JP2007080742A - Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method - Google Patents

Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2007080742A
JP2007080742A JP2005269135A JP2005269135A JP2007080742A JP 2007080742 A JP2007080742 A JP 2007080742A JP 2005269135 A JP2005269135 A JP 2005269135A JP 2005269135 A JP2005269135 A JP 2005269135A JP 2007080742 A JP2007080742 A JP 2007080742A
Authority
JP
Japan
Prior art keywords
sheet
carbon
fiber sheet
fiber
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005269135A
Other languages
Japanese (ja)
Inventor
Kazuma Kurokawa
一真 黒川
Yusuke Takami
祐介 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2005269135A priority Critical patent/JP2007080742A/en
Publication of JP2007080742A publication Critical patent/JP2007080742A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber sheet suitable for a gas diffusion layer of a solid polymer electrolyte fuel cell, and a manufacturing method for the carbon fiber sheet. <P>SOLUTION: The carbon fiber sheet has a thickness of 100 to 350 μm, a basic weight of 50 to 100 g/m<SP>2</SP>, a specific resistance value of 0.2 to 10 mΩ cm, a carbon content rate of 94% of mass or more, an average pore size of 7 to 15 μm, and a gas permeability of 3,000 to 28,500 ml/cm<SP>2</SP>min. For this carbon fiber sheet, the X-ray crystal size of a carbon is preferably 2.1 to 4.8 nm. This carbon fiber sheet contains a polyacrylonitrile-based oxidation fiber, a binder fiber with a residual carbon content rate of 0.5 to 25% of mass, and a resin with a residual carbon content rate of 0.5 to 25% of mass. The carbon fiber sheet can be manufactured in such a method that an oxidation fiber sheet with a total content rate of the binder fiber and resin of 5 to 25% of mass is carbonized at a temperature of 1,400 to 2,300°C under the inert atmosphere. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子電解質型燃料電池のガス拡散層用電極に適した炭素繊維シート及びその製造方法に関する。   The present invention relates to a carbon fiber sheet suitable for an electrode for a gas diffusion layer of a solid polymer electrolyte fuel cell and a method for producing the same.

固体高分子電解質型燃料電池のガス拡散層用電極として、炭素繊維を使用したシート(炭素繊維シート)が開発・応用されている。   Sheets using carbon fibers (carbon fiber sheets) have been developed and applied as electrodes for gas diffusion layers of solid polymer electrolyte fuel cells.

炭素繊維シートは一般には、炭素繊維の短繊維とバインダー樹脂及び/又はバインダー繊維とを混抄して炭素繊維抄紙シートを得、この抄紙シートに、炭素化時に残炭率の高い熱硬化性樹脂を30〜80%含有させ、熱硬化・成型して中間基材を得、この中間基材を、不活性ガス雰囲気下1000℃以上の高温にて焼成することにより製造される(例えば、特許文献1、2参照)。   In general, a carbon fiber sheet is obtained by mixing carbon fiber short fibers with a binder resin and / or binder fibers to obtain a carbon fiber paper sheet, and a thermosetting resin having a high residual carbon ratio at the time of carbonization is added to the paper sheet. It is made to contain 30 to 80%, and is obtained by thermosetting and molding to obtain an intermediate base material, and firing this intermediate base material at a high temperature of 1000 ° C. or higher in an inert gas atmosphere (for example, Patent Document 1). 2).

特許文献1には、炭素繊維抄紙シートに含発泡剤熱硬化性樹脂を40〜80質量%含有せしめて熱硬化させた中間基材を炭素化することにより、燃料電池等の電極材に使用する多孔質炭素材を製造する技術が開示されている。   In Patent Document 1, the carbon fiber papermaking sheet is used for an electrode material of a fuel cell or the like by carbonizing an intermediate base material obtained by containing 40 to 80% by mass of a foam-containing thermosetting resin. A technique for producing a porous carbon material is disclosed.

特許文献2には、炭素繊維抄紙シートに、熱硬化性樹脂と炭素粉末とを混合したものを含浸して中間基材を得(中間基材中の炭素繊維100質量部に対する熱硬化性樹脂の含有量30〜250質量部、炭素粉末の含有量10〜160質量部)、この中間基材を炭素化することにより、固体高分子電解質型燃料電池のガス拡散体(細孔径25〜55μm)用の多孔質炭素板を製造する技術が開示されている。   In Patent Document 2, a carbon fiber papermaking sheet is impregnated with a mixture of a thermosetting resin and carbon powder to obtain an intermediate base material (of a thermosetting resin with respect to 100 parts by mass of carbon fibers in the intermediate base material). Content 30-250 parts by mass, carbon powder content 10-160 parts by mass), by carbonizing this intermediate substrate, for gas diffuser (pore diameter 25-55 μm) of a solid polymer electrolyte fuel cell A technique for manufacturing a porous carbon plate is disclosed.

燃料電池においては、反応ガスである水素と酸素(又は空気)とを反応させる。この反応により水が生成される。燃料電池は、この反応エネルギーを電気エネルギーとして取り出すものである。燃料電池の電極は、前記電気エネルギーを取り出すために導電性を有すると共に、反応ガスを電極を透過させて触媒のある反応部に供給するためにガス拡散層を有することが要求される。ガス拡散層としては、できるだけガスの透過性の良い素材が必要となり、その改良が進められている。   In a fuel cell, hydrogen, which is a reaction gas, and oxygen (or air) are reacted. This reaction produces water. The fuel cell extracts this reaction energy as electric energy. The electrode of the fuel cell is required to have conductivity in order to take out the electric energy, and to have a gas diffusion layer in order to allow the reaction gas to pass through the electrode and supply the reaction gas to the reaction part having the catalyst. As the gas diffusion layer, a material having as good a gas permeability as possible is required, and its improvement is being promoted.

ガス透過性改良のための一方法として、電極に形成してあるガスが通過する細孔径を拡大する方法がある。しかしながら細孔径が、大きすぎたり、分布が不均一の場合、ガス拡散層内を透過して反応部に拡散する反応ガスの拡散量が不均一になり、結果として触媒と反応ガスの接触効率が低下し、最終的に電池性能が低下する問題がある。   As one method for improving gas permeability, there is a method of enlarging the pore diameter through which the gas formed on the electrode passes. However, if the pore diameter is too large or the distribution is non-uniform, the amount of diffusion of the reaction gas that permeates through the gas diffusion layer and diffuses into the reaction section becomes non-uniform, resulting in a contact efficiency between the catalyst and the reaction gas. There is a problem that the battery performance is lowered.

以上のように、従来の製造方法では何れも、より小さい細孔を有し且つガス透過性に優れるガス拡散層用炭素材は得られていない。
特開平10−167855号公報 (段落番号[0001]、[0010]〜[0020]) 特開2004−311431号公報 (段落番号[0001]、[0041]〜[0051])
As described above, none of the conventional manufacturing methods has obtained a carbon material for a gas diffusion layer having smaller pores and excellent gas permeability.
JP-A-10-167855 (paragraph numbers [0001], [0010] to [0020]) JP 2004-311431 A (paragraph numbers [0001], [0041] to [0051])

本発明者は、上記問題を解決するために種々検討しているうちに、以下のことを知得し、本発明を完成するに到った。
1.ポリアクリロニトリル(PAN)系酸化繊維を原料として用いることにより、
(1)酸化繊維は繊維表面にも酸素含有表面官能基を多く有し親水性が高く、水分散性良好のため、繊維分散性の良いペーパーが得られる。
(2)焼成後の繊維直径がより細くなり、繊維間の均一な空隙(細孔)形成に寄与する。
2.バインダー効果があり且つ残炭率の低い繊維を用いて酸化繊維を抄紙後に、バインダー効果があり且つ残炭率の低い樹脂を、繊維と樹脂との合計量で5〜25質量%含有させて樹脂含浸シートを得、この樹脂含浸シートを熱圧縮処理して酸化繊維シートを得た後、この酸化繊維シートを炭素化することにより、該樹脂と繊維は、その大部分が消失して繊維間の交差部のみに残留し、その結果、均一な空隙(細孔)を発生させることができ、得られる炭素繊維シートは、固体高分子電解質型燃料電池のガス拡散層用電極として適している。
While the present inventor has made various studies in order to solve the above problems, the present inventors have learned the following and have completed the present invention.
1. By using polyacrylonitrile (PAN) -based oxidized fiber as a raw material,
(1) Oxidized fibers have many oxygen-containing surface functional groups on the fiber surface, high hydrophilicity, and good water dispersibility, so that a paper having good fiber dispersibility can be obtained.
(2) The fiber diameter after firing becomes thinner, contributing to the formation of uniform voids (pores) between the fibers.
2. After making the oxidized fiber using fibers having a binder effect and a low residual carbon ratio, a resin having a binder effect and a low residual carbon ratio is contained in an amount of 5 to 25% by mass in the total amount of the fiber and the resin. After obtaining an impregnated sheet and heat-compressing the resin impregnated sheet to obtain an oxidized fiber sheet, by carbonizing the oxidized fiber sheet, most of the resin and fibers disappear and the interfibers are lost. It remains only at the intersection, and as a result, uniform voids (pores) can be generated, and the resulting carbon fiber sheet is suitable as an electrode for a gas diffusion layer of a solid polymer electrolyte fuel cell.

従って、本発明の目的とするところは、上記問題を解決した固体高分子電解質型燃料電池用炭素繊維シート及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a carbon fiber sheet for a solid polymer electrolyte fuel cell and a method for producing the same, which have solved the above problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 厚さが100〜350μm、目付が50〜100g/m2、比抵抗値が0.2〜10mΩ・cm、炭素含有率が94質量%以上、平均細孔径が7〜15μm、ガス透過性が3000〜28500ml/cm2・minである固体高分子電解質型燃料電池用炭素繊維シート。 [1] Thickness of 100 to 350 μm, basis weight of 50 to 100 g / m 2 , specific resistance value of 0.2 to 10 mΩ · cm, carbon content of 94% by mass or more, average pore diameter of 7 to 15 μm, gas permeation A carbon fiber sheet for a solid polymer electrolyte fuel cell having a property of 3000 to 28500 ml / cm 2 · min.

〔2〕 炭素のX線結晶サイズが2.1〜4.8nmである〔1〕に記載の固体高分子電解質型燃料電池用炭素繊維シート。   [2] The carbon fiber sheet for a solid polymer electrolyte fuel cell according to [1], wherein the carbon X-ray crystal size is 2.1 to 4.8 nm.

〔3〕 ポリアクリロニトリル系酸化繊維と、残炭率0.5〜25質量%のバインダー繊維とを混抄して酸化繊維抄紙シートを得、次いで得られた酸化繊維抄紙シートに残炭率0.5〜25質量%の樹脂を、前記バインダー繊維と樹脂との合計量で5〜25質量%含浸させて樹脂含浸シートを得た後、前記樹脂含浸シートを熱圧縮処理して酸化繊維シートを得、その後、不活性雰囲気下1400〜2300℃で前記酸化繊維シートを炭素化することを特徴とする固体高分子電解質型燃料電池用炭素繊維シートの製造方法。   [3] A polyacrylonitrile-based oxidized fiber and a binder fiber having a residual carbon ratio of 0.5 to 25% by mass are mixed to obtain an oxidized fiber paper sheet, and then the resulting oxidized fiber paper sheet has a residual carbon ratio of 0.5. After impregnating ˜25 mass% resin with 5-25 mass% in the total amount of the binder fiber and resin to obtain a resin-impregnated sheet, the resin-impregnated sheet is subjected to heat compression treatment to obtain an oxidized fiber sheet, Thereafter, the oxidized fiber sheet is carbonized at 1400 to 2300 ° C. in an inert atmosphere, and a method for producing a carbon fiber sheet for a solid polymer electrolyte fuel cell.

本発明の固体高分子電解質型燃料電池用炭素繊維シートは、平均細孔径が小さく且つガス透過性が良好であるので、固体高分子電解質型燃料電池のガス拡散層用として適している。   The carbon fiber sheet for a solid polymer electrolyte fuel cell of the present invention has a small average pore size and good gas permeability, and is therefore suitable for a gas diffusion layer of a solid polymer electrolyte fuel cell.

本発明の固体高分子電解質型燃料電池用炭素繊維シートの製造方法によれば、PAN系酸化繊維を原料として用い、抄紙時又は抄紙後に、バインダー効果があり且つ残炭率の低い繊維又は樹脂を所定量含有させて酸化繊維シートを得、このシートを炭素化しているので、上記物性の炭素繊維シートを容易に得ることができる。   According to the method for producing a carbon fiber sheet for a solid polymer electrolyte fuel cell of the present invention, a PAN-based oxidized fiber is used as a raw material, and a fiber or a resin having a binder effect and having a low residual carbon ratio at the time of papermaking or after papermaking. Since a predetermined amount is contained to obtain an oxidized fiber sheet and the sheet is carbonized, the carbon fiber sheet having the above physical properties can be easily obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の固体高分子電解質型燃料電池用炭素繊維シートは、厚さが100〜350μm、目付が50〜100g/m2、比抵抗値が0.2〜10mΩ・cm、炭素含有率が94質量%以上、平均細孔径が7〜15μm、ガス透過性が3000〜28500ml/cm2・minである。 The carbon fiber sheet for a solid polymer electrolyte fuel cell of the present invention has a thickness of 100 to 350 μm, a basis weight of 50 to 100 g / m 2 , a specific resistance value of 0.2 to 10 mΩ · cm, and a carbon content of 94 mass. % Or more, the average pore diameter is 7 to 15 μm, and the gas permeability is 3000 to 28500 ml / cm 2 · min.

炭素繊維シートの平均細孔径は、一般に大きい方がガス透過性は向上する。しかし、平均細孔径(A)が大きすぎると、反応ガスの基材(繊維表面)への接触効率は低下し、電池性能は低下する。そのため、平均細孔径(A)は15μm以下が良い。平均細孔径(A)が7μm未満の場合、生成される水分の凝縮により、細孔が閉塞しガス透過性が低下し、電池性能の低下を来す。   In general, the larger the average pore diameter of the carbon fiber sheet, the better the gas permeability. However, if the average pore diameter (A) is too large, the contact efficiency of the reaction gas to the base material (fiber surface) decreases, and the battery performance decreases. Therefore, the average pore diameter (A) is preferably 15 μm or less. When the average pore diameter (A) is less than 7 μm, the pores are blocked due to condensation of the generated water, resulting in a decrease in gas permeability and a decrease in battery performance.

ガス透過性(B)は、上式で示される範囲以外では、電池性能が低下する。   If the gas permeability (B) is outside the range indicated by the above formula, the battery performance is degraded.

炭素繊維シートの厚さが0.10mm未満の場合は、シート強度が低下する。炭素繊維シートの厚さが0.35mmを超える場合は、厚さ方向の通電性が低下する。表面の毛羽が増大する。   When the thickness of the carbon fiber sheet is less than 0.10 mm, the sheet strength decreases. When the thickness of the carbon fiber sheet exceeds 0.35 mm, the conductivity in the thickness direction decreases. Increased surface fluff.

炭素繊維シートの目付が30g/m2未満の場合は、シート強度が低下する。炭素繊維シートの目付が100g/m2を超える場合は、上記厚さの薄層シートが作製が困難になる。 When the basis weight of the carbon fiber sheet is less than 30 g / m 2 , the sheet strength decreases. When the basis weight of the carbon fiber sheet exceeds 100 g / m 2 , it becomes difficult to produce a thin layer sheet having the above thickness.

炭素繊維シートの嵩密度は0.25〜0.45g/m3が好ましい。炭素繊維シートの嵩密度が0.25g/m3未満の場合は、シート強度が低下する。通電性が低下する。炭素繊維シートの嵩密度が0.45g/m3を超える場合は、シート強度が低下する。表面の毛羽が増大する。 The bulk density of the carbon fiber sheet is preferably 0.25 to 0.45 g / m 3 . When the bulk density of the carbon fiber sheet is less than 0.25 g / m 3 , the sheet strength decreases. Conductivity decreases. When the bulk density of the carbon fiber sheet exceeds 0.45 g / m 3 , the sheet strength decreases. Increased surface fluff.

炭素繊維シートの比抵抗値は低い方がよいが、0.2mΩ・cm未満のものは作製が困難である。炭素繊維シートの比抵抗値10mΩ・cmを超える場合は、電池性能が低下する。   The specific resistance value of the carbon fiber sheet is preferably low, but it is difficult to produce a carbon fiber sheet having a resistivity of less than 0.2 mΩ · cm. When the specific resistance value of the carbon fiber sheet exceeds 10 mΩ · cm, the battery performance decreases.

炭素繊維シートの炭素含有率が94質量%未満の場合は、通電性が低下する。長期の電池作動時に繊維劣化を生じ易い。   When the carbon content of the carbon fiber sheet is less than 94% by mass, the electrical conductivity decreases. Fiber degradation is likely to occur during long-term battery operation.

炭素繊維シートの強度は6〜40N/cmが好ましい。炭素繊維シートの強度が6N/cm未満の場合は、シートの取扱性が低下する。炭素繊維シートの強度が40N/cmを超えるものは作製が困難である。   The strength of the carbon fiber sheet is preferably 6 to 40 N / cm. When the strength of the carbon fiber sheet is less than 6 N / cm, the handleability of the sheet is lowered. A carbon fiber sheet having a strength exceeding 40 N / cm is difficult to produce.

炭素繊維シートの炭素のX線結晶サイズは2.1nm〜4.8nmが好ましい。炭素繊維シートの炭素のX線結晶サイズが2.1nm未満の場合は、通電性が低下する。炭素繊維シートの炭素のX線結晶サイズが4.8nmを超える場合は、微粉末が発生しやすい。   The carbon X-ray crystal size of the carbon fiber sheet is preferably 2.1 nm to 4.8 nm. When the carbon X-ray crystal size of the carbon fiber sheet is less than 2.1 nm, the conductivity is reduced. When the carbon X-ray crystal size of the carbon fiber sheet exceeds 4.8 nm, fine powder tends to be generated.

本発明の固体高分子電解質型燃料電池用炭素繊維シートは、その物性が上記範囲内であれば、その製造方法は特に限定されるものではないが、例えばPAN系酸化繊維と、炭素化時に残炭率が低いバインダー用繊維と混抄して酸化繊維抄紙シートを得、この酸化繊維抄紙シートを、炭素化時に低残炭率の樹脂溶液に含浸して樹脂含浸シートを得、この樹脂含浸シートを圧縮成型して酸化繊維シートを得、この酸化繊維シートを炭素化することにより製造することができる。   The carbon fiber sheet for a solid polymer electrolyte fuel cell of the present invention is not particularly limited in its production method as long as its physical properties are within the above range. For example, the PAN-based oxidized fiber and the carbon fiber sheet remaining during carbonization are not limited. Oxidized fiber paper sheet is obtained by mixing with binder fiber having a low charcoal ratio, and this oxidized fiber paper sheet is impregnated with a resin solution having a low residual carbon ratio during carbonization to obtain a resin-impregnated sheet. It can be manufactured by compression molding to obtain an oxidized fiber sheet and carbonizing the oxidized fiber sheet.

以下、本発明固体高分子電解質型燃料電池用炭素繊維シートの製造方法の一例について詳細に説明する。   Hereinafter, an example of the manufacturing method of the carbon fiber sheet for solid polymer electrolyte fuel cells of the present invention will be described in detail.

〔原料の酸化繊維〕
炭素繊維シート製造用原料の酸化繊維の種類としては、PAN系の酸化繊維を用いる。このPAN系酸化繊維を用いることにより高強度の素材が得られる。
[Oxidized fiber of raw material]
A PAN-based oxidized fiber is used as a kind of oxidized fiber as a raw material for producing a carbon fiber sheet. By using this PAN-based oxidized fiber, a high-strength material can be obtained.

原料繊維のPAN系酸化繊維は、例えば市販のPAN系繊維を空気中、200〜300℃の温度で処理することにより環化反応を生じさせ、酸素結合量を増加させて不融化、難燃化させる耐炎化処理によって得られるものを用いることができる。   The PAN-based oxidized fiber of the raw material fiber is made infusible and flame-retardant by causing a cyclization reaction, for example, by treating commercially available PAN-based fiber in air at a temperature of 200 to 300 ° C., increasing the amount of oxygen bonds. What is obtained by the flameproofing process to be used can be used.

上記PAN系繊維は、例えばアクリロニトリルの単独重合体又はアクリロニトリルを95質量%以上含有する単量体を重合した共重合体を含む紡糸溶液を、湿式又は乾湿式紡糸法において紡糸・水洗・乾燥・延伸等の処理を行うことによっても得ることができる。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸等が好ましい。   The PAN-based fiber is prepared by spinning, washing, drying, or drawing a spinning solution containing a homopolymer of acrylonitrile or a copolymer obtained by polymerizing a monomer containing 95% by mass or more of acrylonitrile in a wet or dry-wet spinning method. It can also be obtained by performing such processing. As the monomer to be copolymerized, methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.

PAN系酸化繊維の平均綿長(カット長)は3〜15mmが好ましい。平均綿長が3mm未満の場合は、酸化繊維同士が絡み難いため、得られる炭素繊維シート強度が低下する。平均綿長が15mmを超える場合は、繊維の均一分散性が低下し、それに伴い得られる酸化繊維シート及び炭素繊維シートの強度が低下する。   The average cotton length (cut length) of the PAN-based oxidized fiber is preferably 3 to 15 mm. When the average cotton length is less than 3 mm, the oxidized fiber is difficult to be entangled with each other, so that the strength of the obtained carbon fiber sheet is lowered. When average cotton length exceeds 15 mm, the uniform dispersibility of a fiber will fall and the intensity | strength of the oxidized fiber sheet and carbon fiber sheet obtained in connection with it will fall.

PAN系酸化繊維の繊度は0.5〜1.5dtexが好ましく、0.9〜1.3dtexがより好ましい。繊度が0.5dtex未満の場合は、酸化繊維同士の開繊性が悪く、混抄時、酸化繊維の均質な分散が難しい。繊度が1.5dtexを超える場合は、強度の高い炭素繊維シートが得られない。   The fineness of the PAN-based oxidized fiber is preferably 0.5 to 1.5 dtex, more preferably 0.9 to 1.3 dtex. When the fineness is less than 0.5 dtex, the openability of the oxidized fibers is poor, and it is difficult to uniformly disperse the oxidized fibers at the time of blending. When the fineness exceeds 1.5 dtex, a high-strength carbon fiber sheet cannot be obtained.

PAN系酸化繊維の乾強度は5mN/dtex以上が好ましい。乾強度は高いほど得られる酸化繊維シート及び炭素繊維シートの強度が向上する。乾強度が5mN/dtex未満の場合は、シートを製造するに際し繊維切れが多発し、抄紙加工が難しい。   The dry strength of the PAN-based oxidized fiber is preferably 5 mN / dtex or more. The higher the dry strength, the higher the strength of the obtained oxidized fiber sheet and carbon fiber sheet. When the dry strength is less than 5 mN / dtex, fiber breakage occurs frequently when the sheet is produced, and papermaking is difficult.

〔バインダー繊維〕
酸化繊維抄紙シートを作製するに際しては、PAN系酸化繊維と、バインダー繊維とを混抄する。酸化繊維抄紙シート中の好ましいバインダー繊維の含有量は3〜20質量%である。このバインダー繊維としては、後工程の炭素化処理時における残炭率が0.5〜25質量%のものが用いられる。具体的には、ポリエステル(PET)、ナイロン、レーヨン、ビニロン、オレフィン系繊維等が用いられる。
[Binder fiber]
When producing an oxidized fiber papermaking sheet, PAN-based oxidized fibers and binder fibers are mixed. The preferable binder fiber content in the oxidized fiber papermaking sheet is 3 to 20% by mass. As the binder fiber, one having a residual carbon ratio of 0.5 to 25% by mass in the subsequent carbonization treatment is used. Specifically, polyester (PET), nylon, rayon, vinylon, olefin fiber, etc. are used.

〔酸化繊維抄紙シート〕
上記混抄により得られる酸化繊維抄紙シートは、その厚さが0.10〜0.35mmである。酸化繊維抄紙シートの厚さが0.10mm未満の場合は、シート強度が低下する。この酸化繊維抄紙シートから得られる炭素繊維シートの強度も低下する。酸化繊維抄紙シートの厚さが0.35mmを超える場合は、得られる炭素繊維シートの厚さ方向の通電性が低下する。
[Oxidized fiber paper sheet]
The oxidized fiber papermaking sheet obtained by the above mixed papermaking has a thickness of 0.10 to 0.35 mm. When the thickness of the oxidized fiber papermaking sheet is less than 0.10 mm, the sheet strength decreases. The strength of the carbon fiber sheet obtained from the oxidized fiber papermaking sheet also decreases. When the thickness of the oxidized fiber papermaking sheet exceeds 0.35 mm, the conductivity in the thickness direction of the obtained carbon fiber sheet is lowered.

酸化繊維抄紙シートの目付は50〜250g/m2である。酸化繊維抄紙シートの目付が50g/m2未満の場合は、シート強度が低下する。酸化繊維抄紙シートの目付が250g/m2を超える場合は、上記厚さの薄層の酸化繊維抄紙シート及び炭素繊維シートが作製困難である。 Basis weight of the oxidized fiber paper sheet is 50 to 250 g / m 2. When the basis weight of the oxidized fiber papermaking sheet is less than 50 g / m 2 , the sheet strength decreases. When the basis weight of the oxidized fiber paper sheet exceeds 250 g / m 2 , it is difficult to produce a thin layer of oxidized fiber paper sheet and carbon fiber sheet having the above thickness.

〔含浸用樹脂〕
上記酸化繊維抄紙シートへの含浸用樹脂としては、バインダー繊維と同様に残炭率が0.5〜25質量%の樹脂が用いられる。この含浸用樹脂の使用に際しては、ポリビニルアルコール(PVA)、カルボキシメチルセルローズ、メタクリル酸メチル樹脂等を水溶液又は水分散液として、酸化繊維抄紙シートを連続的に浸漬させることができる。
(Resin for impregnation)
As the resin for impregnating the oxidized fiber papermaking sheet, a resin having a residual carbon ratio of 0.5 to 25% by mass is used similarly to the binder fiber. When this impregnating resin is used, the oxidized fiber papermaking sheet can be continuously dipped using polyvinyl alcohol (PVA), carboxymethyl cellulose, methyl methacrylate resin or the like as an aqueous solution or aqueous dispersion.

酸化繊維抄紙シート中のバインダー繊維と、酸化繊維抄紙シートへの含浸用樹脂との合計の含有量は、5〜25質量%である。バインダー繊維と含浸用樹脂との合計含有量が5質量%未満の場合は、シート強度が低下し、このシートを用いての後工程の圧縮処理、炭素化処理において不具合が起こり、炭素繊維シートの製造は難しい。バインダー繊維と含浸用樹脂との合計含有量が25質量%を超える場合は、炭素化処理時にシート強度が低下する。得られる炭素繊維シートの平均細孔径(A)が前述の15μmより大きくなる。細孔径のばらつきが大きくなり、平均細孔径(A)及びガス透過性(B)が前述の式の範囲から逸脱する。   The total content of the binder fiber in the oxidized fiber papermaking sheet and the resin for impregnation into the oxidized fiber papermaking sheet is 5 to 25% by mass. When the total content of the binder fiber and the resin for impregnation is less than 5% by mass, the sheet strength is lowered, and problems occur in the compression process and carbonization process in the subsequent process using this sheet. Manufacturing is difficult. When the total content of the binder fiber and the resin for impregnation exceeds 25% by mass, the sheet strength is reduced during the carbonization treatment. The obtained carbon fiber sheet has an average pore diameter (A) larger than 15 μm. The variation in the pore diameter increases, and the average pore diameter (A) and gas permeability (B) deviate from the range of the above formula.

〔圧縮熱処理〕
上記樹脂処理された酸化繊維抄紙シート(樹脂含浸シート)を圧縮熱処理することにより、炭素化処理用中間原料の酸化繊維シートにする。酸化繊維抄紙時に混合されるバインダー繊維及び酸化繊維抄紙シートへの含浸用樹脂の熱的特性により、圧縮熱処理の最適条件は多少異なるが、以下の条件で処理することが好ましい。
[Compression heat treatment]
The resin-treated oxidized fiber papermaking sheet (resin-impregnated sheet) is subjected to compression heat treatment to obtain an oxidized fiber sheet as an intermediate raw material for carbonization treatment. Depending on the thermal properties of the resin impregnating the binder fiber and the oxidized fiber paper sheet to be mixed at the time of oxidized fiber papermaking, the optimum conditions for the compression heat treatment are slightly different, but the following conditions are preferable.

圧縮熱処理時における処理温度は100〜350℃、好ましくは110〜250℃である。処理温度が100℃未満の場合は、得られる酸化繊維シートについての賦形性向上、強度向上、薄層化等の効果が得られない。処理温度が350℃を超える場合は、得られる酸化繊維シートについて賦形性、強度等の繊維性能が劣化する。処理温度が350℃を超える場合は、圧縮熱処理時において蓄熱又は発火等のトラブルを生ずる危険性がある。   The treatment temperature during the compression heat treatment is 100 to 350 ° C, preferably 110 to 250 ° C. When processing temperature is less than 100 degreeC, effects, such as a shaping property improvement, strength improvement, and thinning, about the obtained oxidized fiber sheet are not acquired. When the treatment temperature exceeds 350 ° C., fiber properties such as formability and strength are deteriorated with respect to the obtained oxidized fiber sheet. When the treatment temperature exceeds 350 ° C., there is a risk of causing problems such as heat storage or ignition during the compression heat treatment.

圧縮熱処理時における処理圧力は0.5〜50MPa、好ましくは2〜30MPaである。処理圧力が0.5MPa未満の場合は、得られる酸化繊維シートについての賦形性向上、強度向上、薄層化等の効果が得られない。処理圧力が50MPaを超える場合は、得られる酸化繊維シートについて賦形性、強度等の繊維性能が劣化する。圧縮熱処理雰囲気は特に限定されないが、酸素20体積%以下の雰囲気が好ましい。   The treatment pressure during the compression heat treatment is 0.5 to 50 MPa, preferably 2 to 30 MPa. When the treatment pressure is less than 0.5 MPa, effects such as improvement in formability, strength improvement, and thinning of the obtained oxidized fiber sheet cannot be obtained. When the treatment pressure exceeds 50 MPa, fiber properties such as formability and strength are deteriorated with respect to the obtained oxidized fiber sheet. Although the compression heat treatment atmosphere is not particularly limited, an atmosphere containing 20% by volume or less of oxygen is preferable.

〔炭素化処理〕
上記圧縮熱処理された酸化繊維シートを、不活性雰囲気中で焼成して炭素化処理することにより本発明の固体高分子電解質型燃料電池用炭素繊維シートは得られる。
[Carbonization treatment]
The carbon fiber sheet for a solid polymer electrolyte fuel cell of the present invention can be obtained by firing and carbonizing the oxidized fiber sheet subjected to the compression heat treatment in an inert atmosphere.

炭素化処理は、窒素、ヘリウム、アルゴン等の不活性雰囲気下、最高温度1400〜2300℃で行う。なお、昇温下で炭素化する場合の昇温速度は200℃/min以下が好ましい。炭素化処理時の最高温度が1400℃未満の場合は、炭素繊維固有の特性向上、すなわち耐熱性向上、強度向上、電気伝導性向上等の効果が発現されない。炭素化処理時の最高温度が2300℃を超える場合は、繊維強度の劣化が起こり、その劣化に伴い、微粉末が多発する。最高温度での炭素化処理時間は0.5〜20分が好ましい。   The carbonization treatment is performed at a maximum temperature of 1400 to 2300 ° C. in an inert atmosphere such as nitrogen, helium, or argon. In addition, the temperature increase rate in the case of carbonization under temperature increase is preferably 200 ° C./min or less. When the maximum temperature during the carbonization treatment is less than 1400 ° C., effects such as improvement in characteristics inherent to carbon fibers, that is, improvement in heat resistance, strength, and electrical conductivity are not exhibited. When the maximum temperature during the carbonization treatment exceeds 2300 ° C., the fiber strength is deteriorated, and fine powder is frequently generated along with the deterioration. The carbonization treatment time at the maximum temperature is preferably 0.5 to 20 minutes.

炭素化処理時には、酸化繊維シート中の酸化繊維は質量換算で50〜60%が繊維の形態を保ち残留する。一方バインダー繊維は、溶融しながら炭素化し、質量換算で0.5〜25%が残留する。溶融したバインダー繊維は、炭素化により生成する炭素繊維間を繋ぎとめる効果(バインダー効果)が発現する。このバインダー効果により、炭素繊維シートの賦形性及び強度が向上するとともに、より薄層化された炭素繊維シートが得られる。   During the carbonization treatment, 50 to 60% of the oxidized fibers in the oxidized fiber sheet remain in the form of fibers and remain in terms of mass. On the other hand, the binder fiber is carbonized while melting, and 0.5 to 25% remains in terms of mass. The melted binder fiber exhibits an effect (binder effect) for connecting carbon fibers generated by carbonization. Due to this binder effect, the shapeability and strength of the carbon fiber sheet are improved, and a thinner carbon fiber sheet is obtained.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、各物性の測定は次の方法によった。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Each physical property was measured by the following method.

[バインダー繊維と樹脂との合計含有量]
抄紙時の混合工程における酸化繊維、バインダー繊維の各投入質量(配合量)、樹脂処理時における樹脂含浸量(配合量)から、次式
[(バインダー繊維の配合量)+(樹脂の配合量)]×100/[(酸化繊維の配合量)+(バインダー繊維の配合量)+(樹脂の配合量)]
を用いてバインダー繊維と樹脂との合計含有量(質量%)を算出した。
[Total content of binder fiber and resin]
From the input mass (blending amount) of oxidized fiber and binder fiber in the mixing process during papermaking, the resin impregnation amount (blending amount) during resin treatment, the following formula:
[(Binder fiber content) + (Resin content)] × 100 / [(Oxidized fiber content) + (Binder fiber content) + (Resin content)]
Was used to calculate the total content (% by mass) of the binder fiber and the resin.

[繊維特性:繊度、平均繊維長(カット長)]
JIS L 1015に基づいて測定した。
[Fiber characteristics: fineness, average fiber length (cut length)]
Measured based on JIS L 1015.

[酸化繊維シート、炭素繊維シートの強力]
つかみ間隔100mmとし、引っ張り速度30mm/minで引っ張ったときの破断強力を強力(N/cm)とした。
[Strength of oxidized fiber sheet and carbon fiber sheet]
The breaking strength when pulling at a gripping interval of 100 mm and pulling speed of 30 mm / min was defined as strong (N / cm).

[シート厚さ]
直径5mmの円形圧板で厚さ方向に1.2Nの荷重(61.9kPa)を負荷したときの厚さを測定した。
[Sheet thickness]
The thickness when a 1.2 N load (61.9 kPa) was applied in the thickness direction with a circular pressure plate having a diameter of 5 mm was measured.

[シート目付]
200mm×250mmのフェルトを120℃で1時間乾燥した後の質量値より算出した。
[Sheet weight]
It calculated from the mass value after drying a felt of 200 mm × 250 mm at 120 ° C. for 1 hour.

[シート嵩密度]
上記フェルト目付とフェルト厚さとから算出した。
[Sheet bulk density]
It was calculated from the felt basis weight and the felt thickness.

[残炭率]
熱質量分析(TGA)にて、窒素流量100ml/min、昇温速度10℃/min、室温から900℃まで昇温した時の質量変化から残炭率(質量%)を算出した。
[Remaining charcoal rate]
The residual carbon ratio (mass%) was calculated from the mass change when the temperature was raised from room temperature to 900 ° C. by thermal mass spectrometry (TGA), with a nitrogen flow rate of 100 ml / min, a temperature increase rate of 10 ° C./min.

[平均細孔径]
水銀ポロジメーター(Quantachrome社製 PoreMaster−60)を用いて水銀圧入法により、容積基準メジアン細孔直径を求め、これを平均細孔径(μm)とした。
[Average pore diameter]
A volume-based median pore diameter was determined by mercury porosimetry using a mercury porosimeter (PoreMaster-60 manufactured by Quantachrome), and this was defined as the average pore diameter (μm).

[ガス透過性]
JIS P 8117に準拠し、ガーレー法にて100mmH2Oの圧力下での1cm2、1分当たりの通気流量(ml/cm2・min)を測定した。
[Gas permeability]
In accordance with JIS P 8117, an aeration flow rate (ml / cm 2 · min) per minute at 1 cm 2 under a pressure of 100 mmH 2 O was measured by the Gurley method.

[X線結晶サイズ]
2Θ=26°付近のピークにおける広角X線測定結果から以下に示すシェラーの式
Lc(nm)=kλ/β・COSΘ
k:装置定数(本測定では0.9)
λ:X線波長(0.154nm)
β:2Θ=26°付近のピークの半値幅
Θ:ピークの位置(°)
を用いて算出した。
[X-ray crystal size]
From the result of wide-angle X-ray measurement at a peak near 2Θ = 26 °, Scherrer's formula Lc (nm) = kλ / β · COSΘ
k: Device constant (0.9 in this measurement)
λ: X-ray wavelength (0.154 nm)
β: half width of peak near 2Θ = 26 ° Θ: peak position (°)
It calculated using.

[炭素含有率]
CHNコーダー(カルボエルバ社製、EA1108、CHNS−0)により炭素繊維シートの炭素含有率(質量%)を測定した。
[Carbon content]
The carbon content (% by mass) of the carbon fiber sheet was measured with a CHN coder (Carbo Elba, EA1108, CHNS-0).

[比抵抗値]
2枚の50mm角(厚さ10mm)の金メッキした電極で、炭素繊維シートを電極が全面接触するように挟み、荷重1MPaを厚さ方向にかけたときの厚さ方向の電気抵抗値R(Ω)を測定し、下式
比抵抗値(Ωcm)=R×(S/L)
S:接触面積 5×5=25cm2
L:測定時のシートの厚さ(荷重1MPa)
により求めた。
[Specific resistance value]
An electric resistance value R (Ω) in the thickness direction when a load of 1 MPa is applied in the thickness direction by sandwiching a carbon fiber sheet with two 50 mm square (10 mm thick) gold-plated electrodes so that the electrodes are in contact with the entire surface. , And the following specific resistance value (Ωcm) = R × (S / L)
S: Contact area 5 × 5 = 25 cm 2
L: Sheet thickness during measurement (load 1 MPa)
Determined by

[電池特性]
炭素繊維シートを50cm角にカットし、これに触媒(Pt−Rt)を0.2mg/cm2担持させた。高分子電解質膜(ナフィオン117)の両面に、上記触媒を担持させた炭素繊維シートを接合してセルを構成した。セルに水素及び空気を供給し、温度80℃、電流密度1.6A/cm2でのセル電圧(V)を測定し、この測定値を初期性能(電池特性)として表示した。
[Battery characteristics]
The carbon fiber sheet was cut into a 50 cm square, and 0.2 mg / cm 2 of catalyst (Pt-Rt) was supported on the carbon fiber sheet. A carbon fiber sheet carrying the catalyst was bonded to both surfaces of the polymer electrolyte membrane (Nafion 117) to form a cell. Hydrogen and air were supplied to the cell, the cell voltage (V) at a temperature of 80 ° C. and a current density of 1.6 A / cm 2 was measured, and this measured value was displayed as initial performance (battery characteristics).

[実施例1〜4、比較例1〜6]
表1〜2に示す条件で、PAN系酸化繊維とバインダー繊維とを混抄し、表1〜2に示す目付、厚さの酸化繊維抄紙シートを得た。バインダー繊維の残炭率は、PETが1.2質量%、セルローズが8.5質量%であった。
[Examples 1 to 4, Comparative Examples 1 to 6]
Under the conditions shown in Tables 1 and 2, PAN-based oxidized fibers and binder fibers were mixed to obtain oxidized fiber paper sheets having a basis weight and thickness shown in Tables 1 and 2. The residual carbon ratio of the binder fiber was 1.2% by mass for PET and 8.5% by mass for cellulose.

得られた酸化繊維抄紙シートを表1〜2に示す条件で、樹脂水溶液(樹脂濃度5質量%)に浸漬させ、120℃で乾燥させ、酸化繊維100質量部に対して表1〜2に示す配合量を添着せしめ、表1〜2に示す温度、圧力にて加圧処理を行い、表1〜2に示す目付、厚さの酸化繊維シートを得た。含浸用樹脂の残炭率は、PVAが12.5質量%、フェノール樹脂が21.4質量%であった。   The obtained oxidized fiber papermaking sheet was immersed in an aqueous resin solution (resin concentration 5 mass%) under the conditions shown in Tables 1-2, dried at 120 ° C., and shown in Tables 1-2 for 100 parts by mass of oxidized fibers. The compounding amount was added and pressure treatment was performed at the temperatures and pressures shown in Tables 1 and 2 to obtain oxidized fiber sheets having the basis weight and thickness shown in Tables 1 and 2. The residual carbon ratio of the impregnating resin was 12.5% by mass for PVA and 21.4% by mass for the phenol resin.

得られた酸化繊維シートを昇温速度100℃/min、窒素気流中にて昇温後、表1〜2に示す昇温後温度(最高温度)、同温度の保持時間で炭素化し、表1〜2に示す物性の炭素繊維シートを得た。   The obtained oxidized fiber sheet was heated at a rate of temperature increase of 100 ° C./min and in a nitrogen stream, and then carbonized at the post-temperature increase temperature shown in Tables 1 and 2 (maximum temperature) and the holding time at the same temperature. A carbon fiber sheet having physical properties shown in ˜2 was obtained.

Figure 2007080742
Figure 2007080742

Figure 2007080742
Figure 2007080742

表1〜2に示すように、実施例1〜4においては良好な物性の炭素繊維シートが得られた。   As shown in Tables 1 and 2, carbon fiber sheets with good physical properties were obtained in Examples 1 to 4.

しかし、比較例1においては酸化繊維の繊度が小さいため、ガス透過性は平均細孔径から求まる下限値よりも低く、電池特性も低く、良好な物性の炭素繊維シートは得られなかった。比較例2においては酸化繊維の繊度が大きいため、ガス透過性は平均細孔径から求まる上限値よりも高く、電池特性も低く、良好な物性の炭素繊維シートは得られなかった。   However, in Comparative Example 1, since the fineness of the oxidized fiber was small, the gas permeability was lower than the lower limit value obtained from the average pore diameter, the battery characteristics were low, and a carbon fiber sheet with good physical properties could not be obtained. In Comparative Example 2, since the fineness of the oxidized fiber was large, the gas permeability was higher than the upper limit value determined from the average pore diameter, the battery characteristics were low, and a carbon fiber sheet with good physical properties could not be obtained.

比較例3においては炭素化処理時の最高温度が低いため、炭素含有率が少なく、X線結晶サイズが小さく、比抵抗値が高く、電池特性が低く、良好な物性の炭素繊維シートは得られなかった。比較例4においては酸化繊維抄紙シートへの樹脂含浸量が多く、惹いては酸化繊維シートにおけるバインダー繊維と樹脂との合計含有量が41質量%と多いため、平均細孔径が小さく、ガス透過性は平均細孔径から求まる下限値よりも低く、電池特性も低く、良好な物性の炭素繊維シートは得られなかった。   In Comparative Example 3, since the maximum temperature at the time of carbonization treatment is low, a carbon fiber sheet with low carbon content, small X-ray crystal size, high specific resistance, low battery characteristics, and good physical properties can be obtained. There wasn't. In Comparative Example 4, the amount of the resin impregnated into the oxidized fiber papermaking sheet is large, and since the total content of the binder fiber and the resin in the oxidized fiber sheet is as large as 41% by mass, the average pore diameter is small and the gas permeability is low. Was lower than the lower limit obtained from the average pore diameter, the battery characteristics were low, and a carbon fiber sheet having good physical properties could not be obtained.

比較例5においてはバインダー繊維の配合量も樹脂の配合量も少ないため、酸化繊維シートの強度が低下し、炭素化処理時においてシートが切断し、炭素繊維シートは得られなかった。比較例6においては酸化繊維抄紙シートへの樹脂含浸量が多く、惹いては酸化繊維シートにおけるバインダー繊維と樹脂との合計含有量が31質量%と多いため、平均細孔径が大きく、ガス透過性は平均細孔径から求まる上限値よりも高く、電池特性も低く、良好な物性の炭素繊維シートは得られなかった。   In Comparative Example 5, since the blending amount of the binder fiber and the blending amount of the resin were small, the strength of the oxidized fiber sheet was lowered, the sheet was cut during the carbonization treatment, and the carbon fiber sheet was not obtained. In Comparative Example 6, the amount of the resin impregnated into the oxidized fiber papermaking sheet is large, and since the total content of the binder fiber and the resin in the oxidized fiber sheet is as large as 31% by mass, the average pore diameter is large and the gas permeability is high. Is higher than the upper limit value obtained from the average pore diameter, the battery characteristics are low, and a carbon fiber sheet having good physical properties could not be obtained.

表1〜2中、×で示す箇所が本発明の構成から逸脱している。   In Tables 1 and 2, portions indicated by x deviate from the configuration of the present invention.

Claims (3)

厚さが100〜350μm、目付が50〜100g/m2、比抵抗値が0.2〜10mΩ・cm、炭素含有率が94質量%以上、平均細孔径が7〜15μm、ガス透過性が3000〜28500ml/cm2・minである固体高分子電解質型燃料電池用炭素繊維シート。 Thickness is 100 to 350 μm, basis weight is 50 to 100 g / m 2 , specific resistance is 0.2 to 10 mΩ · cm, carbon content is 94% by mass or more, average pore diameter is 7 to 15 μm, and gas permeability is 3000. A carbon fiber sheet for a solid polymer electrolyte fuel cell, which is ˜28500 ml / cm 2 · min. 炭素のX線結晶サイズが2.1〜4.8nmである請求項1に記載の固体高分子電解質型燃料電池用炭素繊維シート。 The carbon fiber sheet for a solid polymer electrolyte fuel cell according to claim 1, wherein the X-ray crystal size of carbon is 2.1 to 4.8 nm. ポリアクリロニトリル系酸化繊維と、残炭率0.5〜25質量%のバインダー繊維とを混抄して酸化繊維抄紙シートを得、次いで得られた酸化繊維抄紙シートに残炭率0.5〜25質量%の樹脂を、前記バインダー繊維と樹脂との合計量で5〜25質量%含浸させて樹脂含浸シートを得た後、前記樹脂含浸シートを熱圧縮処理して酸化繊維シートを得、その後、不活性雰囲気下1400〜2300℃で前記酸化繊維シートを炭素化することを特徴とする固体高分子電解質型燃料電池用炭素繊維シートの製造方法。 A polyacrylonitrile-based oxidized fiber and a binder fiber having a residual carbon ratio of 0.5 to 25% by mass are mixed to obtain an oxidized fiber paper sheet, and then the residual carbon ratio of 0.5 to 25 mass is obtained in the obtained oxidized fiber paper sheet. % Resin is impregnated in a total amount of the binder fiber and the resin to obtain a resin-impregnated sheet, and then the resin-impregnated sheet is subjected to heat compression treatment to obtain an oxidized fiber sheet. A method for producing a carbon fiber sheet for a solid polymer electrolyte fuel cell, comprising carbonizing the oxidized fiber sheet at 1400 to 2300 ° C in an active atmosphere.
JP2005269135A 2005-09-15 2005-09-15 Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method Pending JP2007080742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269135A JP2007080742A (en) 2005-09-15 2005-09-15 Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269135A JP2007080742A (en) 2005-09-15 2005-09-15 Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007080742A true JP2007080742A (en) 2007-03-29

Family

ID=37940806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269135A Pending JP2007080742A (en) 2005-09-15 2005-09-15 Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007080742A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1976266A1 (en) 2007-03-27 2008-10-01 Nec Corporation Information communication terminal
WO2009110467A1 (en) * 2008-03-04 2009-09-11 東邦テナックス株式会社 Carbon fiber paper and manufacturing method for the same
JP2009289552A (en) * 2008-05-28 2009-12-10 Toho Tenax Co Ltd Carbon fiber sheet and its manufacturing method
JP2011243578A (en) * 2010-05-20 2011-12-01 Kyosin Ltd Method of manufacturing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate formed thereby, and system used for manufacturing the same
CN102953159A (en) * 2012-12-17 2013-03-06 江苏航科复合材料科技有限公司 Production method of carbon fibers
KR101324703B1 (en) * 2010-09-03 2013-11-05 주식회사 제이앤티지 Method for preparing carbon substrate comprising activated carbon fiber, carbon substrate prepared thereby
US8906339B2 (en) 2009-12-30 2014-12-09 Industrial Technology Research Institute High modulus graphitized carbon fiber and method for fabricating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027435A (en) * 2002-06-26 2004-01-29 Toho Tenax Co Ltd Carbon fiber sheet and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027435A (en) * 2002-06-26 2004-01-29 Toho Tenax Co Ltd Carbon fiber sheet and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1976266A1 (en) 2007-03-27 2008-10-01 Nec Corporation Information communication terminal
WO2009110467A1 (en) * 2008-03-04 2009-09-11 東邦テナックス株式会社 Carbon fiber paper and manufacturing method for the same
JP2009289552A (en) * 2008-05-28 2009-12-10 Toho Tenax Co Ltd Carbon fiber sheet and its manufacturing method
US8906339B2 (en) 2009-12-30 2014-12-09 Industrial Technology Research Institute High modulus graphitized carbon fiber and method for fabricating the same
JP2011243578A (en) * 2010-05-20 2011-12-01 Kyosin Ltd Method of manufacturing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate formed thereby, and system used for manufacturing the same
CN102361090A (en) * 2010-05-20 2012-02-22 株式会社协进I&C Method of preparing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate prepard by using the method, and system for manufacturing the same
US8747796B2 (en) 2010-05-20 2014-06-10 Hyup Jin I&C Co., Ltd. Method of preparing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate prepared by using the method, and system for manufacturing the same
CN102361090B (en) * 2010-05-20 2014-09-10 株式会社协进I&C Method of preparing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate prepard by using the method, and system for manufacturing the same
KR101324703B1 (en) * 2010-09-03 2013-11-05 주식회사 제이앤티지 Method for preparing carbon substrate comprising activated carbon fiber, carbon substrate prepared thereby
CN102953159A (en) * 2012-12-17 2013-03-06 江苏航科复合材料科技有限公司 Production method of carbon fibers

Similar Documents

Publication Publication Date Title
JP5585450B2 (en) Porous electrode substrate and method for producing the same
JP5753469B2 (en) Conductive sheet and manufacturing method thereof
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
CA2782274A1 (en) Flexible carbon fiber nonwoven fabric
JP2003504822A (en) Electrode substrate for electrochemical cell based on low cost manufacturing method
JPWO2004031465A1 (en) Acrylic flame resistant fiber nonwoven fabric, carbon fiber nonwoven fabric, and production method thereof
JP2009283259A (en) Porous carbon electrode base material
JP6855843B2 (en) Electrodes for redox flow batteries and their manufacturing methods, and redox flow batteries
JP2008204824A (en) Carbon fiber sheet and its manufacturing method
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
CN112761025B (en) Carbon paper for gas diffusion layer, preparation method thereof and fuel cell
JPWO2019049934A1 (en) Gas diffusion layer base material for fuel cells, gas diffusion layer for fuel cells, fuel cells
JP4409211B2 (en) Method for producing porous electrode substrate for polymer electrolyte fuel cell
CN1685104A (en) Carbonaceous fiber woven fabric, rolled product thereof, gas diffusion layer material for fuel cell of solid polymer type, method for producing the woven fabric, and method for producing the gas diffu
JP5526969B2 (en) Porous electrode substrate and method for producing the same
JP4371662B2 (en) Carbon fiber sheet and manufacturing method thereof
JP2008186718A (en) Gas diffusion layer for fuel cell, fuel cell, fuel cell mounted device
KR100997418B1 (en) Method of preparing gas diffusion layer having carbon nanotube and carbon compound for fuel cell
JP2004027435A (en) Carbon fiber sheet and method for producing the same
TW202040859A (en) Carbon electrode material for manganese/titanium-based redox flow battery
JP2005183325A (en) Carbon fiber sheet for polymer electrolyte gas diffusion layer and its manufacturing method
JP2003192439A (en) Porous carbon plate comprising hollow carbon fiber and method for manufacturing the same
JP4974700B2 (en) Carbon fiber sheet and manufacturing method thereof
JP2011153384A (en) Carbon fiber sheet, and method for producing the same
JP2004100102A (en) Graphite woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802