JPH02160923A - Porous carbon fiber and production thereof - Google Patents

Porous carbon fiber and production thereof

Info

Publication number
JPH02160923A
JPH02160923A JP63310728A JP31072888A JPH02160923A JP H02160923 A JPH02160923 A JP H02160923A JP 63310728 A JP63310728 A JP 63310728A JP 31072888 A JP31072888 A JP 31072888A JP H02160923 A JPH02160923 A JP H02160923A
Authority
JP
Japan
Prior art keywords
fiber
acrylonitrile
porous carbon
copolymer
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310728A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoneyama
米山 弘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63310728A priority Critical patent/JPH02160923A/en
Publication of JPH02160923A publication Critical patent/JPH02160923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject fiber having the fine pores of improved radii in the surface layer thereof and useful for adsorbing and separating various substances, etc., by spinning a mixture of an acrylonitrile copolymer and a thermally decomposable copolymer, drawing the prepared fiber and subsequently subjecting the drawn fiber to a flame-resisting treatment, a thermal decomposition treatment and an activation treatment under specific conditions. CONSTITUTION:A mixture of an acrylonitrile copolymer containing >=90mol.% of acrylonitrile and a thermally decomposable copolymer decomposing at a temperature of <=600 deg.C into lower mol.wt. compounds is spun and drawn into an acrylonitrile blend fiber, which is subjected to a fire-resisting treatment in an oxidating gas atmosphere of 200-300 deg.C. The treated fiber is further decomposed in an inert gas atmosphere and subsequently subjected to an activation treatment in an atmosphere of the mixture of an inert gas and an activation gas at 400-1200 deg.C to provide the objective fiber comprising a porous carbon fiber containing >=75wt.% of carbon, having opened fine holes having plural peaks in the radius distribution of the opened fine pores and especially having at least one peak in 10-50Angstrom and 50-1000Angstrom , respectively.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、表層面の細孔の径を改良した多孔質炭素繊維
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to porous carbon fibers with improved pore diameters on the surface layer.

「従来の技術」 近年、多孔質炭素繊維はガス及び蒸気の高吸着性能と優
れた加工適性を有する吸着材料として微量有機ガスの吸
着回収、悪臭成分の吸着除去、触媒分解能、有機電解質
電極用にと新規機能材料として広く利用されている。
"Conventional technology" In recent years, porous carbon fiber has been used as an adsorbent material that has high gas and vapor adsorption performance and excellent processability, and has been used for adsorption and recovery of trace organic gases, adsorption and removal of malodorous components, catalytic decomposition ability, and organic electrolyte electrodes. It is widely used as a new functional material.

多孔質炭素繊維は、セルローズ系繊維、ポリアクリロニ
トリル系繊維、ポリビニールアルコール系繊維、フェノ
ール系繊維等有機系繊維を原料とするものの他ピッチ系
等を原料とするもの等があるが、いずれも不融化処理(
耐炎化処理)を経て、炭素化処理工程で、水蒸気、炭酸
ガス、空気等の賦活性ガス中で賦活処理(多孔化処理)
されて製造されている。原料により13 E ’I’表
面積の値に差が生じるが、大体500〜3000m2/
gの範囲にある。これらの多孔質炭素繊維の細孔半径は
、いずれも50Å以下の範囲にノヤープな細孔分布のピ
ークを有する多孔質構造の繊維である。
Porous carbon fibers include those made from organic fibers such as cellulose fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, and phenol fibers, as well as those made from pitch-based materials. Melting treatment (
In the carbonization process, it is activated in an activation gas such as steam, carbon dioxide, or air (porous treatment).
has been manufactured. The value of 13 E 'I' surface area varies depending on the raw material, but it is approximately 500 to 3000 m2/
in the range of g. These porous carbon fibers each have a porous structure with a peak pore distribution having a pore radius of 50 Å or less.

「発明が解決しようとする課題」 ところが、従来の多孔質炭素繊維は、細孔半径が50Å
以下と小さいため、分子量の比較的小さいもののガス相
からの吸着特性には優れているか液相に溶存する分子量
の比較的大きな有機物、高分子物等の吸着には適してい
ないという問題がある。
"Problem to be solved by the invention" However, conventional porous carbon fibers have a pore radius of 50 Å.
Because of its small molecular weight, it has a problem that although it has a relatively small molecular weight, it has excellent adsorption properties from the gas phase, but it is not suitable for adsorbing organic substances, polymers, etc. with a relatively large molecular weight dissolved in the liquid phase.

本発明は上記事情に鑑みなされたもので、気相からの比
較的分子量の小さい物質の吸着性能を損うことなく、液
相に溶存する分子量の比較的大きい物質の吸着分離にも
適する多孔質炭素繊維を提供することを目的とする。
The present invention was made in view of the above circumstances, and is a porous material suitable for adsorption and separation of relatively large molecular weight substances dissolved in the liquid phase without impairing the adsorption performance of relatively small molecular weight substances from the gas phase. The purpose is to provide carbon fiber.

「課題を解決するための手段」 本発明は、炭素含有量75重量%以上からなる多孔質炭
素繊維であって、この多孔質炭素繊維の表層面に開孔し
た細孔の半径の分布に複数のピーりを有し、この複数の
ピークの内10Å以上50Å以下の範囲と50人より大
きく1000Å以下の範囲とに少なくとも1個づつのピ
ークを有する多孔質炭素繊維とすることを、解決するた
めの手段とした。
"Means for Solving the Problems" The present invention provides a porous carbon fiber having a carbon content of 75% by weight or more, which has a plurality of radii of pores formed on the surface of the porous carbon fiber. To solve this problem, the porous carbon fiber has at least one peak in the range of 10 Å or more and 50 Å or less and at least one peak in the range of more than 50 Å and 1000 Å or less among the plurality of peaks. It was used as a means of

「作用 」 細孔半径が10Å以上50Å以下の範囲に分布のピーク
を有することにより、気相からの比較的分子量の小さな
物質が吸着分離でき、50人より大きく1000Å以下
の範囲に分布のピークを有することにより、液相からの
分子量の比較的大きい物質を吸着分離することができる
"Effect" By having a distribution peak in the range of pore radius of 10 Å to 50 Å, substances with relatively small molecular weights from the gas phase can be adsorbed and separated, and the distribution peak is in the range of more than 50 Å and 1000 Å or less. By having this, substances with relatively large molecular weights can be adsorbed and separated from the liquid phase.

以下、本発明の多孔質炭素繊維について、詳しく説明す
る。
Hereinafter, the porous carbon fiber of the present invention will be explained in detail.

前述したように、本発明の多孔質炭素繊維は、炭素含有
量が75重量%以上であり、表面層に開孔した細孔の半
径の分布が10Å以上50Å以下の範囲と、50人より
大きく1000Å以下の範囲内に少なくとも1個づつピ
ークを有することを特徴とするものである。
As mentioned above, the porous carbon fiber of the present invention has a carbon content of 75% by weight or more, and a distribution of radii of pores opened in the surface layer in a range of 10 Å to 50 Å, which is larger than 50 Å. It is characterized by having at least one peak within a range of 1000 Å or less.

ここで、本発明の多孔質炭素繊維の炭素含有量が75重
量%に満たない場合は、炭素繊維と定義されず、多孔質
炭素繊維としての効果を奏しない。
Here, if the carbon content of the porous carbon fiber of the present invention is less than 75% by weight, it is not defined as a carbon fiber and does not exhibit the effect as a porous carbon fiber.

細孔の半径の分布力<10人未満にピークを有する多孔
室炭素繊維は、本発明の方法では製造できず、1000
人を越えてピークを有する場合は、繊維強度が低下し易
いという不都合を生じる。ピークが10Å以上50Å以
下の範囲にのみ存在する場合は、従来の多孔質炭素繊維
と同じ効果しか得られず、ピークが50人より大きくt
oooÅ以下の範囲にのみ存在する場合は、分子量の比
較的小さい物質の吸着分離に適さなくなる。本発明は、
両者の特性を合イっせ有することを特徴とするものであ
る。
Porous carbon fibers having a peak at pore radius distribution force <10 cannot be produced by the method of the present invention;
If the fiber has a peak exceeding that of humans, the fiber strength tends to decrease. If the peak exists only in the range of 10 Å to 50 Å, the same effect as conventional porous carbon fibers can be obtained, and the peak is larger than 50 Å.
If it exists only in the range of less than oooÅ, it will not be suitable for adsorption separation of substances with relatively small molecular weights. The present invention
It is characterized by having both characteristics.

次に、本発明の多孔質炭素繊維の製造方法について詳し
く説明する。
Next, the method for producing porous carbon fibers of the present invention will be explained in detail.

本発明の多孔質炭素繊維は、まずアクリロニトリルを9
0モル%以上含有するアクリロニトリル系共重合体と、
600℃以下の温度で熱分解して低分子量化する熱分解
性共重合体と、必要に応じて添加する上記両型合体のブ
ロック又はグラフト共重合体からなる相溶剤とを溶剤に
溶かし混合溶液とし、これを紡糸、延伸して、アクリル
系ブレンド繊維を製造する。次に、上記繊維を200〜
300℃の酸化性ガス雰囲気中で耐炎化処理を行なった
後、600℃以上の不活性ガス雰囲気下にて炭素化処理
を行う。このと−き同時に熱分解性重合体を熱分解させ
、その分解された低分子物質の逃散により比較的大きな
細孔を開孔させる。さらに400〜1200℃の水蒸気
、炭酸ガス等の酸化性ガスと不活性ガスとの混合ガス雰
囲気中で賦活処理することにより比較的小さい細孔を開
孔し、本発明の多重の細孔分布を有する多孔質炭素繊維
を製造する。
The porous carbon fiber of the present invention is prepared by first adding 9% acrylonitrile to the porous carbon fiber of the present invention.
an acrylonitrile copolymer containing 0 mol% or more;
A mixed solution in which a thermally decomposable copolymer that is thermally decomposed to lower its molecular weight at a temperature of 600°C or lower and a compatibilizer consisting of a block or graft copolymer of both types of polymers added as necessary is dissolved in a solvent. This is then spun and drawn to produce an acrylic blend fiber. Next, the above fibers are
After flameproofing treatment is performed in an oxidizing gas atmosphere at 300°C, carbonization treatment is performed in an inert gas atmosphere at 600°C or higher. At the same time, the thermally decomposable polymer is thermally decomposed, and relatively large pores are opened by the escape of the decomposed low-molecular substances. Furthermore, relatively small pores are opened by activation treatment in a mixed gas atmosphere of oxidizing gas such as water vapor and carbon dioxide gas and inert gas at 400 to 1200°C, and the multiple pore distribution of the present invention is created. A porous carbon fiber having a porous carbon fiber is produced.

本発明に用いるアクリロニトリル系共重合体はアクリロ
ニトリル90モル%以上とアクリロニトリルと共重合可
能な公知の単量体を10モル%以下とを含む共重合体が
好ましい。
The acrylonitrile copolymer used in the present invention is preferably a copolymer containing 90 mol% or more of acrylonitrile and 10 mol% or less of a known monomer copolymerizable with acrylonitrile.

ここで、この共重合体中にアクリロニトリルが90モル
%未満のものは、耐炎化処理中に融着を生じ易く、炭素
化され難いという不具合を生じる。
Here, if the copolymer contains less than 90 mol % of acrylonitrile, it tends to cause fusion during the flameproofing treatment and is difficult to carbonize.

アクリロニトリルと共重合可能な単量体としてはアクリ
ル酸、メタクリル酸、イタコン酸及びメチルメタクリレ
ート、エチルメタクリレート等の上記酸の誘導体、アク
リルアミド、メタクリルアミド等゛のアミド誘導体、酢
酸ビニル、更には塩化ビニリデン等のハロゲン単量体、
メタクリルスルポン酸ソーダやスチレンスルポン酸ソー
ダ等のスルホン酸誘導体等が挙げられる。また、このア
クリロニトリル系共重合体の重合度は比粘度を尺度とす
ると比粘度が、042〜0.3の範囲のものか好ましい
Examples of monomers copolymerizable with acrylonitrile include acrylic acid, methacrylic acid, itaconic acid, derivatives of the above acids such as methyl methacrylate and ethyl methacrylate, amide derivatives such as acrylamide and methacrylamide, vinyl acetate, and vinylidene chloride. halogen monomer,
Examples include sulfonic acid derivatives such as sodium methacryl sulfonate and sodium styrene sulfonate. The degree of polymerization of this acrylonitrile copolymer preferably has a specific viscosity in the range of 042 to 0.3.

本発明に用いられる熱分解性共重合体は分解温度600
 ’C以下で熱分解し低分子量化するものが好ましく、
アクリロニトリル系共重合体と共通の溶剤に溶解可能な
ものが好適に用いられろ。
The thermally decomposable copolymer used in the present invention has a decomposition temperature of 600
It is preferable to use one that thermally decomposes at a temperature below C to lower the molecular weight.
Preferably, those that can be dissolved in the same solvent as the acrylonitrile copolymer are used.

ここで、分解温度が600℃を越えるものは、炭素化処
理工程において熱分解しないため、細孔が形成されない
という不具合を生じる。
Here, if the decomposition temperature exceeds 600°C, it will not be thermally decomposed in the carbonization process, resulting in the problem that pores will not be formed.

上記熱分解性共重合体としては、ビニルクロライド、ビ
ニルアルコール、ビニルアセテート等のビニル系単量体
、メタクリレート、メチルメタクリレート、エチルメタ
クリレート、n−ブチルメタクリレート等のアクリレー
ト系単量体を51モル%以上と、アクリロニトリル以外
の単量体を49モル%以下とを含む共重合体等が好適に
用いられる。この熱分解性共重合体の比粘度は0.2〜
03程度が好適である。このように、比粘度の値をアク
リロニトリル系共重合体と近い値とすることは、両型合
体の溶液濃度及び粘度を調整する場合に都合が良い。
The thermally decomposable copolymer contains 51 mol% or more of vinyl monomers such as vinyl chloride, vinyl alcohol, and vinyl acetate, and acrylate monomers such as methacrylate, methyl methacrylate, ethyl methacrylate, and n-butyl methacrylate. A copolymer containing 49 mol % or less of a monomer other than acrylonitrile is preferably used. The specific viscosity of this thermally decomposable copolymer is 0.2~
Approximately 0.03 is suitable. Setting the specific viscosity to a value close to that of the acrylonitrile copolymer is advantageous when adjusting the solution concentration and viscosity of both types of copolymer.

一般に異種の重合体を混合溶解する場合、溶解パラメー
ター(δ)の値が異なるものは層分離を生じやすい。本
発明においても、アクリロニトリル系共重合体の(δ)
は約15,4であり、熱分解性共重合体の(δ)は9,
0〜12.2の範囲であるため相分離を生じ易い。この
ような場合、相溶剤として異種重合体同志のブロック又
はグラフト共重合体を用いることは一般に良く知られて
いる。このような相溶剤としては、ブロック及びグラフ
ト共重合体として、アクリロニトリル30モル%以上、
熱分解性共重合体40モル%以上及びその他の共重合可
能な単量体lOモル%以下含むものなどが好適に用いら
れる。
Generally, when different types of polymers are mixed and dissolved, those with different values of solubility parameters (δ) tend to cause layer separation. Also in the present invention, (δ) of the acrylonitrile copolymer
is about 15,4, and (δ) of the thermally decomposable copolymer is about 9,
Since it is in the range of 0 to 12.2, phase separation is likely to occur. In such cases, it is generally well known to use a block or graft copolymer of different types of polymers as a compatibilizer. Such compatibilizers include 30 mol% or more of acrylonitrile as block and graft copolymers;
Those containing 40 mol % or more of a thermally decomposable copolymer and 10 mol % or less of other copolymerizable monomers are preferably used.

上記アクリロニトリル系共重合体、熱分解性共重合体お
よび相溶剤の混合割合は、アクリロニトリル系共重合体
が40〜80重量%、熱分解性共重合体が20〜60重
量%、相溶剤が0〜5重量%の範囲が好ましい。
The mixing ratio of the acrylonitrile copolymer, thermally decomposable copolymer, and compatibilizer is 40 to 80% by weight of the acrylonitrile copolymer, 20 to 60% by weight of the thermally decomposable copolymer, and 0% by weight of the compatibilist. A range of 5% by weight is preferred.

アクリロニトリル系共重合体の混合割合が40重量%未
満の場合には、炭素化収率が低くなりすぎ経済的でなく
、80重里%を越える場合には閉孔の割合が多く吸着に
寄与しないという不具合を生じる。
If the mixing ratio of the acrylonitrile copolymer is less than 40% by weight, the carbonization yield will be too low and it is not economical, and if it exceeds 80% by weight, the proportion of closed pores will be large and will not contribute to adsorption. Causes problems.

熱分解性共重合体の混合割合が20重量%よりも少ない
場合、細孔は繊維表層面に開孔せず、閉孔の状態にあり
吸着性能は発現しない。60重量%を越えて混合させる
と炭素化収率が減少し、経済上好ましくな(なる。
When the mixing ratio of the thermally decomposable copolymer is less than 20% by weight, the pores are not opened on the surface layer of the fibers, but remain closed, and no adsorption performance is exhibited. If the amount exceeds 60% by weight, the carbonization yield will decrease, making it economically undesirable.

上記、閉孔の状態は密度勾配管法による密度の測定で明
らかになる。すなわち、繊維表層面に細孔が開孔してい
ない場合は、細孔中への密度勾配前液が流入U・ず炭素
繊維密度が低下することにより判明する。また、熱分解
性共重合体の混合量が20重量%以上、好ましくは25
重量%以上混合することにより細孔が表層面で開孔した
場合は、細孔内に密度液が流入し繊維密度が上昇し、細
孔が繊維表層面に開孔したことが示される。熱分解性共
重合体の混合割合が多くなると、細孔半径は一定で細孔
の容積が増加する、すなわち吸着容量が増加することと
なる。
The above-mentioned state of closed pores becomes clear by measuring the density using the density gradient tube method. That is, if pores are not formed on the surface of the fiber, this can be determined by the fact that the density gradient preliquid flows into the pores and the carbon fiber density decreases. In addition, the amount of the thermally decomposable copolymer mixed is 20% by weight or more, preferably 25% by weight or more.
When pores are opened on the surface layer surface by mixing more than % by weight, the density liquid flows into the pores and the fiber density increases, indicating that the pores are opened on the surface layer surface of the fibers. When the mixing ratio of the thermally decomposable copolymer increases, the pore volume increases while the pore radius remains constant, that is, the adsorption capacity increases.

本発明において相溶剤は、アクリロニトリル系共重合体
と熱分解性共重合体との混合を溶解時に行う場合は必須
であるが、これらをそれぞれ単独で溶解し、紡糸直前に
公知の駆動部分不要の静的混練索子を用いて混合する場
合は、相溶剤は必ずしも必要ではない。
In the present invention, the compatibilizer is essential when the acrylonitrile copolymer and the thermally decomposable copolymer are mixed at the time of melting, but each of them is dissolved individually and immediately before spinning, a compatibilizer that does not require a driving part is used. When mixing using a static kneader, a compatibilizer is not necessarily required.

上記相溶剤を添加する効果としては、相溶効果を上昇さ
せることは勿論であるが、さらに相溶剤の混合量を加減
することにより熱分解性共重合体の分散相の大きさを制
御し、細孔の大きさを決定することにある。混合量が一
定で相溶剤の量を加減すると、相溶剤の量が多くなるに
従って分散相の大きさが小さくなり、炭素化処理中に生
成する細孔の半径を小さくする。ただし、5重量%を越
えて混合しても効果は飽和するため、混合量は5重量%
以内が好適である。また、相溶剤を添加せずに、公知の
駆動部分不要の静的混線素子を用いて混合する場合は、
該混練素子のエレメントの数によってこの分散相の大き
さを制御する。
The effect of adding the above-mentioned compatibilizer is of course to increase the compatibility effect, but also to control the size of the dispersed phase of the thermally decomposable copolymer by adjusting the amount of the compatibilizer mixed. The purpose is to determine the size of the pores. When the amount of the compatibilizer is adjusted while the mixing amount is constant, the size of the dispersed phase becomes smaller as the amount of the compatibilizer increases, and the radius of the pores generated during the carbonization process is reduced. However, the effect will be saturated even if the amount exceeds 5% by weight, so the mixing amount should be 5% by weight.
It is preferable that it is less than or equal to In addition, when mixing without adding a compatibilizer and using a known static crosstalk element that does not require a driving part,
The size of this dispersed phase is controlled by the number of elements in the kneading element.

これらの重合体を溶解するための溶剤としては、ジメチ
ルホルムアミド、ジメチルアセトアミド及びジメチルホ
ルポギシド等の有機系溶剤が好適に用いられる。
As a solvent for dissolving these polymers, organic solvents such as dimethylformamide, dimethylacetamide, and dimethylforposide are preferably used.

この溶剤に上記重合体を溶解した混合溶液の粘度は、5
0℃で測定される落球粘度が、200〜800ポイズの
範囲が好適である。この粘度は、混合溶液の濃度を15
〜30重量%の範囲内で変化させることにより、上記範
囲に調整される。この混合溶液の濃度が低く落球粘度が
200ボイズより低いと、紡糸の安定性が低下する。ま
た、この混合溶液の濃度が高く、落球粘度が800ボイ
ズより高くなると、p過圧力等が上昇し紡糸操作性が悪
くなる傾向となり好ましくない。
The viscosity of the mixed solution in which the above polymer was dissolved in this solvent was 5.
The falling ball viscosity measured at 0° C. is preferably in the range of 200 to 800 poise. This viscosity reduces the concentration of the mixed solution to 15
The above range can be adjusted by changing the content within the range of 30% by weight. If the concentration of this mixed solution is low and the falling ball viscosity is lower than 200 voids, the stability of spinning will decrease. Further, if the concentration of this mixed solution is high and the falling ball viscosity is higher than 800 voids, the p overpressure etc. will increase and the spinning operability will tend to deteriorate, which is not preferable.

上記混合溶液は通常の円形ノズルから吐出される。混合
溶液は導管中の流動およびノズルから吐出される際の剪
断応力等により更に分散する。吐出された混合溶液は、
いったん空気中を走行させた後、凝固液中に導かれる方
法、もしくは直接凝固液中に吐出される方法により凝固
される。
The above mixed solution is discharged from a normal circular nozzle. The mixed solution is further dispersed due to the flow in the conduit and the shear stress when being discharged from the nozzle. The discharged mixed solution is
After traveling in the air, it is solidified by being introduced into a coagulating liquid or by being directly discharged into a coagulating liquid.

凝固液は通常は水と溶剤の混合溶液が用いられる。溶剤
の濃度が60〜85重量%の水溶液で温度が30℃以下
のものが好適に用いられる。上記範囲を外れると脆弱な
繊維と成り易い。比較的凝固速度を遅くする方が相分離
も穏やかに進み、欠陥構造の生成も妨げられるので好ま
しい。
A mixed solution of water and a solvent is usually used as the coagulating liquid. An aqueous solution having a solvent concentration of 60 to 85% by weight and a temperature of 30° C. or lower is preferably used. Outside the above range, the fibers tend to be brittle. It is preferable to make the solidification rate relatively slow because phase separation proceeds more slowly and formation of defect structures is also prevented.

次に、この凝固した繊維を温水及び熱水中で順次洗浄す
る。延伸は多段階で行い、延伸倍率3倍以上好ましくは
5倍以上に延伸する。その後加熱ロール上で乾燥するこ
とにより緻密構造のアクリロニトリル系ブレンド繊維が
製造される。この繊維の繊度は3デニール以下、好まし
くは1.5デニール以下が好ましい。上記紡糸工程中に
おいて各重合体は相分離を生じそれぞれ独立にからみ合
ったフィブリルを形成する。
Next, the coagulated fibers are sequentially washed in warm water and hot water. Stretching is performed in multiple stages, and the stretching is performed at a stretching ratio of 3 times or more, preferably 5 times or more. Thereafter, by drying on a heating roll, an acrylonitrile blend fiber with a dense structure is produced. The fineness of this fiber is preferably 3 denier or less, preferably 1.5 denier or less. During the above-mentioned spinning process, each polymer undergoes phase separation and forms independently entangled fibrils.

このアクリロニトリル系ブレンド繊維は、温度200〜
300℃の酸化性ガス(02,03,81NO2等)を
含む雰囲気中(通常は空気中)において耐炎化処理する
。ここで、処理温度が200℃に満たない場合は、耐炎
化構造の生成に長時間を必要とし、300℃を越えると
暴走反応を生じ易く、また融着し易いという不都合を生
じる。
This acrylonitrile blend fiber has a temperature of 200~
Flameproofing treatment is performed in an atmosphere (usually in air) containing an oxidizing gas (NO2, 02, 03, 81 NO2, etc.) at 300°C. Here, if the treatment temperature is less than 200° C., it will take a long time to generate a flame-resistant structure, and if it exceeds 300° C., runaway reactions will easily occur and fusion will occur.

上記耐炎化処理(酸化工程)中は、繊維は実質上収縮が
生じないように制御する。酸化工程での過度の収縮は得
られる繊維の強度特性を低下させるので好ましくない。
During the above-mentioned flameproofing treatment (oxidation step), the fibers are controlled so that substantially no shrinkage occurs. Excessive shrinkage during the oxidation step is undesirable because it reduces the strength properties of the resulting fibers.

また過度の伸張も、毛羽、繊維の切断が生じ易くなる。Excessive stretching also tends to cause fluff and fiber breakage.

酸化工程での伸張は0〜15%の範囲で制御することが
肝要である。この酸化工程でアクリロニトリル系ブレン
ド繊維のニトリル基の部分が縮合環化し不燃構造となり
、熱に対して安定化する。
It is important to control the elongation in the oxidation step within a range of 0 to 15%. In this oxidation step, the nitrile group portion of the acrylonitrile blend fiber undergoes condensation and ring formation, creating a nonflammable structure and stabilizing it against heat.

上記酸化工程の後、600℃以上好ましくは600℃〜
1200℃の不活性がス(N2、Ar、I−Ie等)の
雰囲気中で、耐炎化処理後の繊維を0〜20%の伸張下
で炭素化処理を行う。ここで、処理温度が600℃未満
の場合は、多孔質化が不充分となり、処理温度が120
0℃を越えると細孔容積が減少の傾向を示ず。
After the above oxidation step, the temperature is 600°C or higher, preferably 600°C or higher.
The flame-retardant fibers are carbonized in an inert gas (N2, Ar, I-Ie, etc.) atmosphere at 1200° C. under 0 to 20% elongation. Here, if the treatment temperature is less than 600°C, the formation of porosity will be insufficient, and the treatment temperature will be 120°C.
When the temperature exceeds 0°C, the pore volume shows no tendency to decrease.

この工程で熱分解性共重合体のフィブリル構造は低分子
体、単量体等に熱分解し除去されることにより、比較的
大きな細孔が形成される。
In this step, the fibril structure of the thermally decomposable copolymer is thermally decomposed into low molecular weight substances, monomers, etc. and removed, thereby forming relatively large pores.

さらに、20〜80容量%の水蒸気、炭酸ガス、空気等
の賦活性ガスと20〜b ガスとの混合ガス雰囲気中で、400〜1200℃にて
賦活処理することにより、比較的小さい細孔が開孔する
。ここで処理温度が、400 ’Cより低い場合は小さ
い細孔は多孔質化されず、1200℃より高い場合も小
さい細孔は熱収縮により多孔質化されないという不都合
が生じる。また、混合ガス中の賦活性ガスの容量が20
容量%より少ない場合は多孔質化に長時間を必要とし、
80容量%より多い場合は孔径を制御するのが困難とな
るという不都合が生じる。
Furthermore, by performing activation treatment at 400 to 1200°C in a mixed gas atmosphere of 20 to 80% by volume of an activating gas such as water vapor, carbon dioxide, or air, and 20 to 20% by volume, relatively small pores are formed. Open a hole. Here, if the treatment temperature is lower than 400'C, small pores will not be made porous, and if the treatment temperature is higher than 1200C, small pores will not be made porous due to thermal contraction. In addition, the capacity of the activated gas in the mixed gas is 20
If it is less than % by volume, it will take a long time to make it porous.
When the amount is more than 80% by volume, it becomes difficult to control the pore size.

以上の工程により本発明の多孔質炭素繊維が製造される
The porous carbon fiber of the present invention is manufactured through the above steps.

「実施例」 以下、本発明を実施例を用いて具体的に説明する。"Example" Hereinafter, the present invention will be specifically explained using examples.

(実施例) アクリロニトリル(以下ANと略記する)98モル%、
メタアクリル酸(以下MAAと略記する)2モル%から
なる比粘度0.24のAN共重合体60重量%と、メチ
ルメタクリレート(以下MMAと略記する)99モル%
、アクリル酸メチル(以下MAと略記する)1モル%、
比粘度0.21の熱分解性共重合体40重量%とからな
る両共重合体の混合物100重量部に対し、AN40モ
ル%、MMA60モル%からなる比粘度0.19のブロ
ック共重合体からなる相溶剤5重量部を混合し、溶剤と
してジメチルポルムアミド(以下DMFと略記する)に
三者の混合物の溶液濃度が26重量%になるように溶解
し混合溶液とした。
(Example) Acrylonitrile (hereinafter abbreviated as AN) 98 mol%,
60% by weight of AN copolymer with a specific viscosity of 0.24 consisting of 2% by mole of methacrylic acid (hereinafter abbreviated as MAA) and 99% by mole of methyl methacrylate (hereinafter abbreviated as MMA).
, 1 mol% of methyl acrylate (hereinafter abbreviated as MA),
From a block copolymer with a specific viscosity of 0.19 consisting of 40 mol% of AN and 60 mol% of MMA for 100 parts by weight of a mixture of both copolymers consisting of 40% by weight of a thermally decomposable copolymer with a specific viscosity of 0.21. 5 parts by weight of the compatibilizer were mixed and dissolved in dimethylpolamide (hereinafter abbreviated as DMF) as a solvent so that the solution concentration of the mixture of the three was 26% by weight to obtain a mixed solution.

この混合溶液を、ノズル孔径0.15mmφを用いて乾
−湿式紡糸法で紡糸した。ノズル表面より凝固液面迄の
距離は約5mmとした。
This mixed solution was spun by a dry-wet spinning method using a nozzle hole diameter of 0.15 mm. The distance from the nozzle surface to the solidified liquid level was approximately 5 mm.

温度2℃のDMF75重量%の水溶液を凝固液として用
いた。この凝固液により凝固された繊維は、60℃の温
水中で洗浄と2倍の延伸を施した。
An aqueous solution of 75% by weight DMF at a temperature of 2° C. was used as a coagulating liquid. The fibers coagulated by this coagulation solution were washed in warm water at 60° C. and stretched twice.

次いで98℃の熱水中で2倍の延伸を行った。弓き続き
160℃の熱ロールで乾燥し、更に180℃の熱ロール
を通過させる際に1.5倍の延伸を行い全延伸倍率6倍
とした。その結果、繊度12apr、フィラメント数3
000本のAN系ブレンド繊維が製造された。
Next, the film was stretched twice in hot water at 98°C. After bowing, the film was dried with a hot roll at 160°C, and further stretched by 1.5 times when passing through a hot roll at 180°C, resulting in a total stretching ratio of 6 times. As a result, the fineness was 12 apr and the number of filaments was 3.
000 AN-based blend fibers were produced.

この繊維は210℃から255℃の温度勾配を有する空
気雰囲気の耐炎化炉中で連続処理し、耐炎性繊維とした
This fiber was continuously treated in a flameproofing furnace in an air atmosphere having a temperature gradient of 210°C to 255°C to obtain a flameresistant fiber.

次いで、300〜600℃の温度勾配を有する窒素雰囲
気中で熱分解性重合体を熱分解させることにより、比較
的大きい細孔を開孔させた。さらに、窒素ガス50重量
%と水蒸気50重量%の混合ガス雰囲気中において、9
00℃で賦活処理を施すことにより比較的小さい細孔を
形成した。
Next, relatively large pores were opened by thermally decomposing the thermally decomposable polymer in a nitrogen atmosphere having a temperature gradient of 300 to 600°C. Furthermore, in a mixed gas atmosphere of 50% by weight of nitrogen gas and 50% by weight of water vapor, 9%
Relatively small pores were formed by performing the activation treatment at 00°C.

得られた多孔質炭素繊維の特性を示す。The characteristics of the obtained porous carbon fiber are shown below.

炭素含有量   80.0wt% 窒素 〃    139 ツノ 単繊維強度   3.2g/d 〃 伸長   13% BET表面積  806m’/g 細孔半径    11人、105人 全細孔容積   0 、3 cm!′/ g、0.4c
m’/gまた、第1図に上記実施例の細孔半径分布曲線
を示す。半径11人の細孔分布はメタノール吸着等温吸
着曲線よりKe(!vinの式に円筒モデルを仮定しC
ranetonらの方法で求めたものであり、半径10
5人の細孔分布は水銀圧入法(CARLOERBA社製
ポロシメーター200)より円筒換算半径として求めた
分布曲線である。
Carbon content 80.0wt% Nitrogen 〃 139 Horn single fiber strength 3.2g/d 〃 Elongation 13% BET surface area 806m'/g Pore radius 11 people, 105 people Total pore volume 0.3 cm! '/g, 0.4c
m'/g FIG. 1 shows the pore radius distribution curve of the above example. The pore distribution with a radius of 11 people is calculated from the methanol adsorption isothermal adsorption curve by assuming a cylindrical model in the formula of Ke(!vin) and C
It was obtained using the method of Raneton et al., and the radius was 10
The pore distribution of the five people is a distribution curve determined as a cylinder equivalent radius by the mercury intrusion method (Porosimeter 200 manufactured by CARLOERBA).

特性値および第1図より明らかなように、細孔半径分布
のピークが11人と105人にある。ずなわち本発明の
特徴を備えた多孔質炭素繊維が製造された。
As is clear from the characteristic values and FIG. 1, the pore radius distribution peaks at 11 and 105 cases. Thus, a porous carbon fiber having the features of the present invention was produced.

以下、解析に用いた分析装置および分析方法について記
す。
The analytical equipment and analytical method used in the analysis will be described below.

元素分析は、示差熱電導セルにより柳本Cl−I Nコ
ーダー、MT−II型を用いて測定した。
Elemental analysis was performed using a differential thermoconductivity cell using a Yanagimoto Cl-IN coder, model MT-II.

細孔構造は、100〜1000への比較的大きな細孔に
おいては水銀圧入法(CA RL O・ERBA社製ポ
ロシメーター200)により測定され、その半径は円筒
換算半径を計算で求めた。また、10〜30への小さい
細・孔においては、メタノール等温吸着曲線からK e
Qvinの式に円筒モデルを仮定しCronstonら
の方法から計算して求めた。
The pore structure was measured by the mercury intrusion method (Porosimeter 200 manufactured by CA RL O. ERBA) for relatively large pores of 100 to 1000, and the radius was determined by calculating the equivalent radius of a cylinder. In addition, in small pores and pores from 10 to 30, from the methanol isothermal adsorption curve, Ke
It was calculated by assuming a cylindrical model in the Qvin equation and using the method of Cronston et al.

BET表面積は、メタノール等温吸着曲線からBETの
式に基づいて計算した。
The BET surface area was calculated based on the BET equation from the methanol isothermal adsorption curve.

単繊維強度は、試長25 mm、テンシロンVTM■型
を用いて測定した。
The single fiber strength was measured using a Tensilon VTM ■ model with a sample length of 25 mm.

「 発明の効果 」 本発明は、炭素含有量75重量%以上からなる多孔質炭
素繊維であって、この多孔質炭素繊維の表層面に開孔し
た細孔の半径の分布に複数のピークを有し、この複数の
ピークの内10Å以上50Å以下の範囲と50人より大
きく1000Å以下の範囲とに少なくとも1個づつのピ
ークを有することを特徴とする多孔質炭素繊維であるの
で、液相に存在する分子量の比較的大きい物質および気
相に存在する分子量の比較的小さい物質の吸着分離が行
える。従って、本発明の多孔質炭素繊維は、従来より吸
着分離可能であった分子量の比較的小さい物質の吸着分
離に加えて、さらに分子量の比較的大きい物質をも吸着
分離する効果を有するものである。
"Effects of the Invention" The present invention provides a porous carbon fiber having a carbon content of 75% by weight or more, which has multiple peaks in the radius distribution of pores formed on the surface layer of the porous carbon fiber. However, since it is a porous carbon fiber characterized by having at least one peak in the range of 10 Å or more and 50 Å or less and in the range of more than 50 Å and 1000 Å or less, it exists in the liquid phase. It is possible to adsorb and separate substances with relatively large molecular weights present in the gas phase and substances with relatively small molecular weights present in the gas phase. Therefore, the porous carbon fiber of the present invention has the effect of adsorbing and separating substances with relatively large molecular weights, in addition to adsorbing and separating substances with relatively small molecular weights, which have conventionally been able to be adsorbed and separated. .

「 付記 」 本発明の実施態様としては、以下のものがある。"Additional notes" Embodiments of the present invention include the following.

(1)アクリロニトリル系共重合体と熱分解性共重合体
とを混合溶解する際に相溶剤として両者のブロック又は
グラフト共重合体をO〜5重量重量%口て熱分解製重合
体の分散相の大きさを制御することを特徴とする請求項
2記載の多孔質炭素繊維の製造方法。
(1) When mixing and dissolving an acrylonitrile copolymer and a thermally decomposable copolymer, 0 to 5% by weight of the block or graft copolymer of both is used as a compatibilizer to form a dispersed phase of the thermally decomposable polymer. 3. The method for producing porous carbon fibers according to claim 2, wherein the size of the porous carbon fibers is controlled.

(2)熱分解性共重合体がメタアクリレート、メチルメ
タクリレート、エチルメタクリレート又はn−ブチルメ
タクリレート1モル%以上とアクリロニトリル以外の単
量体を49モル%以下を含む共重合体であることを特徴
とする請求項2記載の多孔質炭素繊維の製造方法。
(2) The thermally decomposable copolymer is a copolymer containing 1 mol% or more of methacrylate, methyl methacrylate, ethyl methacrylate, or n-butyl methacrylate and 49 mol% or less of a monomer other than acrylonitrile. The method for producing porous carbon fiber according to claim 2.

(3)相溶剤がメチルメタクリレート50重量%以上と
アクリロニトリル40モル%以下及び共重合可能なその
他の単量体10モル%以下のブロック共重合体であるこ
とを特徴とする請求項2記載の多孔質炭素繊維の製造方
法。
(3) The porous structure according to claim 2, wherein the compatibilizer is a block copolymer containing 50% by weight or more of methyl methacrylate, 40% by mole or less of acrylonitrile, and 10% by mole or less of other copolymerizable monomers. A method for producing quality carbon fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の多孔質炭素繊維の実施例における細
孔半径の分布を示すグラフである。 出願人  三菱レイヨン株式会社
FIG. 1 is a graph showing the distribution of pore radius in an example of the porous carbon fiber of the present invention. Applicant Mitsubishi Rayon Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素含有量75重量%以上からなる多孔質炭素繊
維であって、この多孔質炭素繊維の表層面に開孔した細
孔の半径の分布が複数のピークを有し、この複数のピー
クの内10Å以上50Å以下の範囲と50Åより大きく
1000Å以下の範囲とに少なくとも1個づつのピーク
を有することを特徴とする多孔質炭素繊維。
(1) A porous carbon fiber having a carbon content of 75% by weight or more, in which the radius distribution of pores opened on the surface layer of the porous carbon fiber has multiple peaks, and the multiple peaks A porous carbon fiber characterized by having at least one peak in the range of 10 Å or more and 50 Å or less and in the range of 50 Å or more and 1000 Å or less.
(2)アクリロニトリルを90モル%以上含有するアク
リロニトリル系共重合体と、600℃以下の温度で熱分
解して低分子量化する熱分解性共重合体とを混合して紡
糸、延伸してなるアクリロニトリル系ブレンド繊維を、
200〜300℃の酸化性ガス雰囲気中で耐炎化処理し
、次いで不活性ガス雰囲気中で熱分解し、さらに400
〜1200℃の不活性ガスと賦活性ガスの混合雰囲気中
で賦活処理することを特徴とする請求項1記載の多孔質
炭素繊維の製造方法。
(2) Acrylonitrile made by mixing, spinning and stretching an acrylonitrile-based copolymer containing 90 mol% or more of acrylonitrile and a thermally decomposable copolymer that thermally decomposes at a temperature of 600°C or lower to reduce the molecular weight. system blend fiber,
Flameproofing treatment is performed in an oxidizing gas atmosphere at 200 to 300°C, then thermal decomposition is performed in an inert gas atmosphere, and further 400°C
2. The method for producing porous carbon fibers according to claim 1, wherein the activation treatment is performed in a mixed atmosphere of an inert gas and an activating gas at a temperature of 1,200°C.
JP63310728A 1988-12-08 1988-12-08 Porous carbon fiber and production thereof Pending JPH02160923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310728A JPH02160923A (en) 1988-12-08 1988-12-08 Porous carbon fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310728A JPH02160923A (en) 1988-12-08 1988-12-08 Porous carbon fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH02160923A true JPH02160923A (en) 1990-06-20

Family

ID=18008763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310728A Pending JPH02160923A (en) 1988-12-08 1988-12-08 Porous carbon fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH02160923A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088124A (en) * 2009-10-26 2011-05-06 Mitsubishi Heavy Ind Ltd Activated carbon fiber activation treatment method for exhaust gas treatment and activated carbon fiber for exhaust gas treatment
JP2011168484A (en) * 2000-08-09 2011-09-01 British American Tobacco (Investments) Ltd Porous carbon
WO2014148303A1 (en) 2013-03-22 2014-09-25 東レ株式会社 Porous carbon material, precursor for porous carbon material, process for producing precursor for porous carbon material, and process for producing porous carbon material
KR20170023938A (en) 2014-06-23 2017-03-06 도레이 카부시키가이샤 Porous carbon material
KR20170026392A (en) 2014-07-03 2017-03-08 도레이 카부시키가이샤 Porous carbon material and method for manufacturing porous carbon material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168484A (en) * 2000-08-09 2011-09-01 British American Tobacco (Investments) Ltd Porous carbon
JP2011088124A (en) * 2009-10-26 2011-05-06 Mitsubishi Heavy Ind Ltd Activated carbon fiber activation treatment method for exhaust gas treatment and activated carbon fiber for exhaust gas treatment
WO2014148303A1 (en) 2013-03-22 2014-09-25 東レ株式会社 Porous carbon material, precursor for porous carbon material, process for producing precursor for porous carbon material, and process for producing porous carbon material
JP5696813B2 (en) * 2013-03-22 2015-04-08 東レ株式会社 Porous carbon material, porous carbon material precursor, method for producing porous carbon material precursor, and method for producing porous carbon material
US10011487B2 (en) 2013-03-22 2018-07-03 Toray Industries, Inc. Porous carbon material, precursor for porous carbon material, process for producing precursor for porous carbon material, and process for producing porous carbon material
KR20170023938A (en) 2014-06-23 2017-03-06 도레이 카부시키가이샤 Porous carbon material
US10087076B2 (en) 2014-06-23 2018-10-02 Toray Industries, Inc. Porous carbon material
KR20170026392A (en) 2014-07-03 2017-03-08 도레이 카부시키가이샤 Porous carbon material and method for manufacturing porous carbon material
US10270082B2 (en) 2014-07-03 2019-04-23 Toray Industries, Inc. Porous carbon material and method for manufacturing porous carbon material

Similar Documents

Publication Publication Date Title
US5089135A (en) Carbon based porous hollow fiber membrane and method for producing same
CA1095206A (en) Process for producing carbon fibers
CA1104994A (en) Process for production of activated carbon fibers
EP0159365A1 (en) Carbon fibers with high strength and high modulus, and process for their production
JPH02160924A (en) Porous carbon fiber and production thereof
JPH02160923A (en) Porous carbon fiber and production thereof
JPH0274615A (en) Carbon fiber-based porous hollow fiber membrane and production thereof
JP2867043B2 (en) Carbon fiber-based porous hollow fiber membrane and method for producing the same
US3993719A (en) Process for producing carbon fibers
JP2002302828A (en) Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same
EP0394449A1 (en) Porous hollow carbon fiber film and method of manufacturing the same
JPH02221404A (en) Porous hollow fiber and production thereof
JPS6113004B2 (en)
JPS58120818A (en) Production of porous carbon fiber
JPH04277023A (en) Production of heat-resistant porous hollow fiber membrane
JP2002146681A (en) Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JPS5920004B2 (en) Carbon fiber manufacturing method
JPS607047B2 (en) Method for producing hydrophilic fibers and filaments from synthetic polymers
JPS6141326A (en) Preparation of precursor for carbon fiber
JPH0822934B2 (en) Method for producing polyacrylonitrile-based porous body
JPH0398625A (en) Preparation of carbon fiber-based porous hollow fiber membrane
JPS6317929B2 (en)
KR870000534B1 (en) Carbon fiber and it&#39;s making method
JP2004339627A (en) Method for producing carbonaceous fiber, and carbonaceous fiber and activated carbon fiber
JPH0491230A (en) Production of precursor