繊維は、X線回折法で測定した結晶格子面間隔(d002)が0.36nm以下であり、好ましくは0.35〜0.34nmである。(d002)が0.36nmを越える場合は、黒鉛結晶が未発達となるので極細炭素繊維の導電性が低く、強度弾性率も低くなる。
本発明の極細炭素繊維は、強度の点で、炭素含有量が96質量%以上、特に97質量%以上、水素含有量が0.5質量%以下、特に0.3質量%以下であるのが好ましい。
The crystal lattice spacing (d 002 ) is an index indicating crystallinity as graphite, and can be obtained by X-ray diffraction. The ultrafine carbon fiber of the present invention has a crystal lattice spacing (d 002 ) of 0.36 nm or less, preferably 0.35 to 0.34 nm, as measured by an X-ray diffraction method. When (d 002 ) exceeds 0.36 nm, the graphite crystal becomes undeveloped, so the conductivity of the ultrafine carbon fiber is low and the strength elastic modulus is also low.
The ultrafine carbon fiber of the present invention has a carbon content of 96% by mass or more, particularly 97% by mass or more, and a hydrogen content of 0.5% by mass or less, particularly 0.3% by mass or less in terms of strength. preferable.

本発明の極細炭素繊維は、易黒鉛性材料からなるものが好ましく、本発明で規定する特性を有する極細炭素繊維が得られる方法であれば、製造法に特に制限はない。生産性などの点でより好適な方法は本発明による製造法であり、海成分である水溶性樹脂と島成分である非水溶性樹脂からなる海島型複合繊維から、水溶性樹脂を水抽出によって除去した後、酸化性ガスを含む雰囲気下で不融化処理を行い、次いで炭化処理、必要に応じて更に黒鉛化処理することによって極細炭素繊維を製造することができる。ここで、海島型複合繊維としては、水溶性樹脂と非水溶性樹脂を有機溶媒に溶解してなる紡糸原液を固化浴中に紡出することによって作製されたものが好ましい。   The ultrafine carbon fiber of the present invention is preferably made of an easily graphitizable material, and the production method is not particularly limited as long as the ultrafine carbon fiber having the characteristics defined in the present invention is obtained. A more preferred method in terms of productivity is the production method according to the present invention, wherein a water-soluble resin is extracted by water extraction from a sea-island composite fiber composed of a water-soluble resin as a sea component and a water-insoluble resin as an island component. After the removal, infusibilization treatment is performed in an atmosphere containing an oxidizing gas, followed by carbonization treatment, and further graphitization treatment as necessary, to produce ultrafine carbon fibers. Here, the sea-island type composite fiber is preferably prepared by spinning a spinning stock solution obtained by dissolving a water-soluble resin and a water-insoluble resin in an organic solvent into a solidification bath.

本発明方法において、最終的に極細炭素繊維を構成する材料となるのは、島成分を構成する非水溶性樹脂であり、水溶性樹脂とは非相溶性の材料である。
このような非水溶性樹脂としては、不融化処理の容易性という観点から、例えば、ポリアクリロニトリル(以下PANと略す)系樹脂、フェノール樹脂、ポリメチルメタアクリレート樹脂、ポリアミド樹脂、ポリイミド樹脂、フルフリルアルコール樹脂、セルロースアセテート樹脂、及び石炭あるいは石油等のピッチ等を挙げることができる。
PANは、アクリロニトリル単位を70モル%以上有していればよく、例えば、メチルアクリレート、エチルアクリレート、メチルメタクリレートなどの(メタ)アクリル酸エステル類、酢酸ビニルや酪酸ビニルなどのビニルエステル類、塩化ビニルなどのビニル化合物類、アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸類、スルホン酸含有ビニル化合物などのモノマーが30モル%未満の割合で共重合されていてもよい。
In the method of the present invention, the material that finally constitutes the ultrafine carbon fiber is a water-insoluble resin that constitutes the island component, and the water-soluble resin is an incompatible material.
Examples of such water-insoluble resins include polyacrylonitrile (hereinafter abbreviated as PAN) resins, phenol resins, polymethyl methacrylate resins, polyamide resins, polyimide resins, and furfuryl from the viewpoint of easy infusibility. Examples thereof include alcohol resins, cellulose acetate resins, and pitches of coal or petroleum.
PAN should just have 70 mol% or more of acrylonitrile units, for example, (meth) acrylic acid esters, such as methyl acrylate, ethyl acrylate, and methyl methacrylate, vinyl esters, such as vinyl acetate and vinyl butyrate, vinyl chloride Monomers such as vinyl compounds such as, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and maleic anhydride, and sulfonic acid-containing vinyl compounds may be copolymerized in a proportion of less than 30 mol%.

フェノール樹脂は、フェノール類とアルデヒド類とを反応触媒の存在下に縮合重合反応させて得られるものである。フェノール類としては、例えば、フェノール、クレゾール、ビスフェノール−A、2,3−キシレノール、3,5−キシレノール、p−ターシャリブチルフェノール、レゾルシノール等が挙げられる。アルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、ヘキサメチレンテトラミン、フルフラール、ベンズアルデヒド、サリチルアルデヒド等が挙げられる。アルデヒド類とフェノール類のモル比は、好ましくは0.6:1〜0.86:1である。また、溶融紡糸に適切な温度範囲で可融であり、溶融紡糸に適切な粘度範囲とするために、フェノール樹脂の分子量は500〜50,000の範囲にあることが好ましい。   The phenol resin is obtained by subjecting phenols and aldehydes to a condensation polymerization reaction in the presence of a reaction catalyst. Examples of phenols include phenol, cresol, bisphenol-A, 2,3-xylenol, 3,5-xylenol, p-tertiarybutylphenol, resorcinol and the like. Examples of aldehydes include formaldehyde, paraformaldehyde, hexamethylenetetramine, furfural, benzaldehyde, salicylaldehyde, and the like. The molar ratio of aldehydes to phenols is preferably 0.6: 1 to 0.86: 1. The molecular weight of the phenol resin is preferably in the range of 500 to 50,000 in order to be meltable in a temperature range suitable for melt spinning and to have a viscosity range suitable for melt spinning.

ピッチは、紡糸が可能ならば異方性、等方性のどちらでもよいが、紡糸性、不融化性、導電性の点から、光学的異方性相(メソフェーズ)を含有するピッチが好ましい。特に、偏光顕微鏡観察により測定される光学的異方性相を60%以上、好ましくは90%以上を含むメソフェーズピッチが特に好ましい。これらのピッチを得るためには、石炭系のコールタール、コールタールピッチ、石炭液化物、石油系の重質油、タール、ピッチ、等の炭素質原料又は予備処理(可溶分抽出等)を行った前記炭素質原料を、通常、350〜500℃、好ましくは380〜450℃で、2分〜50時間、好ましくは5分〜5時間の条件で、不活性ガス雰囲気下に加熱処理することによって得ることができる。また、ナフタレンなどの芳香環を含む化合物からHF/BF3触媒を用いて重合することにより、光学的異方性相を90%以上含む合成ピッチを得ることができる。 The pitch may be either anisotropic or isotropic if spinning is possible, but a pitch containing an optically anisotropic phase (mesophase) is preferred from the viewpoints of spinnability, infusibilities, and conductivity. In particular, a mesophase pitch containing 60% or more, preferably 90% or more of the optically anisotropic phase measured by polarizing microscope observation is particularly preferable. In order to obtain these pitches, carbonaceous raw materials such as coal-based coal tar, coal-tar pitch, coal liquefaction, petroleum-based heavy oil, tar, pitch, etc. or pretreatment (extraction of soluble components, etc.) The carbonaceous raw material performed is usually heat-treated in an inert gas atmosphere at 350 to 500 ° C., preferably 380 to 450 ° C., for 2 minutes to 50 hours, preferably 5 minutes to 5 hours. Can be obtained by: In addition, a synthetic pitch containing 90% or more of an optically anisotropic phase can be obtained by polymerizing a compound containing an aromatic ring such as naphthalene using an HF / BF 3 catalyst.

上記の非水溶性樹脂の中では、得られる極細炭素繊維の強度、導電性の面から、PAN系樹脂、ピッチが好ましい。ピッチは炭化時の収率が高く、炭化時にPAN系樹脂のように強い毒性を示すガスを多量に放出しないことから特に好ましい。   Among the above water-insoluble resins, PAN-based resins and pitch are preferable from the viewpoint of strength and conductivity of the ultrafine carbon fiber obtained. Pitch is particularly preferable because it has a high yield during carbonization and does not release a large amount of highly toxic gas such as PAN resin during carbonization.

本発明方法において、海島型複合繊維の海成分を構成する水溶性樹脂は、水溶解性樹脂のみならずエマルション型の水分散性樹脂をも含む概念である。このよう水溶性樹脂としては、ポリビニルアルコール(以下PVAと略す)系ポリマー、ポリビニルピロリドン、アルカリ可溶性再生セルロースなどを挙げることができる。これらの中でもPVAが好ましく、特にオキシアルキレン基含有PVA 、又はアリルアルコール変性PVAなどが紡糸性に優れている点で好ましい。   In the method of the present invention, the water-soluble resin constituting the sea component of the sea-island composite fiber is a concept including not only a water-soluble resin but also an emulsion-type water-dispersible resin. Examples of such water-soluble resins include polyvinyl alcohol (hereinafter abbreviated as PVA) polymers, polyvinyl pyrrolidone, and alkali-soluble regenerated cellulose. Among these, PVA is preferable, and oxyalkylene group-containing PVA or allyl alcohol-modified PVA is particularly preferable in terms of excellent spinnability.

オキシアルキレン基含有PVAは、典型的には、酢酸ビニルと、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテルなどのポリオキシアルキレン(メタ)アリルエーテルとを共重合し、ついでケン化することにより得ることができる。また、酢酸ビニルと、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド、ポリオキシエチレン(1−(メタ)アクリルアミド−1,1−ジメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテルなどを共重合し、ついでケン化することによっても得ることができる。また、アリルアルコール変性PVAは、典型的には、酢酸ビニルとアリルアルコールあるいはアリルセテートとを共重合し、ついでケン化することにより得ることができる。   An oxyalkylene group-containing PVA is typically a copolymer of vinyl acetate and a polyoxyalkylene (meth) allyl ether such as polyoxyethylene (meth) allyl ether or polyoxypropylene (meth) allyl ether, It can be obtained by saponification. Also, vinyl acetate, polyoxyethylene (meth) acrylate, polyoxypropylene (meth) acrylate, polyoxyethylene (meth) acrylamide, polyoxypropylene (meth) acrylamide, polyoxyethylene (1- (meth) acrylamide-1 , 1-dimethylpropyl) ester, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, and the like, and then saponification. The allyl alcohol-modified PVA can be typically obtained by copolymerizing vinyl acetate and allyl alcohol or allyl cetate and then saponifying.

このようなPVA系ポリマーは特に限定されないが、機械的性能、耐水性、フィブリル化性の点から、粘度平均重合度は500以上、特に1500以上のものが好ましく、ケン化度は99モル%以上、特に99.5モル%以上のものが好ましい。もちろん、他の成分により共重合されていてもよいが、共重合成分が30モル%以下、特に10モル%以下のものが機械的性能、耐水性等の点で好ましい。   Such a PVA polymer is not particularly limited, but from the viewpoint of mechanical performance, water resistance, and fibrillation properties, the viscosity average polymerization degree is preferably 500 or more, particularly preferably 1500 or more, and the saponification degree is 99 mol% or more. Particularly preferred is 99.5 mol% or more. Of course, it may be copolymerized with other components, but those having a copolymerization component of 30 mol% or less, particularly 10 mol% or less are preferred in terms of mechanical performance, water resistance and the like.

海島型複合繊維における水溶性樹脂成分と非水溶性樹脂成分の含有割合は、機械的性能、紡糸安定性、繊維径を小さくする点から、水溶性樹脂成分の含有量を55質量%以上/繊維 とすることが好ましく、また、繊維径を小さし、かつ島成分の回収率を上げる点から、水溶性樹脂成分の含有量を80質量%以下/繊維 とするのが好ましい。   The content ratio of the water-soluble resin component and the water-insoluble resin component in the sea-island composite fiber is such that the content of the water-soluble resin component is 55% by mass or more / fiber from the viewpoint of reducing mechanical performance, spinning stability, and fiber diameter. In view of reducing the fiber diameter and increasing the island component recovery rate, the content of the water-soluble resin component is preferably 80% by mass or less / fiber.

海島型複合繊維の紡糸方法としては、溶融紡糸法、溶剤を用いる湿式紡糸法、乾式紡糸法又は乾湿式紡糸法を挙げることができる。溶融紡糸法の場合は、水溶性樹脂と非水溶性樹脂を溶融混錬後、ノズルを通じて紡糸すればよく、湿式紡糸法及び乾湿式紡糸法の場合は、水溶性樹脂と非水溶性樹脂をともに溶解する有機溶媒に溶解して紡糸原液を調製し、固化浴中に紡出することによって行われる。本発明方法においては、溶剤を用いる湿式紡糸法又は乾湿式紡糸法を採用するのが生産性の点で好ましい。   Examples of the spinning method of the sea-island type composite fiber include a melt spinning method, a wet spinning method using a solvent, a dry spinning method, and a dry wet spinning method. In the case of the melt spinning method, the water-soluble resin and the water-insoluble resin may be melt-kneaded and then spun through a nozzle. In the case of the wet spinning method and the dry-wet spinning method, both the water-soluble resin and the water-insoluble resin are mixed. It is carried out by preparing a spinning stock solution by dissolving in a dissolving organic solvent and spinning in a solidification bath. In the method of the present invention, it is preferable from the viewpoint of productivity to employ a wet spinning method or a dry wet spinning method using a solvent.

紡糸原液を構成する有機溶媒は、水溶性樹脂成分及び非水溶性樹脂成分をともに溶解し、しかも該溶液中で両成分の相分離構造が形成されるものを使用する必要がある。このような有機溶媒としては、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド、ジメチルホルムアミド等の極性溶媒が好ましい。有機溶媒は一種単独又は二種以上を混合して使用することができるが、水溶性樹脂成分と非水溶性樹脂成分の低温溶解性、及び繊維の製造工程の簡略化の点で、少なくともDMSOを一成分として用いるのが好ましい。   As the organic solvent constituting the spinning dope, it is necessary to use an organic solvent in which both the water-soluble resin component and the water-insoluble resin component are dissolved and the phase separation structure of both components is formed in the solution. As such an organic solvent, polar solvents such as dimethyl sulfoxide (DMSO), dimethylacetamide, and dimethylformamide are preferable. The organic solvent can be used alone or in combination of two or more, but at least DMSO is used in view of low-temperature solubility of the water-soluble resin component and the water-insoluble resin component and simplification of the fiber production process. It is preferable to use it as one component.

樹脂成分の溶解方法は特に限定されるものではなく、上記2種類の樹脂成分をそれぞれ単独で紡糸原液溶媒に溶解したものを適当な割合で混合すればよい。具体的には、一方の樹脂成分を溶解した溶液に他方の樹脂成分を添加して溶解する方法や、2種の樹脂成分を同時に溶解する方法などを採用することができる。また、本発明の効果が阻害されない範囲で、紡糸原液に樹脂成分の安定化剤として酸類や酸化防止剤などを添加することもできる。   The method for dissolving the resin component is not particularly limited, and the above-described two types of resin components may be mixed in an appropriate ratio by dissolving them in the spinning dope solvent. Specifically, a method in which the other resin component is added to a solution in which one resin component is dissolved and a method in which two resin components are dissolved simultaneously can be employed. In addition, acids and antioxidants can be added to the spinning dope as stabilizers for the resin component as long as the effects of the present invention are not inhibited.

紡糸原液中の樹脂成分の濃度は10〜30質量%が好ましく、紡糸原液の温度は50〜140℃が好ましい。このとき、紡糸安定性、フィブリル化性等の点から島の大きさは直径50μm程度以下が好ましく、そのためには両樹脂成分の分子量等を適正に選択するのが好ましい。なお紡糸原液において相分離構造を形成していることを確認するためには、紡糸原液をスライドガラス上に約100μmの厚さに塗布し、室温でメタノールにより固化させ、得られたフィルムを500倍の光学顕微鏡で観察することにより行うことができる。   The concentration of the resin component in the spinning dope is preferably 10 to 30% by mass, and the temperature of the spinning dope is preferably 50 to 140 ° C. In this case, the size of the island is preferably about 50 μm or less in view of spinning stability, fibrillation property, etc. For this purpose, it is preferable to appropriately select the molecular weights of both resin components. In order to confirm that a phase separation structure was formed in the spinning stock solution, the spinning stock solution was applied to a thickness of about 100 μm on a slide glass, solidified with methanol at room temperature, and the resulting film was multiplied by 500 times. It can carry out by observing with an optical microscope.

以上のようにして調製した紡糸原液は、ノズルから固化浴中に吐出させて、海島型複合繊維の糸篠として固化させる。紡糸原液を固化浴に直接吐出する湿式紡糸法、又は気体空間を通じて固化浴に吐出する乾湿式紡糸法は、生産性の点で有利である。
固化浴に用いられる有機溶媒は、紡糸原液に対して固化能を有するものであれば特に限定されず、たとえばメタノール、エタノールなどのアルコール類、アセトン、メチルエチルケトン等のケトン類などが挙げられる。これらの有機溶媒は一種単独又は二種以上を混合して使用することができるが、固化能等の点から少なくともメタノールを一成分として用いるのが好ましく、さらに十分にかつ均質に固化を進行させる点からは、さらに紡糸原液に使用された溶媒を添加するのが好ましい。かかる観点から、メタノールとジメチルスルホキシド(DMSO)の混合溶媒を使用するのが最も好ましく、より具体的には、メタノール/DMSO(質量比)=30/70〜90/10の配合比とする混合溶媒が好ましく、特にメタノール/DMSO(質量比)=40/60〜80/20の配合比とする混合溶媒が好ましい。また、紡糸の安定性という観点から、固化浴温度を10℃以下、特に2〜8℃とするのが望ましい。
The spinning dope prepared as described above is discharged from a nozzle into a solidification bath and solidified as a thread of a sea-island type composite fiber. The wet spinning method in which the spinning solution is directly discharged into the solidification bath, or the dry and wet spinning method in which the spinning solution is discharged into the solidification bath through a gas space is advantageous in terms of productivity.
The organic solvent used in the solidification bath is not particularly limited as long as it has a solidification ability with respect to the spinning stock solution, and examples thereof include alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone. These organic solvents can be used singly or in combination of two or more, but it is preferable to use at least methanol as a component from the viewpoint of solidification ability, etc., and further solidification proceeds sufficiently and uniformly. From this, it is preferable to add the solvent used in the spinning dope. From this viewpoint, it is most preferable to use a mixed solvent of methanol and dimethyl sulfoxide (DMSO), and more specifically, a mixed solvent having a mixing ratio of methanol / DMSO (mass ratio) = 30/70 to 90/10. In particular, a mixed solvent having a mixing ratio of methanol / DMSO (mass ratio) = 40/60 to 80/20 is preferable. Further, from the viewpoint of spinning stability, the solidification bath temperature is desirably 10 ° C. or lower, particularly 2 to 8 ° C.

次いで、糸篠を固化浴から離浴させた後、紡糸原液に使用した有機溶媒を糸篠から抽出するのが好ましい。例えば、DMSOはメタノールにより抽出可能である。環境上、取扱上の点から、紡糸原液に使用した有機溶媒は十分に抽出しておくのが好ましく、樹脂成分に対して2質量%以下、特に1質量%以下、更に0.5質量%以下、またさらに0.1質量%以下となるまで抽出除去しておくのが好ましい。   Next, it is preferable to extract the organic solvent used in the spinning dope from the thread Shino after taking the thread Shino from the solidification bath. For example, DMSO can be extracted with methanol. From the viewpoint of environment and handling, it is preferable to sufficiently extract the organic solvent used in the spinning dope, and it is 2% by mass or less, particularly 1% by mass or less, and further 0.5% by mass or less based on the resin component. Further, it is preferable to extract and remove until it becomes 0.1% by mass or less.

このようにして作製した海島型複合繊維から、海成分である水溶性樹脂を水抽出によって除去することによって、極細炭素繊維を得ることができる。使用する水は、通常の無添加熱水でよいが、ナトリウム、カリウム等のアルカリ金属の酸化物、水酸化物もしくは炭酸塩などの弱酸塩を水に溶解した塩基性水溶液を使用することができる。水抽出は、炭素繊維の導電性、炭化時における繊維間の膠着回避の点から、水抽出後の繊維中の水溶性樹脂量が2質量%以下、特に1質量%以下、更に0.5質量%以下なるように行うのが好ましい。水溶性樹脂を所定量以下まで除去する方法としては、例えば、流水下に複合繊維をさらす方法やオートクレーブ中で水と共に加熱する方法などを例示することができる。使用する水又は塩基性水溶液の温度は、抽出効率の点から、通常130℃以下、特に120〜80℃とするのが好ましい。   An ultrafine carbon fiber can be obtained by removing the water-soluble resin, which is a sea component, from the sea-island composite fiber thus produced by water extraction. The water to be used may be ordinary non-added hot water, but a basic aqueous solution in which a weak acid salt such as an alkali metal oxide such as sodium or potassium, a hydroxide or a carbonate is dissolved in water can be used. . In water extraction, the amount of water-soluble resin in the fiber after water extraction is 2% by mass or less, particularly 1% by mass or less, and further 0.5% by mass, from the viewpoint of carbon fiber conductivity and avoiding sticking between fibers during carbonization. % Or less is preferable. Examples of the method of removing the water-soluble resin to a predetermined amount or less include a method of exposing the composite fiber under running water, a method of heating with water in an autoclave, and the like. The temperature of the water or basic aqueous solution to be used is usually 130 ° C. or lower, particularly preferably 120 to 80 ° C., from the viewpoint of extraction efficiency.

このようにして得られた極細炭素繊維は、不融化処理し、次いで炭化および/または黒鉛化処理が施される。不融化処理は、極細炭素繊維が軟化変形しない温度条件下で行われる。例えば、含酸素雰囲気下で、0.5〜4℃/分程度の昇温速度で240〜380℃まで昇温して不融化処理を行なう。あるいは、低温で予備不融化処理後、軟化変形以下の温度でさらに本不融化処理を実施することもできる。   The ultrafine carbon fiber thus obtained is infusibilized and then subjected to carbonization and / or graphitization. The infusibilization treatment is performed under temperature conditions where the ultrafine carbon fibers are not softened and deformed. For example, in an oxygen-containing atmosphere, the temperature is increased to 240 to 380 ° C. at a temperature increase rate of about 0.5 to 4 ° C./min, and the infusibilization process is performed. Alternatively, after the preliminary infusibilization treatment at a low temperature, the infusibilization treatment can be further performed at a temperature equal to or lower than the softening deformation.

非水溶性樹脂としてPANを使用する場合は、220℃で24時間の予備不融化処理を行い、次いで240℃で12時間の本不融化処理を行なう。昇温速度が遅すぎるたり、不融化処理の最高温度が低すぎると、不融化処理に要する時間が長くなりコスト高の原因となる。一方、不融化処理の最高温度が高すぎると極細繊維間の膠着が起こることがあり好ましくない。   When PAN is used as the water-insoluble resin, a preliminary infusibilization treatment is performed at 220 ° C. for 24 hours, and then a main infusibilization treatment is performed at 240 ° C. for 12 hours. If the rate of temperature increase is too slow or the maximum temperature of the infusibilization process is too low, the time required for the infusibilization process will be long, leading to high costs. On the other hand, if the maximum temperature of the infusibilization treatment is too high, sticking between ultrafine fibers may occur, which is not preferable.

非水溶性樹脂としてピッチを使用する場合は、常法により液相又は気相で連続的に不融化処理することが可能であるが、通常は、空気、酸素、NO2 等の酸化性雰囲気中で行なう。例えば、空気中での不融化においては、平均昇温速度1〜15℃/分、好ましくは3〜12℃/分で、処理温度範囲が100〜350℃、好ましくは150〜300℃程度で行うことができる。 When pitch is used as a water-insoluble resin, it can be infusibilized continuously in a liquid phase or gas phase by a conventional method, but usually in an oxidizing atmosphere such as air, oxygen, or NO 2. To do. For example, infusibilization in the air is performed at an average temperature increase rate of 1 to 15 ° C./min, preferably 3 to 12 ° C./min, and a processing temperature range of 100 to 350 ° C., preferably about 150 to 300 ° C. be able to.

次いで、上記のようにして得た不融化繊維を不活性ガス雰囲気中で、昇温速度100℃/分以下、好ましくは500℃/分以下で、到達温度600〜1000℃にて炭化処理を行う。より好ましくは、炭化繊維を不活性ガス雰囲気中で、600〜1000℃、好ましくは700〜950℃で予備炭化した後、2000℃以上、好ましくは2000〜2800℃程度の温度で黒鉛化することにより、黒鉛化繊維を得ることができる。
上記の不融化処理、炭化処理、黒鉛化処理は、炭素繊維を張力下で連続的に処理してもよく、不織布状態で処理してもよい。
Next, the infusibilized fiber obtained as described above is subjected to carbonization treatment in an inert gas atmosphere at a temperature rising rate of 100 ° C./min or less, preferably 500 ° C./min or less at an ultimate temperature of 600 to 1000 ° C. . More preferably, the carbonized fiber is pre-carbonized in an inert gas atmosphere at 600 to 1000 ° C., preferably 700 to 950 ° C., and then graphitized at a temperature of 2000 ° C. or more, preferably about 2000 to 2800 ° C. A graphitized fiber can be obtained.
In the infusibilization treatment, carbonization treatment, and graphitization treatment, the carbon fiber may be continuously treated under tension, or may be treated in a nonwoven fabric state.

このようにして得られた炭素繊維は、電極材としての嵩密度を向上させるために、粉砕(ミルド化)し、平均粒径5〜50μmとすることができる。また、更に、ミルド化した炭素繊維に、質量比で0.5〜5倍、好ましくは1倍〜4倍のアルカリ金属化合物を均一に混合した後、500〜900℃、好ましくは600〜800℃の温度で窒素等の不活性ガス中でアルカリ賦活処理することもできる。
以上により得られる、遷移金属の含有量が0.05質量%未満、平均直径が20〜1000nm、平均アスペクト比が10以上で、かつX線回折法で測定した結晶格子面間隔(d002)が0.36nm以下である極細炭素繊維は、断熱材、シール材、電極材などとして優れた特性を示す。
The carbon fibers thus obtained can be pulverized (milled) to have an average particle size of 5 to 50 μm in order to improve the bulk density as an electrode material. Further, after the alkali metal compound of 0.5 to 5 times, preferably 1 to 4 times in mass ratio is uniformly mixed with the milled carbon fiber, 500 to 900 ° C., preferably 600 to 800 ° C. The alkali activation treatment can also be performed in an inert gas such as nitrogen at a temperature of
The transition metal content obtained by the above is less than 0.05% by mass, the average diameter is 20 to 1000 nm, the average aspect ratio is 10 or more, and the crystal lattice spacing (d 002 ) measured by the X-ray diffraction method is The ultrafine carbon fiber having a thickness of 0.36 nm or less exhibits excellent characteristics as a heat insulating material, a sealing material, an electrode material, and the like.

以下に、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
実施例1
(1)極細繊維の調製
重合度1700、ケン化度99.8モル%のPVAと、酢酸ビニル5モル%を共重合した重合度1000のPANをDMSOに溶解し、傾斜パドル翼を有する撹拌機を用いて周速5m/秒で8時間窒素気流下80℃にて撹拌溶解し、PVA/PANの質量比が60/40でポリマー濃度が20質量%の混合紡糸原液を調製した。
この紡糸原液は、肉眼で観察すると不透明であり、また前記した方法により光学顕微鏡で相構造を観察すると、大部分が2〜50μmの粒子径を有する相分離構造を有していた。また、この紡糸原液をガラス板に約200μmの厚さとなるように塗布し、そのまま室温のメタノール中に浸漬した後熱水処理することにより、PVA成分が分散媒成分(海成分)でPAN成分が分散成分(島成分)となっていることが確認された。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
(1) Preparation of ultrafine fiber PANA having a polymerization degree of 1700 and a saponification degree of 99.8 mol% and PAN having a polymerization degree of 1000 copolymerized with 5 mol% of vinyl acetate were dissolved in DMSO, and a stirrer having an inclined paddle blade Was used for 8 hours at a peripheral speed of 5 m / sec and stirred and dissolved in a nitrogen stream at 80 ° C. to prepare a mixed spinning dope having a PVA / PAN mass ratio of 60/40 and a polymer concentration of 20 mass%.
This spinning dope was opaque when observed with the naked eye, and when the phase structure was observed with an optical microscope by the above-described method, most had a phase separation structure having a particle diameter of 2 to 50 μm. Also, this spinning stock solution is applied to a glass plate to a thickness of about 200 μm, immersed in methanol at room temperature as it is, and then subjected to hydrothermal treatment, whereby the PVA component is the dispersion medium component (sea component) and the PAN component is It was confirmed to be a dispersed component (island component).

紡糸原液を8時間静置し脱泡したが、2層に分離することはなく、極めて安定した相構造を有していることが確認された。この紡糸原液を80℃に保ち、孔数1000ホール、孔径0.008mmの紡糸口金を通して、DMSO/メタノール(質量比が45/55)、温度5℃の固化浴中に湿式紡糸し、3倍の湿延伸を施した。得られた繊維糸中のDMSOをメタノールで抽出し、80℃の熱風で乾燥後、230℃で全延伸倍率16倍となるよう乾熱延伸を施し(延伸浴での滞留時間30秒)、1800デニール(d)/1000本(f)の太さのPVA/PANブレンド複合繊維を得た。この繊維の断面を観測したところ、PVAが海成分、PANが島成分となっており、直径が0.2μmより大きい島成分の大部分には、海成分との境のすくなくとも一部に空隙が存在していた。   The spinning dope was allowed to stand for 8 hours and defoamed, but it was not separated into two layers, and it was confirmed that it had a very stable phase structure. This spinning stock solution was kept at 80 ° C., passed through a spinneret having a hole number of 1000 holes and a hole diameter of 0.008 mm, and wet-spun into a solidification bath at a temperature of 5 ° C. in DMSO / methanol (mass ratio 45/55). Wet stretching was performed. DMSO in the obtained fiber yarn was extracted with methanol, dried with hot air at 80 ° C., and then subjected to dry heat drawing at 230 ° C. so that the total draw ratio was 16 times (residence time in drawing bath 30 seconds), 1800 Denier (d) / 1000 (P) thick PVA / PAN blend composite fibers were obtained. When the cross section of this fiber was observed, PVA was a sea component and PAN was an island component, and most of the island components having a diameter larger than 0.2 μm had voids in at least a part of the boundary with the sea component. Existed.

(2)水溶性樹脂の除去工程
上記(1)で得られた複合繊維500gを4cmにカットして、水7.5リットル(L)を加え、オートクレーブを用いて、121℃で1時間加温し、その後取り出した。吸引濾過後の繊維に、水7.5Lを加え、オートクレーブを用いて、121℃で1時間加温し、更に吸引濾過を行った。この操作を更に4回行って水溶性樹脂を抽出除去し、60℃で12時間熱風乾燥後、水溶性樹脂が除去された極細炭素繊維185gを得た。
(2) Removal step of water-soluble resin 500 g of the composite fiber obtained in (1) above was cut into 4 cm, 7.5 liters (L) of water was added, and heated at 121 ° C. for 1 hour using an autoclave. And then removed. 7.5 L of water was added to the fiber after suction filtration, and the mixture was heated at 121 ° C. for 1 hour using an autoclave, and further subjected to suction filtration. This operation was further performed four times to extract and remove the water-soluble resin, and after drying with hot air at 60 ° C. for 12 hours, 185 g of ultrafine carbon fiber from which the water-soluble resin was removed was obtained.

(3)不融化工程
上記(2)で得られた極細炭素繊維154gを、大気中雰囲気下、220℃の恒温乾燥機内で24時間保持した。さらに、この極細繊維を240℃で12時間保持して不融化し、不融化された極細炭素繊維131gを得た。
(3) Infusibilization step 154 g of the ultrafine carbon fiber obtained in the above (2) was kept in a constant temperature dryer at 220 ° C. for 24 hours in an atmospheric atmosphere. Further, this ultrafine fiber was kept infusible at 240 ° C. for 12 hours to obtain an infusible ultrafine carbon fiber 131 g.

(4)炭化工程
上記(3)で得られた不融化された極細炭素繊維50gを、真空ガス置換炉(増田理化工業(株)製VF−2030−RP)を用いて10L/分の窒素雰囲気下、200℃/時間の昇温速度で920℃まで昇温し、同温度で2時間保持することによって炭化を行い、極細炭化繊維41gを得た。
(4) Carbonization process 50 g of the infusible ultrafine carbon fiber obtained in the above (3) is nitrogen atmosphere at 10 L / min using a vacuum gas replacement furnace (VF-2030-RP manufactured by Masuda Rika Kogyo Co., Ltd.). Then, the temperature was increased to 920 ° C. at a temperature increase rate of 200 ° C./hour, and carbonization was performed by maintaining the temperature for 2 hours to obtain 41 g of ultrafine carbonized fibers.

(5)黒鉛化工程
上記(4)で得られた極細炭化繊維10gを、2L/分の窒素気流中、高温炭化炉((株)広築製CVF炉)を用いて2000℃まで4時間で昇温し、同温度で6時間保持することによってさらに黒鉛化を行ない、黒鉛化された極細炭素繊維8.7gを得た。
(5) Graphitization step 10 g of the ultrafine carbonized fiber obtained in the above (4) in a nitrogen stream of 2 L / min using a high temperature carbonization furnace (CVF furnace manufactured by Hiroki Co., Ltd.) in 2000 hours. The temperature was raised and maintained at the same temperature for 6 hours to further graphitize to obtain 8.7 g of graphitized ultrafine carbon fiber.

上記により得られた極細黒鉛化炭素繊維を元素分析した結果、炭素含有量は97.6質量%、水素含有量は0.2質量%未満であった。回転対陰極X線回折装置(理学電機(株)製RINT2400)を用いて求めた面間隔(d002)を表1に併せて示した。
また、走査型電子顕微鏡((株)日立製作所製S−4000)によるSEM観察の結果、炭素繊維の平均直径は300nm、平均長さは24μm、アスペクト比は80であった。また、湿式分解した後、高周波プラズマ(ICP)発光分析装置(ジャーレルアッシュ社製IRIS AP)によって、残存する遷移金属含有量を測定した結果、鉄、ニッケル、コバルトは何れも2ppm以下(検出限界以下)であり、鉄、ニッケル、コバルトの総量も2ppm以下(検出限界以下)であった。
As a result of elemental analysis of the ultrafine graphitized carbon fiber obtained as described above, the carbon content was 97.6% by mass and the hydrogen content was less than 0.2% by mass. Table 1 also shows the interplanar spacing (d 002 ) determined using a rotating counter-cathode X-ray diffractometer (RINT2400, manufactured by Rigaku Corporation).
As a result of SEM observation using a scanning electron microscope (S-4000, manufactured by Hitachi, Ltd.), the average diameter of the carbon fibers was 300 nm, the average length was 24 μm, and the aspect ratio was 80. Further, after the wet decomposition, the remaining transition metal content was measured with an high frequency plasma (ICP) emission spectrometer (IRIS AP manufactured by Jarrel Ash). As a result, iron, nickel, and cobalt were all 2 ppm or less (detection limit). The total amount of iron, nickel, and cobalt was 2 ppm or less (below the detection limit).

実施例2
実施例1において、(4)炭化工程で得られた極細炭化繊維10gを、2000℃まで4時間で昇温して、同温度で1時間保持して黒鉛化した以外は、実施例1と同様にして極細炭素繊維を得た。得られた極細炭素繊維の炭素含有量、水素含有量、面間隔 (d002)、平均直径、アスペクト比を表1に示した。また、残存する遷移金属含有量を実施例1と同様にICP発光法により測定した結果、鉄、ニッケル、コバルトは何れも2ppm以下(検出限界以下)であり、鉄、ニッケル、コバルトの総量も2ppm以下(検出限界以下)であった。
Example 2
In Example 1, (4) 10 g of ultrafine carbonized fiber obtained in the carbonization step was heated to 2000 ° C. over 4 hours, and held at the same temperature for 1 hour to graphitize, as in Example 1. Thus, an ultrafine carbon fiber was obtained. Table 1 shows the carbon content, hydrogen content, interplanar spacing (d 002 ), average diameter, and aspect ratio of the obtained ultrafine carbon fiber. Further, as a result of measuring the remaining transition metal content by the ICP emission method in the same manner as in Example 1, all of iron, nickel and cobalt were 2 ppm or less (below the detection limit), and the total amount of iron, nickel and cobalt was also 2 ppm. It was below (below the detection limit).

実施例3
実施例1(1)極細繊維の調製において、PANの代わりに、光学的異方性相を98%含む合成ピッチを用い、PVA/合成ピッチの質量比を80/20 とした以外は、実施例1と同様にして極細炭素繊維を得た。得られた極細炭素繊維の炭素含有量、水素含有量、面間隔 (d002)、平均直径、アスペクト比を表1に示した。また、残存する遷移金属含有量を実施例1と同様にICP発光法により測定した結果、鉄、ニッケル、コバルトは何れも2ppm以下(検出限界以下)であり、鉄、ニッケル、コバルトの総量も2ppm以下(検出限界以下)であった。
Example 3
Example 1 (1) In the preparation of ultrafine fibers, a synthetic pitch containing 98% of an optically anisotropic phase was used instead of PAN, and the mass ratio of PVA / synthetic pitch was set to 80/20. In the same manner as in Example 1, ultrafine carbon fibers were obtained. Table 1 shows the carbon content, hydrogen content, interplanar spacing (d 002 ), average diameter, and aspect ratio of the obtained ultrafine carbon fiber. Further, as a result of measuring the remaining transition metal content by the ICP emission method in the same manner as in Example 1, all of iron, nickel, and cobalt were 2 ppm or less (below the detection limit), and the total amount of iron, nickel, and cobalt was 2 ppm. It was below (below the detection limit).

Figure 2005097792
Figure 2005097792

本発明によれば、耐熱性、耐薬品性等に優れた極細炭素繊維を、生産性に優れた工業的に有利な方法で製造することができる。かかる極細炭素繊維は、断熱材、シール材、電極材などとして好適であるが、デンドライト化現象を生じにくいため、とくに電極材として好適である。

ADVANTAGE OF THE INVENTION According to this invention, the ultra-fine carbon fiber excellent in heat resistance, chemical resistance, etc. can be manufactured by the industrially advantageous method excellent in productivity. Such ultrafine carbon fibers are suitable as a heat insulating material, a sealing material, an electrode material, and the like, but are particularly suitable as an electrode material because they do not easily cause a dendrite phenomenon.

Claims (13)

遷移金属の含有量が0.05質量%未満、平均直径が20〜1000nm、平均アスペクト比が10以上で、かつX線回折法で測定した結晶格子面間隔(d002)が0.36nm以下である極細炭素繊維。 The transition metal content is less than 0.05% by mass, the average diameter is 20 to 1000 nm, the average aspect ratio is 10 or more, and the crystal lattice spacing (d 002 ) measured by the X-ray diffraction method is 0.36 nm or less. A very fine carbon fiber. 前記極細炭素繊維が易黒鉛性材料からなる請求項1に記載の極細炭素繊維。   The ultrafine carbon fiber according to claim 1, wherein the ultrafine carbon fiber is made of an easily graphitizable material. 前記易黒鉛性材料がピッチである請求項2に記載の極細炭素繊維。   The ultrafine carbon fiber according to claim 2, wherein the graphitizable material is pitch. 前記極細炭素繊維の炭素含有量が96質量%以上である請求項1〜3のいずれかに記載の極細炭素繊維。   The ultrafine carbon fiber according to any one of claims 1 to 3, wherein the ultrafine carbon fiber has a carbon content of 96 mass% or more. 前記極細炭素繊維の水素含有量が0.5質量%未満である請求項1〜4のいずれかに記載の極細炭素繊維。   The ultrafine carbon fiber according to any one of claims 1 to 4, wherein the ultrafine carbon fiber has a hydrogen content of less than 0.5 mass%. 海成分である水溶性樹脂と島成分である非水溶性樹脂からなる海島型複合繊維から、水溶性樹脂を水抽出によって除去した後、酸化性ガスを含む雰囲気下で不融化処理を行い、次いで炭化処理することを特徴とする極細炭素繊維の製造方法。   After removing the water-soluble resin from the sea-island type composite fiber consisting of the water-soluble resin that is the sea component and the water-insoluble resin that is the island component, the water-soluble resin is removed by water extraction and then infusible in an atmosphere containing an oxidizing gas. A method for producing an ultrafine carbon fiber, which is carbonized. 前記海島型複合繊維が、水溶性樹脂と非水溶性樹脂を有機溶媒に溶解してなる紡糸原液を固化浴中に紡出することによって作製されたものである請求項6に記載の極細炭素繊維の製造方法。   7. The ultrafine carbon fiber according to claim 6, wherein the sea-island type composite fiber is produced by spinning a spinning stock solution obtained by dissolving a water-soluble resin and a water-insoluble resin in an organic solvent into a solidification bath. Manufacturing method. 前記水溶性樹脂がポリビニルアルコール系ポリマーである請求項6又は7に記載の極細炭素繊維の製造方法。   The method for producing ultrafine carbon fibers according to claim 6 or 7, wherein the water-soluble resin is a polyvinyl alcohol-based polymer. 前記非水溶性樹脂が易黒鉛性材料である請求項6〜8のいずれかに記載の極細炭素繊維の製造方法。   The method for producing ultrafine carbon fibers according to any one of claims 6 to 8, wherein the water-insoluble resin is an easily graphitizable material. 前記易黒鉛性材料がピッチである請求項9に記載の極細炭素繊維の製造方法。   The method for producing an ultrafine carbon fiber according to claim 9, wherein the graphitizable material is pitch. 前記固化浴がメタノールとジメチルスルホキシドの混合溶媒である請求項6〜10のいずれかに記載の極細炭素繊維の製造方法。   The method for producing ultrafine carbon fibers according to any one of claims 6 to 10, wherein the solidification bath is a mixed solvent of methanol and dimethyl sulfoxide. 前記極細炭素繊維の平均直径が20〜1000nmである請求項6〜11のいずれかに記載の極細炭素繊維の製造方法。   The method for producing an ultrafine carbon fiber according to any one of claims 6 to 11, wherein the ultrafine carbon fiber has an average diameter of 20 to 1000 nm. さらに黒鉛化処理を施す請求項6〜12のいずれかに記載の極細炭素繊維の製造方法。

Furthermore, the manufacturing method of the ultrafine carbon fiber in any one of Claims 6-12 which performs a graphitization process.

JP2003333930A 2003-09-25 2003-09-25 Ultrafine carbon fiber and method for producing the same Pending JP2005097792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333930A JP2005097792A (en) 2003-09-25 2003-09-25 Ultrafine carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333930A JP2005097792A (en) 2003-09-25 2003-09-25 Ultrafine carbon fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005097792A true JP2005097792A (en) 2005-04-14

Family

ID=34461799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333930A Pending JP2005097792A (en) 2003-09-25 2003-09-25 Ultrafine carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005097792A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152512A (en) * 2004-12-01 2006-06-15 Mitsubishi Rayon Co Ltd Carbon fiber, method for producing the same, carbon nanofiber assembly and precursor fiber
JP2006152497A (en) * 2004-11-30 2006-06-15 Mitsubishi Rayon Co Ltd Carbon nano-fiber or carbon nano-tube aggregate and method or producing the same
JP2006176903A (en) * 2004-12-21 2006-07-06 Mitsubishi Rayon Co Ltd Carbon nanofiber and method for producing the same
WO2006100783A1 (en) * 2005-03-24 2006-09-28 Kuraray Co., Ltd. Extrafine carbon fiber and process for producing the same
JP2006348401A (en) * 2005-06-14 2006-12-28 Toray Ind Inc Flame resistant fiber sheet precursor, method for producing the same and method for producing flame resistant fiber sheet
JPWO2005087991A1 (en) * 2004-03-11 2008-01-31 帝人株式会社 Carbon fiber
JP2013221232A (en) * 2012-04-18 2013-10-28 Tec One Company Carbon fiber, method for producing carbon fiber and material having the carbon fiber
JP2014185400A (en) * 2013-03-22 2014-10-02 Kuraray Co Ltd Pitch-based carbon fiber and production method of the same
JP2014185401A (en) * 2013-03-22 2014-10-02 Kuraray Co Ltd Sea-island type composite fiber, method of producing the composite fiber, polyvinyl alcohol-based ultra-fine fiber, method of producing the polyvinyl alcohol-based ultra-fine fiber and ultra-fine carbon fiber
JP2016060991A (en) * 2014-09-19 2016-04-25 東レ株式会社 Polyacrylonitrile-based flame resistant fiber, sheet like article using the same and manufacturing method of polyacrylonitrile-based flame resistant fiber
WO2016204240A1 (en) * 2015-06-18 2016-12-22 帝人株式会社 Fibrous carbon, method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
WO2017135406A1 (en) * 2016-02-05 2017-08-10 帝人株式会社 Carbon fiber aggregate and method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
JPWO2017057527A1 (en) * 2015-09-30 2018-05-24 帝人株式会社 Pitch-based ultrafine carbon fiber, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery using the pitch-based ultrafine carbon fiber, and nonaqueous electrolyte secondary battery comprising the negative electrode for nonaqueous electrolyte secondary battery
WO2018186018A1 (en) * 2017-04-07 2018-10-11 株式会社神戸製鋼所 Method of manufacturing porous carbon fiber sheet and method of manufacturing porous carbon electrode

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005087991A1 (en) * 2004-03-11 2008-01-31 帝人株式会社 Carbon fiber
KR101159088B1 (en) * 2004-03-11 2012-06-22 데이진 가부시키가이샤 Carbon fiber
JP4521397B2 (en) * 2004-03-11 2010-08-11 帝人株式会社 Carbon fiber
JP2006152497A (en) * 2004-11-30 2006-06-15 Mitsubishi Rayon Co Ltd Carbon nano-fiber or carbon nano-tube aggregate and method or producing the same
JP4550563B2 (en) * 2004-11-30 2010-09-22 三菱レイヨン株式会社 Carbon nanofiber or carbon nanotube aggregate and method for producing the same
JP4594055B2 (en) * 2004-12-01 2010-12-08 三菱レイヨン株式会社 Carbon fiber and manufacturing method thereof, carbon nanofiber aggregate, precursor fiber
JP2006152512A (en) * 2004-12-01 2006-06-15 Mitsubishi Rayon Co Ltd Carbon fiber, method for producing the same, carbon nanofiber assembly and precursor fiber
JP4544581B2 (en) * 2004-12-21 2010-09-15 三菱レイヨン株式会社 Carbon nanofiber and method for producing the same
JP2006176903A (en) * 2004-12-21 2006-07-06 Mitsubishi Rayon Co Ltd Carbon nanofiber and method for producing the same
WO2006100783A1 (en) * 2005-03-24 2006-09-28 Kuraray Co., Ltd. Extrafine carbon fiber and process for producing the same
JP2006348401A (en) * 2005-06-14 2006-12-28 Toray Ind Inc Flame resistant fiber sheet precursor, method for producing the same and method for producing flame resistant fiber sheet
JP2013221232A (en) * 2012-04-18 2013-10-28 Tec One Company Carbon fiber, method for producing carbon fiber and material having the carbon fiber
JP2014185400A (en) * 2013-03-22 2014-10-02 Kuraray Co Ltd Pitch-based carbon fiber and production method of the same
JP2014185401A (en) * 2013-03-22 2014-10-02 Kuraray Co Ltd Sea-island type composite fiber, method of producing the composite fiber, polyvinyl alcohol-based ultra-fine fiber, method of producing the polyvinyl alcohol-based ultra-fine fiber and ultra-fine carbon fiber
JP2016060991A (en) * 2014-09-19 2016-04-25 東レ株式会社 Polyacrylonitrile-based flame resistant fiber, sheet like article using the same and manufacturing method of polyacrylonitrile-based flame resistant fiber
US11532822B2 (en) 2015-06-18 2022-12-20 Teijin Limited Fibrous carbon, method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
JPWO2016204240A1 (en) * 2015-06-18 2018-03-01 帝人株式会社 Fibrous carbon and method for producing the same, electrode mixture layer for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2016204240A1 (en) * 2015-06-18 2016-12-22 帝人株式会社 Fibrous carbon, method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
EP3358072A4 (en) * 2015-09-30 2018-11-07 Teijin Limited Pitch-based ultrafine carbon fibers, method for producing same, non-aqueous electrolyte secondary battery negative electrode using said pitch-based ultrafine carbon fibers, and non-aqueous electrolyte secondary battery having said non-aqueous electrolyte secondary battery negative electrode
JPWO2017057527A1 (en) * 2015-09-30 2018-05-24 帝人株式会社 Pitch-based ultrafine carbon fiber, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery using the pitch-based ultrafine carbon fiber, and nonaqueous electrolyte secondary battery comprising the negative electrode for nonaqueous electrolyte secondary battery
US11387458B2 (en) 2016-02-05 2022-07-12 Teijin Limited Carbon fiber aggregate and method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
KR20180107135A (en) * 2016-02-05 2018-10-01 데이진 가부시키가이샤 Carbon fiber aggregate and method for manufacturing the same and electrode mix layer for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
EP3412818A4 (en) * 2016-02-05 2019-01-23 Teijin Limited Carbon fiber aggregate and method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
CN108603318A (en) * 2016-02-05 2018-09-28 帝人株式会社 Carbon fiber-integrated body and its manufacturing method and electrode for nonaqueous electrolyte secondary battery mixture layer and electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN115074866A (en) * 2016-02-05 2022-09-20 帝人株式会社 Carbon fiber aggregate and method for producing same
WO2017135406A1 (en) * 2016-02-05 2017-08-10 帝人株式会社 Carbon fiber aggregate and method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
TWI815791B (en) * 2016-02-05 2023-09-21 日商帝人股份有限公司 Carbon fiber polymer and manufacturing method thereof, electrode mixture layer for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR102643573B1 (en) * 2016-02-05 2024-03-04 데이진 가부시키가이샤 Carbon fiber assembly and manufacturing method thereof, electrode mixture layer for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018186018A1 (en) * 2017-04-07 2018-10-11 株式会社神戸製鋼所 Method of manufacturing porous carbon fiber sheet and method of manufacturing porous carbon electrode

Similar Documents

Publication Publication Date Title
Park et al. Precursors and manufacturing of carbon fibers
Frank et al. Carbon fibers: precursor systems, processing, structure, and properties
JP2005097792A (en) Ultrafine carbon fiber and method for producing the same
US20110033705A1 (en) Carbon fiber and method for producing the same
US20160145772A1 (en) Polyacrylonitrile-based precursor fiber for carbon fiber, and production method therefor
JP5261405B2 (en) Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
KR101159088B1 (en) Carbon fiber
JP4457147B2 (en) Extra fine carbon fiber and method for producing the same
JP2010242248A (en) Method for producing superfine carbon fiber
KR20050061495A (en) Process and composition for the production of carbon fiber and mats
JP2016040419A (en) Method for producing carbon fiber
KR20130078788A (en) The method of producing complex precursor multi filament and carbon fiber
JP4604911B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber
TWI302575B (en) Manufacturing method for ultrafine carbon fiber by using core and sheath conjugate melt spinning
JP2017066540A (en) Production method of carbon fiber and carbon fiber sheet
JPH05195324A (en) Precursor for carbon fiber production and method for producing the precursor
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP2013023790A (en) Phenolic fiber sheet, phenolic carbon fiber sheet, phenolic activated carbon fiber sheet and method for producing the same
KR100881953B1 (en) NanoFiber, Manufacturing Method Thereof And Manufacturing Method of Carbon NanoFiber
JPH05209368A (en) Production of polyphenylene sulfone fiber
JP2595674B2 (en) Carbon fiber production method
JP3531194B2 (en) Carbon fiber aggregate
JP2005264346A (en) Carbon fiber and method for producing the same
JP4591072B2 (en) Carbon fiber manufacturing method and carbon fiber obtained thereby
JPH05247731A (en) Fibrous activated carbon and its production