JPS6350447B2 - - Google Patents

Info

Publication number
JPS6350447B2
JPS6350447B2 JP294082A JP294082A JPS6350447B2 JP S6350447 B2 JPS6350447 B2 JP S6350447B2 JP 294082 A JP294082 A JP 294082A JP 294082 A JP294082 A JP 294082A JP S6350447 B2 JPS6350447 B2 JP S6350447B2
Authority
JP
Japan
Prior art keywords
fiber
pore volume
pore
porous
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP294082A
Other languages
Japanese (ja)
Other versions
JPS58120818A (en
Inventor
Shokei Shimada
Yasuhiro Iizuka
Hideki Komagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP294082A priority Critical patent/JPS58120818A/en
Publication of JPS58120818A publication Critical patent/JPS58120818A/en
Publication of JPS6350447B2 publication Critical patent/JPS6350447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な多孔質炭素繊維の製造方法に関
するものである。 古くから活性炭は液体もしくは気体中の不純物
の除去用または有害物質の回収用吸着材として、
あるいは触媒の担体等に広く使用されてきた。こ
れらの用途に向けられてきた活性炭は粉状または
粒状のものであつたが、さらに近年繊維状の活性
炭が開発されその形態、吸着性能に起因して活性
炭の用途も拡大した。 しかしながら従来より得られている繊維状の活
性炭は、その細孔の直径がほとんど50Å以下のも
のであるし、数百Å程度の細孔が存在するにして
もその細孔容積はほとんどのものが0.1c.c./gに
満たないものであるため、使用分野によつては適
格材料といえない面があつた。例えば上記細孔直
径が50Å以下といつた繊維状活性炭をウラン回収
とか電池電極用といつた液系に使用した場合溶質
の細孔内拡散速度が液中での溶質の拡散速度より
も小さくなり細孔が有効に使用されない不都合が
おこる。一般に繊維状活性炭は有機質繊維を耐炎
化、賦活処理して作製されるが、かかる賦活の条
件を種々変化せしめても前述の用途に好適な細孔
の径を増大させることは不可能であつた。 しかして本発明者らは上述の点に鑑み鋭意研究
の結果、本発明に至つた。 すなわち、本発明は繊維形成用防糸原液中に孔
形成助剤を添加し製糸して得られる繊維表面に開
孔した微孔が存在し該微孔のうち孔直径200〜
10000Åのものの細孔容積が0.1c.c./g以上であ
り、かつBET表面積が1〜20m2/gであり、ま
た120℃、1時間乾燥したときの上記細孔容積の
低下が0.08c.c./g以下でかつ、金属含有量が1.0
重量%以下である多孔質アクリル系繊維を耐炎化
処理し、次いで500℃以上の酸化性雰囲気下で酸
化開孔処理して孔直径200〜10000gのものの細孔
容積が0.1c.c./g以上有する炭素繊維を製造する
ことを特徴とする多孔質炭素繊維の製造方法であ
る。 本発明の第1の要点は孔直径200〜10000Åのも
のの細孔容積が0.1c.c./g以上有する多孔性炭素
繊維をうるためには繊維表面に開孔した微孔が存
在し該微孔のうち孔直径200〜10000Åのものの細
孔容積(以下細孔容積とは孔直径200〜10000Åの
ものの細孔容積をいう)が0.1c.c./g以上であり、
かつBET表面積が1〜20m2/gであり、また120
℃、1時間乾燥したときの細孔容積の低下が0.08
c.c./gいかである多孔質アクリル繊維を出発原料
として用いることである。繊維表面に開孔してい
ないいわゆるclosed poreをもつ多孔質繊維では
いくら耐炎化、炭化、酸化開孔処理を行つても繊
維外部との物質交換が可能な繊維表面に開孔した
孔を有し、かつ細孔容積の大きな多孔性炭素繊維
を高い収率で得ることはむつかしい。また細孔容
積が0.1c.c./g以上であつてもBET表面積が20
m2/gをこえるものでは脆弱な繊維となり細孔の
安定性が欠ける。一方BET表面積が1m2/gを
未満であつたり孔の細孔容積が0.1c.c./g未満の
ものでは耐炎化、炭化、酸化処理しても本発明に
よる効果は得難く200Å以下の孔が主として生ず
るにすぎない。また細孔容積の低下が0.08c.c./g
以下の繊維を用いることによつてはじめて細孔容
積0.1c.c./g以上の多孔質炭素繊維が得られる。
例えばアクリル系繊維を湿式紡糸して得られる膨
潤ゲル糸条(BET表面積20〜70m2/g)の多孔
質構造を固定化することにより作製した多孔質繊
維は120℃、1時間乾燥時の細孔容積の低下が
0.08c.c./gを越えてしまいこれに耐炎化、炭化、
酸化処理を行なつても安定した多孔質炭素繊維を
得ることはできない。 このような細孔容積が0.1c.c./g以上であり、
かつBET表面積が1〜20m2/gであり、また細
孔容積の低下が0.08c.c./g以下である多孔質繊維
は、例えば繊維形成用紡糸原液中に孔形成助剤で
ある架橋型吸水性樹脂や孔形成安定剤を添加した
り、あるいはパラフイン類を添加し糸条形成後こ
のパラフイン類を抽出する等の手段を採用するこ
とにより製造される。繊維形成用重合体にはセル
ロース系、アクリロニトリル系、フエノール系繊
維等を挙げることができ、繊維の集合形態として
は目的に応じてトウ、綿、フイラメント、紡績
糸、不織布、織布、紙等の種々の形態のものを選
ぶことができる。 このようにして得た多孔質繊維はこの後耐炎化
に供される。耐炎化処理であるが、素材がアクリ
ロニトリル系繊維の場合酸素、二酸化窒素ガス等
を含む酸化性雰囲気下、特に空気中で150〜300℃
の温度で行われる。 本発明の第2の要点は前述の多孔質アクリル繊
維の金属含有率を1.0重量%以下にすることであ
る。本発明においては前述の多孔質アクリル繊維
を、上記の如く耐炎化するわけであるが、かかる
際出発繊維に金属特にNa、Ca、Mg、Cr、Mn、
Fe、Co、Ni、Cu、Znが存在するならこれらの
合計含有量(1種又は2種以上の金属の含有量)
を1.0重量%以下にすることが好ましい。即ち、
含有量が1.0重量%を越えると高温酸化時に金属
自身が酸化触媒として作用し均一な高温酸化処理
ができないばかりでなく、いたずらに収率を落す
原因ともなり好ましくない。従つて出発繊維に過
剰の金属が含有されている場合予じめ耐炎化に先
立ち酸等で抽出し含有量を1.0重量%以下に調整
しておくことである。 本発明の第3の要点は上記の如く耐炎化された
繊維にこの後500℃以上の酸化性雰囲気下で酸化
開孔処理を施すことである。酸化性雰囲気として
二酸化炭素、水蒸気、酸素等の酸化性ガスを含む
雰囲気や燃焼廃ガス等が用いられる。不活性雰囲
気中で処理を行なうと孔が閉基する傾向をとり、
繊維構造中の孔がさらに繊維表面に開口する挙動
はなされず孔容積の大きな本発明の如き多孔質炭
素繊維を得ることはできない。 上記方法で製造した多孔質炭素繊維は、その特
徴ある性能を利用して種々の用途に使用すること
ができるが、特に液系での使用に適している。溶
質の細孔内拡散係数を液中での溶質の拡散係数と
同じレベルにするには、細孔直径をほぼ100〜200
Å以上にする必要があるが、本発明による多孔質
炭素繊維はその要求に応えられるものであること
が分かる。該多孔質炭素繊維に特殊な吸着剤を添
着し、液中から各種物質を採取するいわゆる複合
吸着剤の担体としてもすぐれた性能を有してなる
ものである。又炭素系であるため導電性のよいこ
と、化学反応性の低いこと、前述液系での特性を
合せもつ材料なので、電極材料として特に有用で
ある。中でも二次電池として開発の進められてい
るレドツクスフロー2次電池の電極材料として秀
れている。 本発明において用いる細孔容積、BET表面積、
細孔容積の低下は下記の如く測定算出したもので
ある。 (1) 細孔容積(c.c./g) 水銀圧入法によつて測定する。外部絶対圧力
P(Kg/cm2)に対して次式で決まる細孔半径
(Å)と実質水銀圧入容積とより累積細孔分布
曲線を求めた細孔径200gと10000Åの細孔容積
の差から200〜10000Åの細孔容積を求める。 γ=−2γcosθ/P ここでγは水銀の表面張力(480dyne/cm)、
θは水銀と炭素繊維との接触角で141゜とする。 (2) BET表面積(m2/g) 液体窒素の沸点(77〓)における窒素ガスの
吸着等温線からBET法によつて求める。 (3) 細孔容積低下(%) 次式より算出する。 細孔容積の低下=V0−V V;120℃、1時間乾燥処理した試料繊維の細
孔容積 V0;上記乾燥処理を施さない試料繊維の細孔
容積 実施例 1 アクリロニトリル(以下ANという)、メタア
クリル酸メチル、メチレンビスアクリルアミド、
p−スチレンスルホン酸ソーダを共重合して作つ
た架橋型AN系共重合体エマルジヨンをアルカリ
処理し、得られた吸水性樹脂水分散体を90%の
AN、10%のアクリル酸メチルを含有するAN系
重合体のロダンソーダ水溶液である防糸原液に
AN系重合体と吸水性樹脂の全量当り吸水性樹脂
が4%の割合となる様に加えた。該紡糸原液を
0.10mmφの紡糸口金を用いて常法に従つて湿式紡
糸し、凝固、水洗、延伸を行ない、次に120℃、
20分間乾燥し繊維を緻密化した後125℃5分間湿
熱緩和処理して0.41c.c./gの細孔容積及び、0.04
c.c./gの細孔容積低下及び12m2/gのBET表面
積有する5.0デニールの多孔質アクリル繊維Aを
得た。繊維Aを50℃、0.5NのHcl中で30分処理
し、Hclが認められなくなるまで充分水洗した後
乾燥して繊維Bを得た。繊維B中の金属含有率は
0.1重量%であつた。繊維Bを空気中150℃より30
℃/hrの昇温速度で290℃までもたらし、耐炎化
繊維を得た。この耐炎化繊維を窒素気流中室温よ
り400℃/hrの昇温速度で850℃までもたらし、こ
の後15容量%の水蒸気を含有する窒素気流に切替
え、2時間酸化開孔処理し、窒素気流中で冷却後
収率26%で多孔質炭素繊維を得た。該多孔質炭素
繊維について細孔容積を測定したところ0.55c.c./
gであつた。 比較として上述の如き耐炎化繊維を窒素気流中
室温より400℃/hrの昇温速度で850℃までもたら
して作製した炭素繊維について細孔容積を測定し
たが、0.07c.c./gと低い値であつた。 比較例 1 実施例1の多孔質アクリル繊維Aを作製する方
法と同じであるが、吸水性樹脂の量をBET表面
積20m2/gを越える様に、かつ細孔容積の低下
0.08c.c./g以下となる様に6.7%添加し紡糸した
が、糸切れがひん発し、満足な糸条はできなかつ
た。 比較例 2 実施例1の多孔質アクリル繊維Aを作製する方
法を採用し、吸水性樹脂を1.0%添加し細孔容積
0.09c.c./g、BET表面積2.4m2/g、細孔容積の
低下0.02c.c./gの多孔性繊維を作製し、酸処理、
耐炎化、炭化、高温酸化処理を実施例1と同様な
方法で行ない対原糸収率21%で多孔質炭素繊維を
得たが、その細孔容積は0.08c.c./gしかなかつ
た。 実施例 2 実施例1の繊維Aを作るのと同じ方法で吸水性
樹脂を1.5%添加し細孔容積0.14c.c./g、BET表
面積3.6m2/g、細孔容積の低下0.03c.c./gの多
孔質繊維をつくり、実施例1の繊維Bと同様の後
処理を行ない、対原糸収率19%多孔質繊維を得た
が、該繊維の細孔容積は0.13c.c./gであつた。 実施例 3 実施例1の繊維Aを作るのと同じ方法だが、1/
2のサイズの吸水性樹脂を5%添加し、細孔容積
0.25c.c./g、BET表面積16m2/g、細孔容積の
低下0.03c.c./gの多孔質繊維を得た。実施例1の
繊維Bと同じ後処理をし細孔容積0.26c.c./gの多
孔質繊維を対原糸収率23%で得ることができた。 比較例 3 吸水性樹脂を添加せず、乾燥緻密化工程を省略
し、湿熱緩和処理温度を110℃、乾燥温度を100℃
にする他は実施例1の多孔質アクリル繊維Aと同
じ製造方法でフイブリル構造よりなる微多孔質の
5デニールのアクリル繊維を3種(C、D、E)
作製し、実施例1と同様な酸処理、耐炎化、炭
化、高温酸化処理を行ない多孔質炭素繊維を得
た。アクリル繊維C、D、Eはそれぞれ紡糸の際
の凝固浴組成を異ならしめて作製した。原料繊維
及び多孔質炭素繊維の性能を第1表に示す。
The present invention relates to a novel method for producing porous carbon fibers. Activated carbon has long been used as an adsorbent for removing impurities in liquids or gases or recovering harmful substances.
It has also been widely used as a catalyst carrier. Activated carbon that has been used for these purposes has been in the form of powder or granules, but in recent years fibrous activated carbon has been developed, and its use has expanded due to its form and adsorption performance. However, in conventionally obtained fibrous activated carbon, most of the pores have a diameter of 50 Å or less, and even if pores of several hundred Å exist, the pore volume is mostly small. Since it was less than 0.1 cc/g, it could not be considered a suitable material depending on the field of use. For example, when the above-mentioned fibrous activated carbon with a pore diameter of 50 Å or less is used in a liquid system such as for uranium recovery or battery electrodes, the diffusion rate of solute in the pores becomes smaller than the diffusion rate of solute in the liquid. This causes the inconvenience that the pores are not used effectively. Generally, fibrous activated carbon is produced by flame-proofing and activating organic fibers, but even if the activation conditions were varied, it was impossible to increase the pore diameter suitable for the above-mentioned uses. . In view of the above-mentioned points, the present inventors conducted intensive research and arrived at the present invention. That is, in the present invention, micropores are formed on the surface of the fiber obtained by adding a pore-forming aid to the fiber-forming stock solution and spinning the yarn, and among the micropores, the diameter of the pores is 200 to 200.
The pore volume of 10,000 Å is 0.1 cc/g or more, the BET surface area is 1 to 20 m 2 /g, and the decrease in the pore volume is 0.08 cc/g or less when dried at 120°C for 1 hour. Big and metal content is 1.0
Carbon having a pore volume of 0.1 cc/g or more with a pore diameter of 200 to 10,000 g by flame-retardant treatment of porous acrylic fiber with a weight percent or less, and then oxidation opening treatment in an oxidizing atmosphere at a temperature of 500°C or higher. This is a method for producing porous carbon fiber, characterized by producing fibers. The first point of the present invention is that in order to obtain porous carbon fibers with a pore diameter of 200 to 10,000 Å and a pore volume of 0.1 cc/g or more, micropores opened on the fiber surface must be present. The pore volume of pores with a pore diameter of 200 to 10,000 Å (hereinafter pore volume refers to the pore volume of pores with a pore diameter of 200 to 10,000 Å) is 0.1 cc/g or more,
and the BET surface area is 1 to 20 m 2 /g, and 120
℃, the decrease in pore volume when dried for 1 hour was 0.08
Porous acrylic fibers of cc/g squid are used as the starting material. Porous fibers with so-called closed pores, which do not have pores on the fiber surface, have pores on the fiber surface that allow material exchange with the outside of the fiber, no matter how much flame-retardant, carbonization, or oxidation opening treatment is performed. , and it is difficult to obtain porous carbon fibers with a large pore volume in a high yield. Also, even if the pore volume is 0.1cc/g or more, the BET surface area is 20
If it exceeds m 2 /g, the fiber becomes brittle and the stability of the pores is lacking. On the other hand, if the BET surface area is less than 1 m 2 /g or the pore volume is less than 0.1 cc/g, the effects of the present invention are difficult to obtain even if flame-retardant, carbonization, and oxidation treatments are performed, and the pores of 200 Å or less are mainly affected. It just happens. Also, the decrease in pore volume is 0.08cc/g.
Porous carbon fibers with a pore volume of 0.1 cc/g or more can only be obtained by using the following fibers.
For example, porous fibers produced by fixing the porous structure of swollen gel yarns (BET surface area 20 to 70 m 2 /g) obtained by wet spinning acrylic fibers have fine particles when dried at 120°C for 1 hour. decrease in pore volume
If it exceeds 0.08cc/g, flame resistance, carbonization,
Even if oxidation treatment is performed, stable porous carbon fibers cannot be obtained. Such pore volume is 0.1 cc/g or more,
Porous fibers with a BET surface area of 1 to 20 m 2 /g and a decrease in pore volume of 0.08 cc/g or less may be prepared by adding a cross-linked water-absorbing agent, which is a pore-forming aid, to the spinning dope for fiber formation. It is produced by adding a resin or a pore-forming stabilizer, or by adding paraffins and extracting the paraffins after thread formation. Examples of fiber-forming polymers include cellulose-based, acrylonitrile-based, and phenol-based fibers, and the aggregate form of fibers may include tow, cotton, filament, spun yarn, nonwoven fabric, woven fabric, paper, etc. depending on the purpose. You can choose from various forms. The porous fiber thus obtained is then subjected to flame resistance. Regarding flame-retardant treatment, if the material is acrylonitrile fiber, it can be heated at 150 to 300℃ in an oxidizing atmosphere containing oxygen, nitrogen dioxide gas, etc., especially in air.
carried out at a temperature of The second point of the present invention is to keep the metal content of the porous acrylic fibers to 1.0% by weight or less. In the present invention, the above-mentioned porous acrylic fiber is made flame resistant as described above, but in this case, the starting fiber is made of metals, particularly Na, Ca, Mg, Cr, Mn,
If Fe, Co, Ni, Cu, and Zn are present, their total content (content of one or more metals)
is preferably 1.0% by weight or less. That is,
If the content exceeds 1.0% by weight, the metal itself acts as an oxidation catalyst during high-temperature oxidation, which not only prevents uniform high-temperature oxidation treatment but also undesirably causes a drop in yield. Therefore, if the starting fiber contains an excessive amount of metal, the metal content should be adjusted to 1.0% by weight or less by extracting it with an acid or the like before making it flameproof. The third point of the present invention is to subject the flame-resistant fibers as described above to an oxidative hole-opening treatment in an oxidizing atmosphere at a temperature of 500° C. or higher. As the oxidizing atmosphere, an atmosphere containing an oxidizing gas such as carbon dioxide, water vapor, or oxygen, combustion waste gas, or the like is used. When treated in an inert atmosphere, the pores tend to close,
The pores in the fiber structure do not open further to the fiber surface, making it impossible to obtain a porous carbon fiber with a large pore volume as in the present invention. The porous carbon fiber produced by the above method can be used for various purposes by taking advantage of its characteristic performance, but is particularly suitable for use in liquid systems. To make the pore diffusion coefficient of the solute the same as the solute diffusion coefficient in the liquid, the pore diameter should be approximately 100 to 200.
Å or more, and it can be seen that the porous carbon fiber according to the present invention can meet this requirement. The porous carbon fibers are impregnated with a special adsorbent and have excellent performance as a carrier for so-called composite adsorbents for collecting various substances from liquids. Furthermore, since it is carbon-based, it has good conductivity, low chemical reactivity, and the above-mentioned properties in liquid systems, making it particularly useful as an electrode material. Among them, it is excellent as an electrode material for redox flow secondary batteries, which are currently being developed as secondary batteries. Pore volume, BET surface area used in the present invention,
The decrease in pore volume was measured and calculated as follows. (1) Pore volume (cc/g) Measured by mercury intrusion method. Based on the difference in pore volume between pore diameters of 200 g and 10,000 Å, the cumulative pore distribution curve was determined from the pore radius (Å) determined by the following formula for the external absolute pressure P (Kg/cm 2 ), the actual mercury intrusion volume, and the cumulative pore distribution curve. Find the pore volume between 200 and 10,000 Å. γ=-2γcosθ/P where γ is the surface tension of mercury (480dyne/cm),
θ is the contact angle between mercury and carbon fiber, and is assumed to be 141°. (2) BET surface area (m 2 /g) Obtained by the BET method from the nitrogen gas adsorption isotherm at the boiling point of liquid nitrogen (77〓). (3) Pore volume reduction (%) Calculated from the following formula. Decrease in pore volume = V 0 −V V; Pore volume of sample fiber dried at 120°C for 1 hour V 0 ; Pore volume of sample fiber not subjected to the above drying process Example 1 Acrylonitrile (hereinafter referred to as AN) , methyl methacrylate, methylenebisacrylamide,
A cross-linked AN copolymer emulsion prepared by copolymerizing sodium p-styrene sulfonate was treated with an alkali, and the resulting water-absorbing resin water dispersion was diluted with 90%
AN, an anti-thread stock solution that is a Rodan soda aqueous solution of AN polymer containing 10% methyl acrylate.
The water absorbent resin was added at a ratio of 4% based on the total amount of the AN polymer and the water absorbent resin. The spinning stock solution
Wet spinning was performed using a 0.10 mmφ spinneret according to a conventional method, followed by coagulation, washing with water, and stretching, and then spinning at 120°C.
After drying for 20 minutes to densify the fiber, it was subjected to moist heat relaxation treatment at 125°C for 5 minutes to obtain a pore volume of 0.41cc/g and a pore volume of 0.04
A 5.0 denier porous acrylic fiber A with a pore volume reduction of cc/g and a BET surface area of 12 m 2 /g was obtained. Fiber A was treated in 0.5N HCl at 50°C for 30 minutes, thoroughly washed with water until no Hcl was observed, and then dried to obtain Fiber B. The metal content in fiber B is
It was 0.1% by weight. Fiber B in air from 150℃ to 30℃
The temperature was raised to 290°C at a heating rate of °C/hr to obtain flame-resistant fibers. This flame-resistant fiber was heated from room temperature to 850°C in a nitrogen stream at a rate of 400°C/hr, then switched to a nitrogen stream containing 15% by volume of water vapor, subjected to oxidation opening treatment for 2 hours, and then heated in a nitrogen stream. After cooling, porous carbon fibers were obtained with a yield of 26%. When the pore volume of the porous carbon fiber was measured, it was 0.55cc/
It was hot at g. As a comparison, we measured the pore volume of the carbon fiber prepared by heating the above-mentioned flame-resistant fiber from room temperature to 850°C in a nitrogen stream at a heating rate of 400°C/hr, but the pore volume was as low as 0.07 cc/g. Ta. Comparative Example 1 The method for producing porous acrylic fiber A in Example 1 was the same, but the amount of water-absorbing resin was changed to exceed the BET surface area of 20 m 2 /g, and the pore volume was reduced.
Although 6.7% was added so that the concentration was 0.08 cc/g or less, yarn breakage occurred and a satisfactory yarn could not be obtained. Comparative Example 2 The method for producing porous acrylic fiber A in Example 1 was adopted, and 1.0% of water absorbing resin was added to reduce the pore volume.
A porous fiber with a BET surface area of 2.4 m 2 /g and a pore volume reduction of 0.02 cc/g was prepared, and acid treatment,
Flameproofing, carbonization, and high-temperature oxidation treatments were performed in the same manner as in Example 1 to obtain porous carbon fibers with a yield of 21%, but the pore volume was only 0.08 cc/g. Example 2 Using the same method as for making fiber A in Example 1, 1.5% of water-absorbing resin was added, resulting in a pore volume of 0.14 cc/g, a BET surface area of 3.6 m 2 /g, and a decrease in pore volume of 0.03 cc/g. A porous fiber was prepared and subjected to the same post-treatment as Fiber B in Example 1 to obtain a porous fiber with a yield of 19% based on yarn, but the pore volume of the fiber was 0.13 cc/g. Example 3 Same method as making fiber A in Example 1, but with 1/
Add 5% of water-absorbing resin of size 2 to increase the pore volume.
A porous fiber with a BET surface area of 16 m 2 /g and a pore volume reduction of 0.03 cc/g was obtained. The same post-treatment as for Fiber B in Example 1 was carried out, and porous fibers with a pore volume of 0.26 cc/g were obtained at a yield of 23% based on yarn. Comparative Example 3 No water-absorbing resin was added, the drying and densification process was omitted, and the moist heat relaxation treatment temperature was 110°C and the drying temperature was 100°C.
Three types of microporous 5-denier acrylic fibers (C, D, E) having a fibrillar structure were produced using the same manufacturing method as porous acrylic fiber A of Example 1, except that
The porous carbon fiber was prepared and subjected to the same acid treatment, flame resistance, carbonization, and high temperature oxidation treatment as in Example 1 to obtain a porous carbon fiber. Acrylic fibers C, D, and E were produced using different coagulation bath compositions during spinning. Table 1 shows the performance of the raw material fibers and porous carbon fibers.

【表】 比較例 4 実施例1で作つた多孔質アクリル繊維Aの酸処
理条件を変え、金属含有率の異なる繊維F、Gを
得、繊維A、F、Gを実施例1と同様に耐炎化、
炭化、賦活処理をして多孔質炭素繊維を作製し
た。金属含有率1.2重量%を有していた繊維Aは、
収率が低く、又賦活の斑も大きく、繊維の一部は
焼失しおり、均一な多孔質炭素繊維を作ることが
できなかつた。繊維A、B、F、Gの金属含有
率、収率、賦活斑の判定結果を第2表にまとめて
示す。
[Table] Comparative Example 4 The acid treatment conditions of the porous acrylic fiber A made in Example 1 were changed to obtain fibers F and G with different metal contents, and the fibers A, F, and G were flame-resistant in the same manner as in Example 1. transformation,
Carbonization and activation treatments were performed to produce porous carbon fibers. Fiber A had a metal content of 1.2% by weight.
The yield was low, the activation was highly uneven, and some of the fibers were burnt out, making it impossible to produce uniform porous carbon fibers. Table 2 summarizes the metal content, yield, and activation spot determination results for fibers A, B, F, and G.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 繊維形成用紡糸原液中に孔形成助剤を添加し
製糸して得られる繊維表面に開口した微孔が存在
し該微孔のうち孔直径200〜10000Åのものの細孔
容積が0.1c.c./g以上であり、かつBET表面積が
1〜20m2/gであり、また120℃、1時間乾燥し
たときの上記細孔容積の低下が0.08c.c./g以下で
かつ、金属含有量が1.0重量%以下である多孔質
アクリル系繊維を耐炎化処理し、次いで500℃以
上の酸化性雰囲気下で酸化開孔処理して孔直径
200〜10000Åのものの細孔容積が0.1c.c./g以上
有する炭素繊維を製造することを特徴とする多孔
質炭素繊維の製造方法。
1 Open micropores exist on the surface of the fiber obtained by adding a pore-forming aid to the spinning stock solution for fiber formation and spinning the fiber, and among these micropores, those with a pore diameter of 200 to 10,000 Å have a pore volume of 0.1 cc/g or more, and the BET surface area is 1 to 20 m 2 /g, the decrease in the pore volume is 0.08 cc/g or less when dried at 120°C for 1 hour, and the metal content is 1.0% by weight or less. The porous acrylic fiber is flame-resistant treated and then oxidized to open the pores in an oxidizing atmosphere at 500℃ or higher to reduce the pore diameter.
A method for producing porous carbon fibers, which comprises producing carbon fibers having a pore size of 200 to 10,000 Å and a pore volume of 0.1 cc/g or more.
JP294082A 1982-01-11 1982-01-11 Production of porous carbon fiber Granted JPS58120818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP294082A JPS58120818A (en) 1982-01-11 1982-01-11 Production of porous carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP294082A JPS58120818A (en) 1982-01-11 1982-01-11 Production of porous carbon fiber

Publications (2)

Publication Number Publication Date
JPS58120818A JPS58120818A (en) 1983-07-18
JPS6350447B2 true JPS6350447B2 (en) 1988-10-07

Family

ID=11543350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP294082A Granted JPS58120818A (en) 1982-01-11 1982-01-11 Production of porous carbon fiber

Country Status (1)

Country Link
JP (1) JPS58120818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047863A (en) * 2008-08-21 2010-03-04 Toho Tenax Co Ltd Surface porous carbon fiber, precursor fiber and method for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122711A (en) * 1983-12-08 1985-07-01 Oji Paper Co Ltd Manufacture of porous carbon board
JP2825923B2 (en) * 1990-04-06 1998-11-18 新日本製鐵株式会社 High strength carbon fiber and precursor fiber
EP2783764B1 (en) * 2013-03-28 2016-07-13 ELG Carbon Fibre International GmbH Pyrolysis assembly and method for the recovery of carbon fibres from plastics containing carbon fibre, and recycled carbon fibres
WO2020016258A1 (en) * 2018-07-18 2020-01-23 Sgl Carbon Se Novel carbon fibre textile materials
CN109160972B (en) * 2018-08-03 2020-12-22 华南理工大学 Elastomer with electromechanical response and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047863A (en) * 2008-08-21 2010-03-04 Toho Tenax Co Ltd Surface porous carbon fiber, precursor fiber and method for producing the same

Also Published As

Publication number Publication date
JPS58120818A (en) 1983-07-18

Similar Documents

Publication Publication Date Title
JP6483275B2 (en) Method for producing graphene fiber nonwoven fabric
US5089135A (en) Carbon based porous hollow fiber membrane and method for producing same
US4699896A (en) Manufacture of fibrous activated carbons
CA1159810A (en) Process for the production of fibrous activated carbon
JPH0617321A (en) Pitch-based activated carbon fiber
CN105544020A (en) Graphene-doped polyacrylonitrile mesopore activated carbon fiber and preparation method thereof
JPS6350447B2 (en)
JP6484656B2 (en) Activated carbon fiber for removing free chlorine and method for treating water containing free chlorine using the same
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JPH02160924A (en) Porous carbon fiber and production thereof
JPS6047923B2 (en) Method for producing hydrophilic filaments and fibers by dry jet wet spinning method
JPS64486B2 (en)
JPH02242920A (en) Carbon fiber containing composite metal
JPS6367566B2 (en)
US6413633B1 (en) Activated biregional fiber(s)
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JPH0385711A (en) Acrylonitrile system active carbon fiber for polarizing electrode material
JPH02160923A (en) Porous carbon fiber and production thereof
KR100487247B1 (en) Mesoporous Caborn Fibers and Method of Preparation Thereof
JP2021017659A (en) Polyvinyl alcohol-based fiber
JPS5820883B2 (en) Activated carbon fiber manufacturing method
JPH0491230A (en) Production of precursor
Kaludjerović Nanoporous Carbon Fibrous Materials
JPH06104562B2 (en) Activated carbon fiber manufacturing method
JPS6231088B2 (en)