JP2000345371A - Carbon thin film/metallic composite material and its production - Google Patents

Carbon thin film/metallic composite material and its production

Info

Publication number
JP2000345371A
JP2000345371A JP11163527A JP16352799A JP2000345371A JP 2000345371 A JP2000345371 A JP 2000345371A JP 11163527 A JP11163527 A JP 11163527A JP 16352799 A JP16352799 A JP 16352799A JP 2000345371 A JP2000345371 A JP 2000345371A
Authority
JP
Japan
Prior art keywords
thin film
carbon thin
metal
carbon
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11163527A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Yamashita
友義 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11163527A priority Critical patent/JP2000345371A/en
Publication of JP2000345371A publication Critical patent/JP2000345371A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the electric conductivity and film strength at a low cost by coating a metallic structural body composed of a metallic fibrous or fine-wired or particulate material with a carbon thin film. SOLUTION: As the metallic material, e.g. a metallic fiber of about 1 to 50 μm is used and is previously subjected to shape working into a woven fabric or nonwoven fabric structural body, or the like. Next, the structural body of the metallic fiber, or the like, is coated with a carbon thin film. At first, a needle electrode composing the metallic structural body is dipped into an electrolytic soln. in which a monomer is dissolved into a solvent, voltage is applied on a space between it and a counter electrode, polymerization is executed, and a polymer is applied thereon. As the monomer, particularly, acrylonitrile, metaacrylonitrile or the like is preferable. By using coated electropolymerized polymer as a precursor, the structural body is subjected to heat treatment for imparting higher electric conductivity thereto. The heat treating temp. is preferably controlled to about 520 to 900 deg.C. In a carbonating stage to accompany the heat treatment, the content of carbon atoms in the carbon film is suitably controlled to >=90 wt.%. Furthermore, the thickness of the film is preferably controlled to <=1 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池、二次電
池、電気二重層キャパシター、スーパーキャパシター等
の電極材料等のエネルギー関連、並びに、イオン吸着お
よび有害ガス分解吸脱着材、脱臭、排水処理、浄水、医
療用浄化、空気(水)清浄用フィルター等、環境浄化関
連の技術分野において有用に利用できる炭素薄膜/金属
複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to energy-related materials such as electrode materials for fuel cells, secondary batteries, electric double-layer capacitors, supercapacitors, etc., as well as ion-adsorbing and harmful-gas-decomposing / desorbing materials, deodorization, and wastewater treatment. The present invention relates to a carbon thin film / metal composite material that can be effectively used in environmental purification-related technical fields such as water purification, medical purification, and air (water) purification filters.

【0002】[0002]

【従来の技術】活性炭素繊維(以下ACFと言う)をコ
ンデンサー用電極部材等に用いる従来の技術としては、
例えば特開平3−85711号公報にポリアクリルニト
リル系(以下PAN系と言う)ACFや、活性炭素繊維
を用いたものが、特開平10−172870号公報には
ピッチ系ACFを用いたものが、特開平8−10704
7号公報のフェノール系ACFを用いたものが、特開昭
59−105312号公報にはセルロース系ACFを用
いたものが示されている。これらは、高性能コンデンサ
ーの電極として用いるため、その表面積を高めるため、
多孔質体である。またこれらの電極は、一般にACF
を、クロスやフェルトに加工して用いる。
2. Description of the Related Art Conventional techniques for using activated carbon fiber (hereinafter referred to as ACF) for an electrode member for a capacitor include:
For example, Japanese Patent Application Laid-Open No. 3-85711 discloses a polyacrylonitrile-based (hereinafter referred to as PAN-based) ACF or an activated carbon fiber, and Japanese Patent Application Laid-Open No. 10-172870 discloses a device using a pitch-based ACF. JP-A-8-10704
No. 7 using a phenolic ACF, and JP-A-59-105312 discloses a product using a cellulose-based ACF. These are used as electrodes of high-performance capacitors, so to increase their surface area,
It is a porous body. Also, these electrodes are generally ACF
Is processed into cloth or felt.

【0003】ACFの種類としては、その原料の違いか
ら、セルロース系ACF、PAN系ACF、フェノール
系ACF、ピッチ系ACF等がある。これらのACFの
製法としては、例えば特公昭58−20883号公報、
特公昭58−25043号公報、特公昭58−3609
5号公報等に開示されてるように(原料の種類によって
工程は一部異なるが)、まず原料の合成から、それを繊
維状に紡糸し、次いで、耐炎化処理(不溶化処理)を行
い(これを耐炎化糸と呼ぶ)、次に水蒸気、炭酸ガス等
を用いて賦活処理を行う。更にこれを、フェルト状に加
工する工程を経て、最終的にACFフェルトを製造する
に至る。
[0003] Types of ACF include cellulose-based ACF, PAN-based ACF, phenol-based ACF, pitch-based ACF, and the like, depending on the raw materials. As a method for producing these ACFs, for example, JP-B-58-20883,
JP-B-58-25043, JP-B-58-3609
As disclosed in Japanese Unexamined Patent Publication No. 5 (2005) (although the steps are partially different depending on the type of raw material), first, from the synthesis of the raw material, it is spun into a fibrous form, and then subjected to a flame-resistant treatment (insolubilization treatment) (this Is referred to as a flame-resistant yarn), and then activation treatment is performed using steam, carbon dioxide gas or the like. This is further processed into a felt shape, and finally, an ACF felt is manufactured.

【0004】また、電極材の電気伝導性を高める手法と
して、例えば、特開平10−509560号公報にはア
ルミニウムを炭素材料中に分散混合し複合電極とする方
法が示されている。
As a technique for improving the electrical conductivity of an electrode material, for example, Japanese Patent Application Laid-Open No. 10-509560 discloses a method in which aluminum is dispersed and mixed in a carbon material to form a composite electrode.

【0005】また、炭素薄膜/金属複合材料に関し、
J.Electrochem.Soc.,Vol.13
7(1990)p2499.にはNi電極上に電解重合
によりポリアクリロニトリル薄膜を形成し、500℃以
下の温度で熱処理した時の膜の一次構造について報告し
ている。
[0005] Further, regarding a carbon thin film / metal composite material,
J. Electrochem. Soc. , Vol. 13
7 (1990) p2499. Describes a primary structure of a polyacrylonitrile thin film formed by electrolytic polymerization on a Ni electrode and heat-treated at a temperature of 500 ° C. or less.

【0006】[0006]

【発明が解決しようとする課題】電極部材等にACFフ
ェルトを用いる従来の技術においては、その製造工程
に、ポリマーの合成工程、紡糸工程、耐炎化工程、賦活
化工程、そしてフェルト化工程等を含み、これら一連の
工程は非常に複雑で電極材のコスト高に繋がる。
In a conventional technique using ACF felt for an electrode member or the like, the manufacturing process includes a polymer synthesis process, a spinning process, a flame-proofing process, an activation process, and a felting process. Including, these series of steps are very complicated and lead to high cost of the electrode material.

【0007】また、セルロース系ACFは材料コストは
比較的安いが強度が弱い。フェノール系ACFは不溶化
処理が不要でクロス、フェルト化が容易だが、材料コス
トが非常に高い。ピッチ系ACFは原料の特性から成形
品形状に制約を受ける等の問題が有る。
[0007] Cellulose ACF has relatively low material cost but low strength. Phenol-based ACF does not require insolubilizing treatment and is easy to cross and felt, but the material cost is very high. The pitch-based ACF has problems such as being restricted by the shape of the molded product due to the characteristics of the raw material.

【0008】一連の工程を経て得られるACFの収率
は、例えばアクリロニトリル系ACFの場合で、耐炎化
や賦活処理工程によって、原料の30%程度までに減少
し、これがアクリロニトリル系ACFのコスト高にも繋
がる。
[0008] The yield of ACF obtained through a series of steps is reduced to about 30% of the raw material, for example, in the case of an acrylonitrile-based ACF by a flame-proofing or activation treatment step, which increases the cost of the acrylonitrile-based ACF. Is also connected.

【0009】性能の観点からは、ACFの繊維の状態で
は多孔質化により表面積が大きいものが得られるもの
の、バインダ−等を用いてフェルト加工を行った場合そ
の面積は大幅に激減し、ACFとしての吸着特性が損な
われやすい。
From the viewpoint of performance, in the state of ACF fiber, although a large surface area can be obtained by making the fiber porous, when felting using a binder or the like, the area is drastically reduced. Is easily impaired.

【0010】また、耐炎化糸を一度フェルト化した後、
賦活処理しACFフェルトを得る方法もあるが、賦活斑
や賦活時の重量減少等によるACF密度の低下、繊維の
配向緩和によるフェルト強度が低下するため本工程は長
時間を要するため耐炎化工程はフェルト作成工程とは別
に行う必要がありACFフェルトの生産に不連続工程が
入るため、その生産性の低下によるコスト高が必至であ
る。
Further, after the oxidized yarn is once felted,
There is also a method of obtaining an ACF felt by activation treatment. However, since the ACF density decreases due to activation spots and weight reduction during activation, and the felt strength decreases due to relaxation of fiber orientation, this step requires a long time. Since it is necessary to perform the process separately from the felt making process and the production of the ACF felt involves a discontinuous process, the cost is inevitably increased due to a decrease in productivity.

【0011】また、高性能キャパシタ−の分極電極や電
池電極部材としては、内部抵抗を小さくする必要があ
り、大きな表面積と高い電気伝導性を備えていることが
望まれる。一般的にACFフェルトは、ACFのグラフ
ァイト構造の異方性や炭素化の不十分な点が影響し、電
気伝導性の更なる向上が期待される。
Further, it is necessary to reduce the internal resistance as a polarizing electrode or a battery electrode member of a high-performance capacitor, and it is desired that the electrode has a large surface area and high electric conductivity. In general, ACF felt is expected to be further improved in electrical conductivity due to the anisotropy of the graphite structure of ACF and insufficient carbonization.

【0012】電極の電気伝導性を高めるため、例えば、
特開平10−509560号公報にはアルミニウムを炭
素中に単に混合した複合電極等が開示されているが、そ
の導電性は向上するものの、成形性が悪く、電極の機械
強度の低下等が懸念される。
To increase the electrical conductivity of the electrodes, for example,
Japanese Patent Application Laid-Open No. 10-509560 discloses a composite electrode or the like in which aluminum is simply mixed in carbon. However, although its conductivity is improved, its moldability is poor and there is a concern that the mechanical strength of the electrode may be reduced. You.

【0013】J.Electrochem.Soc.,
Vol.137(1990)p2499.ではNi電極
上に形成した薄膜状ポリアクリロニトリルを500℃以
下での熱処理を行っているが、この温度領域では得られ
る炭素膜のグラファイト構造の発達が不十分であり、電
極部材に用いようとする場合には導電性に乏しい。一
方、500℃の温度で充分時間を掛けて熱処理すれば、
ある程度導電性は時間と共に向上するが、生産性の著し
い低下を招く。
J. Electrochem. Soc. ,
Vol. 137 (1990) p2499. Heat-treats the polyacrylonitrile thin film formed on the Ni electrode at a temperature of 500 ° C. or less. However, in this temperature range, the graphite structure of the obtained carbon film is insufficiently developed, and is intended to be used as an electrode member. In some cases, the conductivity is poor. On the other hand, if the heat treatment is performed at a temperature of 500 ° C. for a sufficient time,
The conductivity improves to some extent with time, but causes a significant drop in productivity.

【0014】また500℃以下の熱処理では、基本的に
膜平面内でのグラファイト構造の発達が不充分なため、
膜面内強度の著しい低下を来す。この時、金属と熱分解
ポリアクリロニトリルの膨張率の違いから、冷却過程で
の膜への損傷が懸念される。特に、平面電極を用いた場
合は、膜面方向のグラファイト構造が発達していない
と、膜面方向の高分子の結合が弱く、該薄膜が脱落に至
ることもある。
In the case of heat treatment at 500 ° C. or less, the development of the graphite structure in the plane of the film is basically insufficient.
The in-plane strength of the film is significantly reduced. At this time, there is a concern that the film may be damaged during the cooling process due to the difference in expansion coefficient between the metal and the pyrolyzed polyacrylonitrile. In particular, when a planar electrode is used, if the graphite structure in the film surface direction is not developed, the bonding of the polymer in the film surface direction is weak, and the thin film may fall off.

【0015】更に、直接ポリアクリロニトリル薄膜を5
00℃で熱処理した場合、グラファイト化の進行より、
PAN薄膜の熱分解反応が著しく進行し、ポリマーの分
解損失が大きく、また、品質の良い膜が得られにくい。
Further, a polyacrylonitrile thin film is directly
When heat treatment is performed at 00 ° C., due to the progress of graphitization,
The thermal decomposition reaction of the PAN thin film progresses remarkably, the decomposition loss of the polymer is large, and it is difficult to obtain a high quality film.

【0016】本発明の目的は、上述した問題点を解決す
ると共に、生産性に優れ、低コストで、電気伝導性、膜
強度に優れた特性を有する、燃料電池、二次電池、電気
二重層キャパシター、スーパキャパシタ−電極材料等
や、イオンおよび有害ガス分解吸脱着材、脱臭、排水処
理、浄水、医療用浄化、空気(水)清浄用フィルター等
に使用される、多孔性の炭素薄膜/金属複合材料を提供
することにある。
An object of the present invention is to solve the above-mentioned problems, and to provide a fuel cell, a secondary battery, and an electric double layer which are excellent in productivity, low in cost, and excellent in electric conductivity and film strength. Porous carbon thin films / metals used for capacitors, supercapacitor-electrode materials, filters for ion and harmful gas decomposition / desorption, deodorization, wastewater treatment, water purification, medical purification, air (water) purification, etc. It is to provide a composite material.

【0017】[0017]

【課題を解決するための手段】本発明は次の如きものよ
り構成される。 1)金属の繊維又は細線に炭素薄膜が被覆されてなる炭
素薄膜/金属複合材料。 2)金属構造体として金属の繊維又は細線からなる編み
物、織物、不織布構造体を用いた炭素薄膜/金属複合材
料。 3)金属構造体として金属の微粒子を焼結してなる多孔
質構造体を用いた炭素薄膜/金属複合材料。 4)炭素薄膜中の炭素原子含有率が90wt%以上であ
る1)、3)の炭素薄膜/金属複合材料。 5)炭素薄膜が多孔質構造を有している1)、3)の炭
素薄膜/金属複合材料。 6)炭素薄膜の厚みが1μm以下である1)、3)の炭
素薄膜/金属複合材料。 7)ニトリル基を含む単量体を電解重合にて任意の形態
を有する金属表面に重合電着させ、次いで該重合体が付
着した構造物を少なくとも最高温度が500℃を越える
温度で熱処理することを特徴とする炭素薄膜/金属複合
体の製造方法。 8)電解重合により形成したアクリロニトリルポリマー
薄膜を有する金属構造体をまず300℃以下の温度で低
温熱処理した後高温処理を行う7)の炭素薄膜/金属複
合体の製造方法。 9)ニトリル基を含む単量体がアクリロニトリル、また
はメタアクリロニトリルから選ばれた少なくとも1種類
である7)。 10)520℃〜900℃の温度範囲で、ニトリル基含
有重合体薄膜を形成した金属構造体を高温熱処理する炭
素薄膜/金属複合材の製造方法。 11)1)〜6)からなる炭素薄膜/金属複合材料を用
いた電極。 12)1)〜6)からなる炭素薄膜/金属複合体を用い
た吸着剤又はフィルターにある。
SUMMARY OF THE INVENTION The present invention comprises the following. 1) A carbon thin film / metal composite material in which a metal fiber or a fine wire is coated with a carbon thin film. 2) A carbon thin film / metal composite material using a knitted, woven, or nonwoven fabric made of metal fibers or fine wires as the metal structure. 3) A carbon thin film / metal composite material using a porous structure obtained by sintering metal fine particles as the metal structure. 4) The carbon thin film / metal composite material according to 1) or 3), wherein the carbon atom content in the carbon thin film is 90 wt% or more. 5) The carbon thin film / metal composite according to 1) or 3), wherein the carbon thin film has a porous structure. 6) The carbon thin film / metal composite according to 1) or 3), wherein the thickness of the carbon thin film is 1 μm or less. 7) electrolytically polymerizing a monomer containing a nitrile group onto a metal surface having an arbitrary form by electrolytic polymerization, and then heat-treating the structure to which the polymer has been attached at least at a maximum temperature exceeding 500 ° C. A method for producing a carbon thin film / metal composite, comprising: 8) The method for producing a carbon thin film / metal composite according to 7), in which a metal structure having an acrylonitrile polymer thin film formed by electrolytic polymerization is first subjected to a low-temperature heat treatment at a temperature of 300 ° C. or lower, followed by a high-temperature treatment. 9) The monomer containing a nitrile group is at least one selected from acrylonitrile and methacrylonitrile. 10) A method for producing a carbon thin film / metal composite in which a metal structure on which a nitrile group-containing polymer thin film is formed is subjected to high-temperature heat treatment in a temperature range of 520 ° C to 900 ° C. 11) An electrode using a carbon thin film / metal composite material comprising 1) to 6). 12) An adsorbent or filter using a carbon thin film / metal composite comprising 1) to 6).

【0018】[0018]

【発明の実施の形態】活性炭素繊維(ACF)を電極部
材、吸脱着フィルター等に用いる場合、電気伝導のキャ
リアや吸着分子の吸着サイトや、キャパシターの電極表
面積の増大の役割を果たすのが、多孔質部分である。こ
こで述べる多孔質とは低分子の吸着サイトに寄与でき
る、炭素材料内部の0.2〜1nmの分子サイズの超ミ
クロポア、分子欠陥、フリーボリュ−ム、ボイド等の極
めて小さな構造のものや、また、1〜10nmのミクロ
ポア、構造欠陥、クレイズ、クラック等の微細構造や、
更に、10nm〜100nm程度の比較的大きなマクロ
ポアや破壊欠陥構造等が含まれる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When activated carbon fiber (ACF) is used for an electrode member, an adsorption / desorption filter, etc., it plays a role in increasing the site of electric conduction carriers and adsorption sites of adsorbed molecules and the electrode surface area of a capacitor. It is a porous part. The term "porous" as used herein means a substance having a very small structure such as ultramicropores having a molecular size of 0.2 to 1 nm inside the carbon material, molecular defects, free volumes, voids, etc., which can contribute to low molecular adsorption sites. In addition, microstructures such as micropores of 1 to 10 nm, structural defects, crazes and cracks,
Further, it includes a relatively large macropore of about 10 nm to 100 nm, a destruction defect structure, and the like.

【0019】通常のACFの場合、1nm前後のミクロ
ポア構造が形成されているが、有効なミクロ構造は、直
径10μmφ程度のACFに対し、その極く表面にしか
ない。また、ACF内部の不完全なグラファイト構造
は、ACFの繊維直径方向の導電性の低下をもたらして
いる。
In the case of a normal ACF, a micropore structure of about 1 nm is formed, but the effective microstructure is only on the very surface of the ACF having a diameter of about 10 μmφ. Also, the imperfect graphite structure inside the ACF causes a decrease in the conductivity of the ACF in the fiber diameter direction.

【0020】本発明では、こうしたカーボン材料の非効
率的利用や電気伝導性の低下要因を解決する手段にまず
着眼した。上記ミクロポアサイズを有する炭素膜の機能
的活用を行う場合、1μm以下の膜で十分であり、更
に、その内部に細い又は微粒子状の金属材料(電極)を
連続的に配置することで、低コストで、導電性に優れた
炭素薄膜/金属複合材料を提供できる。
In the present invention, first, means for solving the inefficient use of such a carbon material and the cause of a decrease in electric conductivity have been focused. In the case where the carbon membrane having the above-mentioned micropore size is functionally used, a membrane of 1 μm or less is sufficient, and furthermore, a thin or fine-particle metal material (electrode) is continuously disposed inside, thereby reducing the cost. Thus, a carbon thin film / metal composite material having excellent conductivity can be provided.

【0021】上記金属電極材料としては、鉄、ステンレ
ス、ニッケル、アルミニウム、銀、白金、亜鉛、コバル
ト、リチウム、またこれらの混合物である。また金属以
外のものでも、シリコン単結晶等、(半)導電性を有す
る材料も使用可能である。中でも安価な鉄、ニッケル、
アルミニウム、ステンレス等の材料が好ましい。
Examples of the metal electrode material include iron, stainless steel, nickel, aluminum, silver, platinum, zinc, cobalt, lithium, and mixtures thereof. In addition to materials other than metals, materials having (semi) conductivity such as silicon single crystal can be used. Among them, cheap iron, nickel,
Materials such as aluminum and stainless steel are preferred.

【0022】本発明で用いる金属材料には、例えば1〜
50μm程度の金属繊維を用い、あらかじめ、該繊維を
編み物、織物、不織布構造体や、その他使用目的に適し
た任意形状に加工し、次いで炭素薄膜をこれに被覆す
る。このことにより、ACFのように、繊維を短くカッ
トし、バインダー等を用いてフェルト加工する工程が不
要となり、炭素材表面に形成されたミクロポアをつぶ
し、表面積を低下させる心配もない。
The metal material used in the present invention includes, for example,
Using a metal fiber of about 50 μm, the fiber is previously processed into a knit, a woven fabric, a non-woven fabric or any other shape suitable for the intended use, and then coated with a carbon thin film. This eliminates the need for a step of cutting fibers short and performing a felting process using a binder or the like, unlike the ACF, and there is no risk of crushing the micropores formed on the carbon material surface and reducing the surface area.

【0023】こうした金属繊維の構造体に炭素薄膜を被
覆する方法であるが、電解重合法を用いるのがよい。ま
ず、モノマーを溶媒中に所定の濃度溶解した電解質溶液
中に金属構造体を構成する針線電極を浸し、対極を配置
して、印加電圧やその供給時間を制御して重合を行い、
所定の膜厚や膜構造を有するポリマーを被覆する。これ
に必要な時間は一般に数秒〜数十秒であり、重合効率と
しては非常に優れており、システムも単純で製造コスト
も極めて低い。
As a method of coating such a metal fiber structure with a carbon thin film, an electrolytic polymerization method is preferably used. First, a needle electrode constituting a metal structure is immersed in an electrolyte solution obtained by dissolving a monomer in a predetermined concentration in a solvent, a counter electrode is disposed, and polymerization is performed by controlling an applied voltage and a supply time thereof.
A polymer having a predetermined film thickness and film structure is coated. The time required for this is generally several seconds to several tens of seconds, the polymerization efficiency is very excellent, the system is simple and the production cost is extremely low.

【0024】上記重合に供するモノマーとしては、π電
子共役系を有する高い導電性を期待できるものとして、
例えば、フルオランセン、ピレン、ピロ−ル、チオフェ
ン、フラン、フェノール、アニリン、1−ピレナミン、
アセチレン、ジメチルピロール過塩素酸塩、N−メチル
ピロール、ビニフェロセン、N−メチルアニリン、o−
フェニレンジアミン、3−メチルチオフェン、3,4−
ジメチルチオフェン、ジチオチオフェン、アズレン、
N,N−ジメチルアニリン、N,N−ジエチルアニリ
ン、4,4’−ジアミノジフェニルエーテル、L−バリ
ン、セレノフェン、パラフェニレン、ナフチレン、アン
トラセンとその誘導体、フルオランセン、カルバゾー
ル、キナルジン、ナフタレン、また、ニトリル基を有す
るアクリロニトリル(AN)やメタアクリロニトリル
(MAN)等が挙げられる。特にアクリロニトリルやメ
タアクリロニトリル系ポリマーは、ニッケル電極に対す
る結合性が良く、接着性に優れた丈夫な複合膜を形成す
ることが可能である。
As the monomer to be subjected to the above polymerization, those which can be expected to have a high conductivity having a π-electron conjugated system include:
For example, fluorancene, pyrene, pyrrole, thiophene, furan, phenol, aniline, 1-pyrenamine,
Acetylene, dimethylpyrrole perchlorate, N-methylpyrrole, vinyliferocene, N-methylaniline, o-
Phenylenediamine, 3-methylthiophene, 3,4-
Dimethylthiophene, dithiothiophene, azulene,
N, N-dimethylaniline, N, N-diethylaniline, 4,4′-diaminodiphenylether, L-valine, selenophene, paraphenylene, naphthylene, anthracene and its derivatives, fluorancene, carbazole, quinaldine, naphthalene, and a nitrile group (Meth) acrylonitrile (AN) and methacrylonitrile (MAN). In particular, acrylonitrile and methacrylonitrile-based polymers have good bondability to the nickel electrode and can form a durable composite film having excellent adhesion.

【0025】溶媒としては、ベンゾニトリル、アセトニ
トリル、水、ニトロベンゼン、ジメチルホルムアミド、
メタノール等が使用できる。中でも、ANやMANモノ
マーの溶媒として、アセトニトリル、ジメチルホルムア
ミドを用いたものでは、Ni電極との接着強度に特に優
れたポリマー薄膜を得ることができる。
As the solvent, benzonitrile, acetonitrile, water, nitrobenzene, dimethylformamide,
Methanol or the like can be used. Above all, when acetonitrile or dimethylformamide is used as a solvent for AN or MAN monomer, a polymer thin film having particularly excellent adhesive strength to a Ni electrode can be obtained.

【0026】次いで、こうして被覆された該電解重合ポ
リマーを前駆体に、更にそのπ電子共役系を発達させ高
い導電性を付与する目的から、200℃〜1200℃の
温度で熱処理を行う。また、必要であれば更に、水蒸気
等を用いて賦活処理を行う。上記熱処理温度は、製造コ
ストの点からより低い温度が好ましい。
Next, a heat treatment is performed at a temperature of 200 ° C. to 1200 ° C. for the purpose of further developing the π-electron conjugated system and imparting high conductivity to the precursor obtained by coating the thus-coated electropolymerized polymer. Further, if necessary, an activation treatment is performed using steam or the like. The heat treatment temperature is preferably lower from the viewpoint of manufacturing cost.

【0027】ただし、500℃以下での熱処理を行う場
合、この温度領域ではグラファイト構造の発達が不十分
で、十分な導電性が得られない。一方、500℃の温度
で充分時間を掛けて熱処理すれば、処理時間と共に導電
性は向上するが、生産性の著しい低下を招く。
However, when the heat treatment is performed at a temperature of 500 ° C. or less, the graphite structure is insufficiently developed in this temperature range, and sufficient conductivity cannot be obtained. On the other hand, if the heat treatment is performed at a temperature of 500 ° C. for a sufficient time, the conductivity is improved with the processing time, but the productivity is remarkably reduced.

【0028】また、基本的に膜平面内でのグラファイト
構造の発達が不充分なため、膜面内強度の著しい低下を
来す。この時、金属と薄膜の膨張率の違いから、冷却過
程で、膜への損傷が懸念され、特に、膜面方向のグラフ
ァイト構造が発達していないと、膜面方向の高分子の結
合が弱く、該薄膜が完全に破壊し、脱落に至ることもあ
る。こうした理由から、熱処理温度は、520℃〜90
0℃程度が好ましい。更に好ましくは、520℃〜70
0℃である。
In addition, since the development of the graphite structure in the plane of the film is basically insufficient, the strength in the film surface is remarkably reduced. At this time, the difference in the coefficient of expansion between the metal and the thin film may cause damage to the film during the cooling process. In particular, if the graphite structure in the film surface direction is not developed, the bonding of the polymer in the film surface direction is weak. In some cases, the thin film is completely destroyed and falls off. For these reasons, the heat treatment temperature is between 520 ° C and 90 ° C.
About 0 ° C. is preferable. More preferably, 520 ° C to 70
0 ° C.

【0029】また、熱処理に伴う炭素化過程において、
充分な導電性をうるには、炭素膜中の炭素原子の含有量
が90wt%以上、更に好ましくは99wt%以上が好
適である。
In the carbonization process accompanying the heat treatment,
In order to obtain sufficient conductivity, the content of carbon atoms in the carbon film is preferably at least 90 wt%, more preferably at least 99 wt%.

【0030】また、ここで、プレート状の金属電極基材
よりも、金属繊維を電極基材として用いる方がより大き
な利点が得られる。金属繊維にモノマーを電解重合しポ
リマー被覆を行う場合、該ポリマーは円筒上の連続面を
有する被覆体となる。また、球体金属、または、球面体
金属に同様の被覆を行う場合にも、球面状の連続面を有
する被覆体が形成される。これら連続面を有するポリマ
ー薄膜は、その熱処理過程において、該薄膜面内でのグ
ラファイト構造をある程度成長させることにより、該炭
素膜全体が結合した膜(結合サイトはまばらであって
も)となり、電極基材からの脱落が起こりにくくなる。
Here, a greater advantage is obtained by using metal fibers as the electrode base material than by using a plate-shaped metal electrode base material. When a polymer is coated by electrolytically polymerizing a monomer to a metal fiber, the polymer becomes a coating having a continuous surface on a cylinder. Also, when a similar coating is applied to a spherical metal or a spherical metal, a coating having a spherical continuous surface is formed. In the heat treatment process, the polymer thin film having these continuous surfaces grows a graphite structure within the thin film surface to some extent, thereby forming a film in which the entire carbon film is bonded (even if the bonding sites are sparse). Dropping from the base material hardly occurs.

【0031】高温で熱処理し金属面上に炭素膜を構築し
た後、室温に冷却する過程での金属と炭素薄膜の膨張率
の違いから、炭素薄膜/金属界面での脱着または破壊が
生じた場合も、該複合材料からの炭素薄膜の脱落のない
安定な炭素薄膜/金属複合材料を作製することができ
る。
When a carbon film is formed on a metal surface by heat treatment at a high temperature, and desorption or destruction occurs at the carbon thin film / metal interface due to a difference in expansion coefficient between the metal and the carbon thin film in the process of cooling to room temperature. In addition, it is possible to produce a stable carbon thin film / metal composite material in which the carbon thin film does not fall off from the composite material.

【0032】また、 AN、MANモノマーにおいて
は、金属電極表面にグラフト化した高分子膜(PAN、
PMAN)を形成する。更にこれに熱処理を施すことに
よって、520℃以上の熱処理では、金属電極表面に位
置的に固定された高分子が、分解酸化反応(脱水素、脱
窒素)を起こし、グラファイト化が進行するため、導電
性が高まると同時に、超ミクロポア、そして/または、
ミクロポアが炭素膜内部及び表面に形成され、多孔質体
となることを見出した。
In the case of the AN and MAN monomers, a polymer film (PAN,
PMAN). Further, by performing a heat treatment on this, in a heat treatment at 520 ° C. or more, the polymer fixed locally on the surface of the metal electrode causes a decomposition oxidation reaction (dehydrogenation, denitrification), and the graphitization proceeds. At the same time as the conductivity increases, the micro-pores and / or
It has been found that micropores are formed inside and on the surface of the carbon membrane to form a porous body.

【0033】こうしたミクロポアの多孔質体では、熱処
理後の高温から低温(室温)に冷却する際、ゆっくりと
徐冷すれば、膜への損傷が小さいことも見出された。徐
冷速度としては10℃/分以下、更に好ましくは10℃
/分である。
It has also been found that in such a porous microporous material, when the film is cooled from a high temperature after the heat treatment to a low temperature (room temperature), if the film is slowly cooled slowly, damage to the membrane is small. The slow cooling rate is 10 ° C./min or less, more preferably 10 ° C.
/ Min.

【0034】PANや、PMANを熱処理する場合、過
剰な分解反応や酸化発熱を防ぎ、安定な膜、更にはグラ
ファイト構造の良く発達した炭素膜を得る目的から、例
えば200〜300℃の温度範囲で一度低温熱処理し
て、ニトリル基の環化反応を充分進行させた後、520
℃以上の温度で再熱処理するなど、段階的に温度を変え
て行うことが望ましい。低温処理に必要な時間としては
30分〜90分である。上記低温処理の温度は、膜厚や
ポリマーの分子量にも依存するが、短時間で充分環化反
応を起こさせるためには、200℃以上が好ましく、更
には250℃以上が好ましい。また、急激な分解酸化反
応を抑制する目的からは、300℃以下、更に好ましく
は250℃以下が好ましい。
When PAN or PMAN is subjected to a heat treatment, the temperature is, for example, 200 to 300 ° C. for the purpose of preventing an excessive decomposition reaction and oxidative heat generation and obtaining a stable film and a carbon film having a well-developed graphite structure. After a low-temperature heat treatment to allow the cyclization reaction of the nitrile group to proceed sufficiently,
It is desirable to change the temperature stepwise, such as re-heat treatment at a temperature of at least ° C. The time required for the low-temperature treatment is 30 minutes to 90 minutes. The temperature of the low-temperature treatment depends on the film thickness and the molecular weight of the polymer, but is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, in order to cause a sufficient cyclization reaction in a short time. For the purpose of suppressing the rapid decomposition and oxidation reaction, the temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.

【0035】また、熱処理を行う前駆体ポリマーの膜厚
が小さいものほど、より低い熱処理温度にて、効率よく
脱窒素等の分解酸化反応が進み、π電子共役系が発達し
導電性が向上するので望ましい。膜の厚さは1μm以下
が望ましいが、好ましくは0.1μm以下、更に好まし
くは0.05μm以下である。また、こうして作製され
た膜の更に高性能化を図るため、電解重合過程、及び/
または、熱処理後に導電性キャリアーとなるイオンを化
学的に注入したり、もしくは、所定の炭素薄膜/金属複
合材料を得た後、イオンビーム等の物理的手法を用いて
導電性キャリアーを注入し、複合材料の導電性を向上さ
せる方法も可能である。
Further, as the thickness of the precursor polymer to be subjected to the heat treatment becomes smaller, the decomposition oxidation reaction such as denitrification proceeds more efficiently at a lower heat treatment temperature, the π-electron conjugate system develops, and the conductivity improves. So desirable. The thickness of the film is desirably 1 μm or less, preferably 0.1 μm or less, and more preferably 0.05 μm or less. Further, in order to further improve the performance of the film thus produced, an electrolytic polymerization process and / or
Alternatively, ions that become conductive carriers after the heat treatment are chemically injected, or after obtaining a predetermined carbon thin film / metal composite material, the conductive carriers are injected using a physical method such as an ion beam, A method for improving the conductivity of the composite material is also possible.

【0036】更に、高機能化を図る方法としては、例え
ば、白金、酸化チタン等の(光)触媒作用を有する物質
を炭素膜中に担持することによって、有毒ガスの吸着分
解、殺菌機能等、新たな機能性を有する炭素膜を製造す
ることもできる。
Further, as a method for achieving high functionality, for example, a substance having a (photo) catalytic action such as platinum or titanium oxide is carried in a carbon film, thereby adsorbing and decomposing toxic gas, sterilizing function and the like. A carbon film having a new functionality can also be manufactured.

【0037】また、膜の多孔質構造を制御する方法とし
て、例えばPMMAのような高温処理で熱分解消失する
ようなポリマーを、その量を調整し、電解重合過程でブ
レンド、及び/または、共重合し、後に300℃以上の
高温で該ポリマーを熱処理する段階で、熱分解除去し多
孔化する手法等も考えられる。
As a method for controlling the porous structure of the membrane, for example, a polymer such as PMMA, which is thermally decomposed by high-temperature treatment, is adjusted in its amount and blended and / or co-polymerized in the electrolytic polymerization process. At the stage where the polymer is polymerized and then the polymer is heat-treated at a high temperature of 300 ° C. or higher, a method of removing the material by thermal decomposition and making the polymer porous may be considered.

【0038】これまで、基本的に金属繊維を電極に用い
た炭素薄膜/金属複合材料について述べてきたが、金属
電極の形態は、使用目的に合わせて自由に加工成形した
ものを用いれば良い。 例えば、金属の微粒子を焼結し
てなる多孔質構造体を用い、上記電解重合法と一連の熱
処理手法によって、多孔質壁を形成する微粒子表面を炭
素薄膜で被覆した炭素薄膜/金属複合材料も製造するこ
ともできる。該複合材料であれば、より表面積が大き
く、強度に優れたものを作製することが可能である。
So far, a carbon thin film / metal composite material using a metal fiber as an electrode has been basically described, but the shape of the metal electrode may be a material freely processed and shaped according to the purpose of use. For example, using a porous structure obtained by sintering metal fine particles, a carbon thin film / metal composite material in which the surface of fine particles forming a porous wall is coated with a carbon thin film by the above-described electrolytic polymerization method and a series of heat treatment techniques is also available. It can also be manufactured. With this composite material, a material having a larger surface area and excellent strength can be produced.

【0039】本発明に関する、炭素薄膜/金属複合材料
は、燃料電池、二次電池、電気二重層キャパシター、大
容量キャパシターの電極材料や、イオンおよび有害ガス
分解吸脱着材、または、脱臭、排水処理、浄水、医療用
浄化、空気(水)清浄用フィルタ−等に使用することが
可能である。
The carbon thin film / metal composite material according to the present invention is used as an electrode material for a fuel cell, a secondary battery, an electric double layer capacitor, a large-capacity capacitor, an ion and harmful gas decomposing / desorbing material, or a deodorizing / drainage treatment. , Water purification, medical purification, air (water) purification filters and the like.

【0040】以上、該多孔性の炭素薄膜/金属複合材料
は、その一連の製法において工程が簡素で、連続生産が
可能であり生産性が高い。更に製造のためのエネルギー
コストも低いことや、炭素膜に使用する原料も、従来の
ACFに比べ格段と少なく低コストなものが実現でき
る。また、基本的に金属電極を骨格に持つため、金属並
みの高い導電性を有し、強度にも優れた電極部材や、吸
着材、フィルター等を提供できる。
As described above, the porous carbon thin film / metal composite material has a simple process in a series of production processes, is capable of continuous production, and has high productivity. Further, the energy cost for the production is low, and the raw material used for the carbon film is much smaller than that of the conventional ACF, so that the cost can be reduced. In addition, since a metal electrode is basically used as a skeleton, it is possible to provide an electrode member, an adsorbent, a filter, and the like, which have high conductivity equivalent to that of a metal and excellent strength.

【0041】[0041]

【実施例】以下、実施例により本発明を更に詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0042】直径2μmのニッケル繊維をアセトニトリ
ルとテトラエチルアンモニウム、およびアクリロニトリ
ル(濃度0.03g/cm)を混合した混合溶液中に
浸し30秒間電解重合を行った。この時、ニッケル針線
を陰極とし−2.0Vの電位を印加した。その後、上記
電解重合により得られたポリアクリロニトリル(PA
N)被覆針線を150℃で3分乾燥処理し、次いで30
0℃で60分熱処理を行った。この時、PANの環化反
応によると思われる該試料表面の黄色の着色が起こっ
た。更にこれを窒素雰囲気にて700℃で60分熱処理
を行うと、黒色化した炭素薄膜/金属複合材料が最終的
に得られた。上記炭素薄膜/金属複合材料に関する膜厚
や表面観察を行う目的から、簡単なため、2cm×5c
m角のニッケルプレート上に上記と同様な方法でモノマ
ーを電解重合し、原子間力顕微鏡(AFM)を用いて電
極プレート上に形成されたPAN薄膜の厚みを測定し
た。表面の凹凸は存在するが、平均的厚さで約80nm
程度のPAN薄膜が得られた。更に、これを上記と同様
な条件で炭素化し黒色化したものの表面をAFMや電子
顕微鏡を用いて観察したところ、多くの欠陥等の多孔化
が確認された。炭素薄膜/金属複合材料の導電率を、同
様の熱処理条件で10μm直径サイズのPAN繊維から
製造された炭素繊維のそれと比較したところ、1桁以上
大きな導電性が確認された。また、元素分析にて炭素膜
中の炭素原子含有率を測定したところ99質量%である
ことがわかった。
A nickel fiber having a diameter of 2 μm was immersed in a mixed solution of acetonitrile, tetraethylammonium, and acrylonitrile (concentration: 0.03 g / cm 3 ), and subjected to electrolytic polymerization for 30 seconds. At this time, a potential of -2.0 V was applied using the nickel needle wire as a cathode. Then, the polyacrylonitrile (PA
N) Dry the coated needle wire at 150 ° C for 3 minutes, then
Heat treatment was performed at 0 ° C. for 60 minutes. At this time, yellow coloration of the sample surface occurred, which was considered to be due to the PAN cyclization reaction. When this was further heat-treated at 700 ° C. for 60 minutes in a nitrogen atmosphere, a black carbon thin film / metal composite material was finally obtained. For the purpose of observing the film thickness and surface of the carbon thin film / metal composite material, for simplicity, 2 cm × 5 c
The monomer was electrolytically polymerized on the m-side nickel plate in the same manner as above, and the thickness of the PAN thin film formed on the electrode plate was measured using an atomic force microscope (AFM). Although there are surface irregularities, the average thickness is about 80 nm.
About PAN thin film was obtained. Furthermore, the surface of the carbonized and blackened one under the same conditions as described above was observed using an AFM or an electron microscope, and as a result, porosity such as many defects was confirmed. When the electrical conductivity of the carbon thin film / metal composite material was compared with that of a carbon fiber produced from a PAN fiber having a diameter of 10 μm under the same heat treatment conditions, an electrical conductivity larger by one digit or more was confirmed. Further, the content of carbon atoms in the carbon film was measured by elemental analysis and found to be 99% by mass.

【0043】[0043]

【発明の効果】本発明の炭素薄膜/金属複合材料は、そ
の製造工程に、不連続なポリマーの合成工程やフェルト
化工程等が不要であり、一連の製造工程が簡素化され
る。本理由に加え、比較的わずかなモノマ−原料で短時
間にグラファイト構造の発達した炭素膜を有する炭素薄
膜/金属複合体を構築できるため、生産効率に優れた、
低コストな多孔性炭素薄膜/金属複合材料を得ることが
できる。また、金属材料がその基本骨格を構築している
ため、電極部材としても内部抵抗の極めて小さい電気伝
導性が高く、かつ、比較的強度に優れた炭素薄膜/金属
複合材料を得ることができる。
The carbon thin film / metal composite material of the present invention does not require a discontinuous polymer synthesizing step, a felting step, or the like in its manufacturing process, and a series of manufacturing processes is simplified. In addition to this reason, since a carbon thin film / metal composite having a carbon film with a developed graphite structure can be constructed in a short time with a relatively small amount of monomer material, the production efficiency is excellent.
A low cost porous carbon thin film / metal composite can be obtained. In addition, since the metal material forms the basic skeleton, a carbon thin film / metal composite material having extremely low internal resistance, high electrical conductivity, and relatively excellent strength can be obtained as an electrode member.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/58 H01M 4/58 4L033 // C01B 31/02 101 C01B 31/02 101Z 5H003 D06M 15/70 D06M 15/70 Fターム(参考) 4C080 AA07 BB02 JJ03 JJ04 JJ05 KK08 LL10 MM05 MM07 QQ03 QQ20 4D019 AA01 AA03 BA02 BA03 BA18 BA20 BB02 BB03 BB06 BC20 BD01 4G046 CA04 CB03 CB09 CC03 CC05 4G066 AA02A AA02B AA04B AA05B AB09A AB09B AC17B AD06A AD06B BA05 BA16 BA22 BA50 CA02 DA02 DA03 FA07 FA12 FA22 FA37 4K044 AA01 AA02 AA03 AA06 AB01 AB04 AB08 AB10 BA18 BB01 BC14 CA62 4L033 AB01 AB05 AB06 AB07 AC15 CA26 CA69 CA70 5H003 AA01 BA01 BB01 BC01 BC02 BC05 BD01 BD02 BD04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/58 H01M 4/58 4L033 // C01B 31/02 101 C01B 31/02 101Z 5H003 D06M 15/70 D06M 15/70 F-term (reference) 4C080 AA07 BB02 JJ03 JJ04 JJ05 KK08 LL10 MM05 MM07 QQ03 QQ20 4D019 AA01 AA03 BA02 BA03 BA18 BA20 BB02 BB03 BB06 BC20 BD01 4G046 CA04 CB03 CB09 CC03 CC05 A04B06A06 A02B BA22 BA50 CA02 DA02 DA03 FA07 FA12 FA22 FA37 4K044 AA01 AA02 AA03 AA06 AB01 AB04 AB08 AB10 BA18 BB01 BC14 CA62 4L033 AB01 AB05 AB06 AB07 AC15 CA26 CA69 CA70 5H003 AA01 BA01 BB01 BC01 BC02 BC05 BD01 BD02 BD04

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】金属の繊維、細線又は微粒子状物よりなる
金属構造体に炭素薄膜が被覆されてなる炭素薄膜/金属
複合材料。
1. A carbon thin film / metal composite material obtained by coating a metal structure made of metal fibers, fine wires or fine particles with a carbon thin film.
【請求項2】金属構造体として繊維状又は細線状の金属
の編み物、織物、不織布構造体を用いることを特徴とす
る請求項1記載の炭素薄膜/金属複合材料。
2. The carbon thin film / metal composite material according to claim 1, wherein a knitted, woven or non-woven structure of a fibrous or fine metal wire is used as the metal structure.
【請求項3】金属構造体として金属の微粒子を焼結して
なる多孔質構造体を用いることを特徴とする請求項1記
載の炭素薄膜/金属複合材料。
3. The carbon thin film / metal composite material according to claim 1, wherein a porous structure obtained by sintering metal fine particles is used as the metal structure.
【請求項4】炭素薄膜中の炭素原子含有率が90質量%
以上である請求項1乃至請求項3のずれか1項記載の炭
素薄膜/金属複合材料。
4. A carbon thin film having a carbon atom content of 90% by mass.
The carbon thin film / metal composite material according to any one of claims 1 to 3, which is the above.
【請求項5】炭素薄膜が多孔質構造を有している請求項
4記載の炭素薄膜/金属複合材料。
5. The carbon thin film / metal composite according to claim 4, wherein the carbon thin film has a porous structure.
【請求項6】炭素薄膜の厚みが1μm以下である請求項
4記載の炭素薄膜/金属複合材料。
6. The carbon thin film / metal composite according to claim 4, wherein the thickness of the carbon thin film is 1 μm or less.
【請求項7】細線状、繊維状、又は微粒子状の金属構造
体の金属表面にニトリル基を含む単量体を電解重合にて
重合電着させ、次いで該重合体が付着した構造物を少な
くとも最高温度が500℃になるように熱処理すること
を特徴とする炭素薄膜/金属複合材の製造方法。
7. A polymer containing a nitrile group is electropolymerized on a metal surface of a fine-line, fibrous, or fine-particle-shaped metal structure by electrolytic polymerization. A method for producing a carbon thin film / metal composite, which comprises heat-treating to a maximum temperature of 500 ° C.
【請求項8】ニトリル基含有重合体薄膜を形成した金属
構造体を高温熱処理する前に予め300℃以下の温度で
低温熱処理を行う事を特徴とする請求項7記載の炭素薄
膜/金属複合材の製造方法。
8. The carbon thin film / metal composite according to claim 7, wherein the metal structure on which the nitrile group-containing polymer thin film is formed is subjected to a low-temperature heat treatment at a temperature of 300 ° C. or less before the high-temperature heat treatment. Manufacturing method.
【請求項9】ニトリル基を含む単量体としてアクリロニ
トリル、またはメタアクリロニトリルから選ばれた少な
くとも1種類のモノマーを用いる事を特徴とする請求項
7又は請求項8記載の炭素薄膜/金属複合材の製造方
法。
9. The carbon thin film / metal composite according to claim 7, wherein at least one monomer selected from acrylonitrile and methacrylonitrile is used as the monomer containing a nitrile group. Production method.
【請求項10】520℃〜900℃の温度範囲で、ニト
リル基含有重合体薄膜を形成した金属構造体を高温熱処
理する炭素薄膜/金属複合材の製造方法。
10. A method for producing a carbon thin film / metal composite in which a metal structure on which a nitrile group-containing polymer thin film is formed is heat-treated at a high temperature in a temperature range of 520 ° C. to 900 ° C.
【請求項11】請求項1乃至請求項6のいずれか1項記
載の炭素薄膜/金属複合材料を用いた電極。
11. An electrode using the carbon thin film / metal composite according to any one of claims 1 to 6.
【請求項12】請求項1乃至請求項6のいずれか1項記
載の炭素薄膜/金属複合材料を用いた吸着剤又はフィル
ター。
12. An adsorbent or a filter using the carbon thin film / metal composite material according to any one of claims 1 to 6.
JP11163527A 1999-06-10 1999-06-10 Carbon thin film/metallic composite material and its production Pending JP2000345371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11163527A JP2000345371A (en) 1999-06-10 1999-06-10 Carbon thin film/metallic composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11163527A JP2000345371A (en) 1999-06-10 1999-06-10 Carbon thin film/metallic composite material and its production

Publications (1)

Publication Number Publication Date
JP2000345371A true JP2000345371A (en) 2000-12-12

Family

ID=15775575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11163527A Pending JP2000345371A (en) 1999-06-10 1999-06-10 Carbon thin film/metallic composite material and its production

Country Status (1)

Country Link
JP (1) JP2000345371A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090833A (en) * 2001-09-19 2003-03-28 Miyazaki Prefecture Method for extracting supercritical fluid
JP2006182603A (en) * 2004-12-27 2006-07-13 Mitsubishi Rayon Co Ltd Composite material and its manufacturing method
JP2006222408A (en) * 2005-01-14 2006-08-24 Ricoh Co Ltd Conductive wiring structure and manufacturing method thereof
JP2007287670A (en) * 2006-04-17 2007-11-01 Samsung Sdi Co Ltd Anode active substance and its manufacturing method
CN110247042A (en) * 2019-06-28 2019-09-17 中国科学院化学研究所 A kind of interface modification method of lithium battery composite single crystal positive electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090833A (en) * 2001-09-19 2003-03-28 Miyazaki Prefecture Method for extracting supercritical fluid
JP2006182603A (en) * 2004-12-27 2006-07-13 Mitsubishi Rayon Co Ltd Composite material and its manufacturing method
JP4739749B2 (en) * 2004-12-27 2011-08-03 三菱レイヨン株式会社 Composite material and manufacturing method thereof
JP2006222408A (en) * 2005-01-14 2006-08-24 Ricoh Co Ltd Conductive wiring structure and manufacturing method thereof
JP4675144B2 (en) * 2005-01-14 2011-04-20 株式会社リコー Method for manufacturing conductor wiring structure
JP2007287670A (en) * 2006-04-17 2007-11-01 Samsung Sdi Co Ltd Anode active substance and its manufacturing method
CN110247042A (en) * 2019-06-28 2019-09-17 中国科学院化学研究所 A kind of interface modification method of lithium battery composite single crystal positive electrode
CN110247042B (en) * 2019-06-28 2020-12-15 中国科学院化学研究所 Interface modification method for lithium battery composite single crystal positive electrode material

Similar Documents

Publication Publication Date Title
Li et al. Embedding metal–organic frameworks for the design of flexible hybrid supercapacitors by electrospinning: synthesis of highly graphitized carbon nanofibers containing metal oxide nanoparticles
Wang et al. High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer
Zhang et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications
Inagaki et al. Carbon nanofibers prepared via electrospinning
Zhao et al. Coal based activated carbon nanofibers prepared by electrospinning
CN108315834B (en) Preparation method of array type magnetic reduced graphene oxide-carbon nanofiber
KR100605006B1 (en) Preparation method of nano-porous carbon fibers through carbonization of electrospun nano-fibers
KR100649092B1 (en) Metal oxide supercapacitor having metal oxide electrode coated onto the titanium dioxide ultrafine and its fabrication method
Kim et al. Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors
JP6302878B2 (en) Method for producing carbon nanofiber electrode carrying metal oxide using electrodeposition method
Zhao et al. Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@ branched polyethylenimine nanofibers as flexible supercapacitor electrodes
Cai et al. Flexible heteroatom‐doped porous carbon nanofiber cages for electrode scaffolds
CN105734725B (en) One kind &#34; vesica string &#34; structure pure carbon fiber material and preparation method thereof
KR101126784B1 (en) Method for producing complex of Manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
CN104176721A (en) Carbon composite material, and preparation method and application thereof
Song et al. Carbon nanofibers: synthesis and applications
CN113201809B (en) Hierarchical porous carbon-based composite supercapacitor electrode material and preparation method thereof
KR102613534B1 (en) Method for manufacturing electrode for vanadium redox flow battery and vanadium redox flow battery including the electrode obtained thereby
CN102093712A (en) Preparation method of composite super capacitor electrode material
CN109727781A (en) A kind of self-supporting flexible super capacitor electrode material and preparation method
KR20090055299A (en) Carbonaceous material and method of preparing same
Zhang et al. Aligned electrospun carbon nanofibers as electrodes for vanadium redox flow batteries
Jia et al. A strategy to prepare activated carbon fiber membranes for flexible solid-state supercapacitor applications
Jung et al. Electrochemical properties of KOH-activated lyocell-based carbon fibers for EDLCs
Wang et al. High‐Performance All‐Solid‐State Supercapacitor Electrode Materials Using Freestanding Electrospun Carbon Nanofiber Mats of Polyacrylonitrile and Novolac Blends