JPS6231088B2 - - Google Patents

Info

Publication number
JPS6231088B2
JPS6231088B2 JP55154845A JP15484580A JPS6231088B2 JP S6231088 B2 JPS6231088 B2 JP S6231088B2 JP 55154845 A JP55154845 A JP 55154845A JP 15484580 A JP15484580 A JP 15484580A JP S6231088 B2 JPS6231088 B2 JP S6231088B2
Authority
JP
Japan
Prior art keywords
draft
fibers
spinning
cellulose acetate
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55154845A
Other languages
Japanese (ja)
Other versions
JPS5782514A (en
Inventor
Yukio Shinkai
Takeji Ootani
Kunihiro Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP15484580A priority Critical patent/JPS5782514A/en
Publication of JPS5782514A publication Critical patent/JPS5782514A/en
Publication of JPS6231088B2 publication Critical patent/JPS6231088B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、繊維内部に微細な空孔を多数有する
多孔質セルロースアセテート系繊維及びその製造
法に関する。 多孔質材料は、その内部空間を利用し多孔内に
各種の物質を内蔵させることにより各種の機能を
付与することができ、例えばイオン交換能を有す
る物質を内蔵させ水の精製に用いたりすることが
できる。又一方、その大きい内部表面積を利用
し、素材のもつ表面特性例えば特定物質に対する
吸着能を大巾に向上せしめた材料を提供すること
ができる。特に繊維状の多孔質材料は、その取扱
い性及び各種形態への成型性に優れるという利点
を有しており、各種素材を用いた多孔質繊維の開
発が望まれ、ポリエチレン、ポリプロピレン、ナ
イロン、ポリエステル、アクリル等において種々
の多孔化技術が提案されている。 本発明者らはセルロースアセテート系の多孔質
化、とりわけ多孔質繊維の製造法に関し、種種の
検討を重ねた。即ち、従来の乾式法によるセルロ
ースアセテート系繊維は緻密な構造を有するため
表面積は極めて小さく、上に述べた吸着剤等の用
途には有効に使用出来ない。本発明者らは湿式法
による賦型に着眼し検討を進めた結果本発明に到
達したものである。 即ち本発明は、微細空孔を含むセルロースアセ
テート又はセルロースアセテートを主成分とする
繊維であり、該繊維の内部表面積が15m2/g以上
であり、孔径5μ以上のマクロボイドを実質的に
含まず、かつ繊維内部の微細空孔の平均孔径が1
μ以下である繊維内部全体にわたつて均一に微細
空孔を有すること特徴とする多孔質セルロースア
セテート系繊維を得ることを目的とするものであ
り、その要旨は、 セルロースアセテート又はセルロースアセテー
トを主成分とする重合体混合物を溶媒に溶解した
紡糸原液を用い、温度25〜75℃に保持された該溶
媒の水溶液を凝固剤として、下記(1)式に示す実効
ドラフト率が0.2〜0.6の範囲で湿式紡糸し、次い
で乾燥することを特徴とする多孔質セルロースア
セテート系繊維の製造法 実効ドラフト率=採用ドラフト/最大ドラフト…(1
) 但し最大ドラフトとは繊維が破断することなく
かけうる最大の紡糸ドラフトをいう にある。 以下本発明を詳しく説明する。 本発明で用いられるセルロースアセテートはセ
ルロースジアセテート、セルローストリアセテー
ト等のセルロースアセテート又はこれらの混合物
又はこれらのアセテートを主成分としたものから
なる。主成分とは、セルロースアセテート以外の
他の重合体も含み得ることを意味し、これらの重
合体は何ら限定されるものではないが、セルロー
スアセテートに対し20wt%以下、好ましくは
10wt%以下存在し得る。これらの重合体の作用
は繊維中に微小な空孔を均一に発生させる役目を
する。 またこのセルロースアセテートはセルロースジ
アセテート、セルローストリアセテートの単独あ
るいは混合物からも形成される。特に酢化度が58
%以上のセルローストリアセテートからなるもの
が乾燥後も微細空孔が均一に維持された表面積の
大きい多孔質繊維を与える。 本発明の方法によればその内部に孔径5μ以上
のマクロボイドを含まず、内部表面積が15m2/g
以上であり、微細空孔の平均孔径が1μ以下の多
孔質セルロースアセテート系繊維を効率よく得る
ことができる。 第1図は比較のために示した本発明以外の多孔
質繊維であり、第2図は本発明の繊維である。い
ずれも繊維の断面の電子顕微鏡写真であり、繊維
内部全体にわたつて均一に微細空孔を有するが、
第1図の繊維には内部に孔径5μ以上の空洞(マ
クロボイド)を2個含んでおり、このような繊維
は内部表面積が小さくなり、また糸の強度も低下
し、吸着剤等の用途に有効に用いることが出来な
い。一方第2図の本発明の繊維は、その内部にマ
クロボイドを含まず、表面積および強度が大き
い。 この表面積は空孔の大きさ、空孔率によつて左
右されるが、空孔率が一定の場合、空孔の大きさ
が小さい程大きな表面積を有する。吸着剤等の用
途に関しては、吸着座席として動く表面積の大き
いもの程有効である。 本発明で言う平均孔径とは水銀圧入法で測定し
た空孔容積の規格化した積分曲線に於てその50%
の値を示す孔半径の2倍の値と定義する。第3図
は第2図に示した多孔質繊維の水銀圧入法で測定
した規格化した空孔容積の積分曲線である。積分
細孔容積50%に対応する孔半径は540Åであり、
平均孔径は540×2=1080Å(0.108μ)となる。
この平均孔径が1μ以下、好ましくは0.5μ以下
の時、表面積が大きくなり、強度の大きい多孔質
繊維となる。 内部表面積15m2/g以上、さらに平均孔径を1
μ以下を有する本発明の多孔質セルロースアセテ
ート系繊維は第2図に示したような微細な空孔を
その内部に多数含み、かつ強度があり、衣料用繊
維以外に各種の用途が考えられる。即ち溶液ある
いは気体中に含まれる微量成分の吸着剤として
は、あるいは微細孔内に医薬、農薬等を包含さ
せ、それらの薬品の除放用支持体として、その他
一般に考えられる多孔質の用途に繊維状形態を維
持したまま用いることが出来る。 次に本発明の繊維の製造法について述べる。 セルロースアセテート又は他の重合体の混合物
を適当な装置を用いて溶媒に溶解して、十分に
過、脱泡を行ない紡糸原液とする。該溶媒として
はアセトン、エチレンカーボネート、ジオキサ
ン、ジメチルアセトアミド(DMAc)、ジメチル
ホルムアミド(DMF)、ジメチルスルホキシド
(DMSO)等が挙げられる。ポリマー濃度は10〜
30wt%が適用される。かくして得られた原液は
30〜100℃といつた温度に保持され紡糸に供され
る。 凝固浴は該溶媒の水溶液を主体とする。主体と
は目的により、これらに溶解する他の少量の成分
例えばアルコール類等の有機物あるいは無機塩類
を含むことがあつても差支えないことを意味す
る。 本発明の特徴の1つは該凝固浴温度を25℃〜75
℃、好ましくは30℃〜65℃に保持することにあ
る。25℃以下では凝固糸条の構造が緻密化し、表
面積の大きい繊維構造の形成が困難である。一方
75℃を越えると凝固速度が急激に大になり凝固に
伴なう体積収縮が伴なわず空洞の大きな極めて粗
な構造となり、最終的に本発明の狙いとする表面
積の増大に寄与しない。 本願発明で定義される最大ドラフトとは、セル
ロースアセテートの種類、紡糸原液の濃度、紡糸
口金のノズル径、ノズルにおける紡糸原液の吐出
速度、凝固浴の濃度および温度によつて一義的に
定まる値であつて、これらの各因子を定めて湿式
紡糸した際に繊維が破断することなくかけうる最
大の紡糸ドラフト(巻取速度とノズルにおける紡
糸原液の吐出速度の比)をいい、これは前記各因
子を定めた条件で実際に紡糸し、巻取速度を徐々
に増加させていつて糸切れが起きる時の巻取速度
から求められる紡糸ドラフトで擬制することがで
きる。 かくして上記原液を該凝固浴中に湿式紡糸を行
なうが、この際そのドラフトは前記式(1)に示した
実効ドラフト率0.2〜0.6の範囲が採用される。こ
の値が0.2より小さいと紡浴中でのたるみが生じ
安定な紡糸が困難であり、又0.6を越えると糸条
中に前記した高温凝固と同様の多量のマクロボイ
ドが発生し好ましくない。紡糸された糸条は必要
に応じて温水又は熱水中で洗浄したり、延伸され
適当な油剤を付与した後乾燥され本発明の繊維と
なる。 乾燥温度は常温より200℃位迄の温度範囲が適
用されるが、この乾燥過程において紡糸により形
成された糸条の多孔質構造の変化はほとんどみら
れない。乾燥に於ては、特に繊維を無緊張状態で
乾燥することが好ましく、これによつて強度、伸
度の大きい多孔質繊維が得られる。 以上本発明の主要条件を説明したが、これ等の
条件以外に本発明の主旨を損なわない限り、副次
的に公知の条件に導入して差支えない。 本発明の製造法は、必ずしも通常の繊維のみな
らず中空繊維、異形断面繊維等の湿式成型に応用
される。 以下本発明を実施例を挙げて説明する。 実施例 1 ポリマーとして酢化度61.5%のセルローストリ
アセテートフレークをニーダーを用いてDMAc溶
媒に110℃で120分間撹拌し溶解した。直ちに温度
50℃に下げ過、脱泡してポリマー濃度15%の紡
糸原液を調整した。この原液を孔径0.06mmφ、孔
数200の紡糸ノズルからDMAc50%水溶液に湿式
紡糸し20m/分の速度で引き取り(採用ドラフト
1.34)引き続き連続的に洗浄し、ステンレス金網
コンベア上に振込み110℃の熱風中で無緊張乾燥
を行なつて繊度3デニールの繊維とした。本実験
において上記凝固浴の温度は30℃、45℃、60℃で
行なつた。得られた繊維性状を第1表に示した。 尚、比較例として凝固浴温度15℃で得られた繊
維性状及び浴温30℃において紡速を45m/分とし
た場合(採用ドラフト3.02、実効ドラフト率
0.70)の繊維性状をも第1表に示した。実験No.2
および5で得られた繊維の断面電子顕微鏡写真を
第2図、第1図に示した。又実験No.2の水銀圧入
法で測定した孔半径分布曲線を第3図に示した。
第3図より求めた平均孔径は0.108μであつた。
The present invention relates to a porous cellulose acetate fiber having a large number of fine pores inside the fiber, and a method for producing the same. Porous materials can be given various functions by utilizing their internal space and incorporating various substances within the pores.For example, they can be used to purify water by incorporating substances with ion exchange ability. I can do it. On the other hand, by utilizing the large internal surface area, it is possible to provide a material in which the surface properties of the material, such as the ability to adsorb a specific substance, are greatly improved. In particular, fibrous porous materials have the advantage of being easy to handle and mold into various shapes, and it is desirable to develop porous fibers using various materials, such as polyethylene, polypropylene, nylon, polyester, etc. Various porous techniques have been proposed for acrylic, acrylic, and the like. The present inventors have repeatedly conducted various studies regarding making cellulose acetate-based cells porous, particularly regarding methods for producing porous fibers. That is, the cellulose acetate fiber produced by the conventional dry method has a dense structure and has an extremely small surface area, so that it cannot be effectively used for the above-mentioned adsorbent applications. The present inventors focused on imprinting using a wet method, and as a result of their studies, they arrived at the present invention. That is, the present invention relates to cellulose acetate containing micropores or fibers mainly composed of cellulose acetate, which have an internal surface area of 15 m 2 /g or more and are substantially free of macrovoids with a pore size of 5 μ or more. , and the average pore diameter of the micropores inside the fiber is 1
The purpose of this is to obtain porous cellulose acetate fibers characterized by having micropores uniformly throughout the interior of the fibers, the size of which is less than μ. Using a spinning dope in which a polymer mixture is dissolved in a solvent, an aqueous solution of the solvent maintained at a temperature of 25 to 75°C is used as a coagulant, and the effective draft ratio shown in the following formula (1) is in the range of 0.2 to 0.6. A method for producing porous cellulose acetate fiber characterized by wet spinning and then drying. Effective draft rate = Adopted draft / Maximum draft...(1
) However, maximum draft refers to the maximum spinning draft that can be applied without fiber breakage. The present invention will be explained in detail below. The cellulose acetate used in the present invention is composed of cellulose acetate such as cellulose diacetate and cellulose triacetate, a mixture thereof, or a cellulose acetate containing these acetates as a main component. The main component means that it may contain other polymers other than cellulose acetate, and these polymers are not limited in any way, but are preferably 20 wt% or less based on cellulose acetate.
May be present in amounts up to 10wt%. The action of these polymers serves to uniformly generate minute pores in the fibers. Further, this cellulose acetate is also formed from cellulose diacetate and cellulose triacetate alone or in combination. Especially the degree of acetylation is 58
% or more of cellulose triacetate provides porous fibers with a large surface area in which micropores are maintained uniformly even after drying. According to the method of the present invention, it does not contain macrovoids with a pore diameter of 5μ or more, and has an internal surface area of 15m 2 /g.
As described above, it is possible to efficiently obtain porous cellulose acetate fibers in which the average diameter of micropores is 1 μm or less. FIG. 1 shows porous fibers other than the present invention shown for comparison, and FIG. 2 shows the fibers of the present invention. Both are electron micrographs of cross-sections of fibers, and they have fine pores uniformly throughout the inside of the fibers.
The fiber shown in Figure 1 contains two cavities (macrovoids) with a pore diameter of 5 μm or more inside, and such fibers have a small internal surface area and also have a reduced strength, making them difficult to use as adsorbents. It cannot be used effectively. On the other hand, the fiber of the present invention shown in FIG. 2 does not contain macrovoids inside and has a large surface area and strength. This surface area depends on the size of the pores and the porosity, but when the porosity is constant, the smaller the pore size, the larger the surface area. Regarding applications such as adsorbents, the larger the surface area that can act as an adsorption seat, the more effective it is. In the present invention, the average pore diameter is defined as 50% of the normalized integral curve of the pore volume measured by mercury intrusion method.
is defined as the value twice the hole radius. FIG. 3 is an integral curve of the normalized pore volume measured by the mercury intrusion method of the porous fiber shown in FIG. The pore radius corresponding to 50% of the integrated pore volume is 540 Å,
The average pore diameter is 540×2=1080 Å (0.108 μ).
When this average pore diameter is 1 μm or less, preferably 0.5 μm or less, the surface area becomes large, resulting in a porous fiber with high strength. Internal surface area of 15 m 2 /g or more, and average pore size of 1
The porous cellulose acetate fiber of the present invention having a particle diameter of less than μ contains many fine pores as shown in FIG. 2, has strength, and can be used for various purposes other than fibers for clothing. In other words, the fiber can be used as an adsorbent for trace components contained in solutions or gases, as a support for the controlled release of medicines, agricultural chemicals, etc. by encapsulating them in micropores, and for other commonly thought of porous applications. It can be used while maintaining its shape. Next, the method for producing the fiber of the present invention will be described. A mixture of cellulose acetate or other polymers is dissolved in a solvent using a suitable device, and thoroughly filtered and defoamed to obtain a spinning stock solution. Examples of the solvent include acetone, ethylene carbonate, dioxane, dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylsulfoxide (DMSO), and the like. Polymer concentration is 10~
30wt% is applied. The stock solution thus obtained is
It is kept at a temperature of 30 to 100°C and used for spinning. The coagulation bath is mainly composed of an aqueous solution of the solvent. The term "main body" means that it may contain small amounts of other dissolved components, such as organic substances such as alcohols, or inorganic salts, depending on the purpose. One of the features of the present invention is that the temperature of the coagulation bath is 25°C to 75°C.
℃, preferably 30℃ to 65℃. At temperatures below 25°C, the structure of the coagulated filaments becomes dense, making it difficult to form a fibrous structure with a large surface area. on the other hand
When the temperature exceeds 75° C., the solidification rate increases rapidly, and the volume shrinkage accompanying solidification does not occur, resulting in an extremely rough structure with large cavities, which ultimately does not contribute to the increase in surface area that is the aim of the present invention. The maximum draft defined in the present invention is a value uniquely determined by the type of cellulose acetate, the concentration of the spinning dope, the nozzle diameter of the spinneret, the discharge speed of the spinning dope in the nozzle, the concentration and temperature of the coagulation bath. It refers to the maximum spinning draft (ratio of the winding speed and the discharge speed of the spinning stock solution in the nozzle) that can be applied without breaking the fiber when wet spinning is performed with each of these factors determined, and this is the maximum spinning draft that can be applied without breaking the fiber when each of these factors is determined. It can be simulated by actually spinning the yarn under the specified conditions, gradually increasing the winding speed, and calculating the spinning draft from the winding speed at which yarn breakage occurs. In this way, the above-mentioned stock solution is subjected to wet spinning in the coagulation bath, and at this time, the draft is set to an effective draft ratio in the range of 0.2 to 0.6 as shown in the above formula (1). If this value is less than 0.2, sagging occurs in the spinning bath, making stable spinning difficult, and if it exceeds 0.6, a large amount of macrovoids similar to those caused by high-temperature coagulation described above will occur in the yarn, which is undesirable. The spun yarn is washed in warm water or hot water as necessary, or stretched, coated with a suitable oil, and then dried to produce the fiber of the present invention. The drying temperature range is from room temperature to about 200°C, but there is almost no change in the porous structure of the yarn formed by spinning during this drying process. In drying, it is particularly preferable to dry the fibers in a non-tensioned state, whereby porous fibers with high strength and elongation can be obtained. Although the main conditions of the present invention have been described above, other known conditions may be introduced as secondary conditions as long as the gist of the present invention is not impaired. The manufacturing method of the present invention is applicable not only to ordinary fibers but also to wet molding of hollow fibers, irregular cross-section fibers, and the like. The present invention will be explained below with reference to Examples. Example 1 Cellulose triacetate flakes having a degree of acetylation of 61.5% as a polymer were dissolved in a DMAc solvent by stirring at 110° C. for 120 minutes using a kneader. Temperature immediately
The temperature was lowered to 50°C, and the mixture was degassed to prepare a spinning stock solution with a polymer concentration of 15%. This stock solution was wet-spun into a DMAc 50% aqueous solution through a spinning nozzle with a hole diameter of 0.06 mmφ and 200 holes, and the yarn was drawn at a speed of 20 m/min (draft adopted).
1.34) Subsequently, the fibers were washed continuously, transferred onto a stainless steel wire mesh conveyor, and dried without tension in hot air at 110°C to obtain fibers with a fineness of 3 denier. In this experiment, the temperature of the coagulation bath was 30°C, 45°C, and 60°C. The properties of the obtained fibers are shown in Table 1. As a comparative example, fiber properties obtained at a coagulation bath temperature of 15°C and a spinning speed of 45 m/min at a bath temperature of 30°C (adopted draft 3.02, effective draft rate
The fiber properties of 0.70) are also shown in Table 1. Experiment No.2
Cross-sectional electron micrographs of the fibers obtained in 5 and 5 are shown in FIGS. 2 and 1. Furthermore, the pore radius distribution curve measured by the mercury intrusion method in Experiment No. 2 is shown in Figure 3.
The average pore diameter determined from Figure 3 was 0.108μ.

【表】 なお、参考として乾式紡糸により得られた市販
のトリアセテート繊維ソアロン(三菱アセテート
(株))、繊度2.75デニールの表面積を測定したが
0.30m2/gであつた。 実施例 2 実施例1の実験No.2と同じ方法でセルロースト
リアセテートの多孔質繊維を紡糸し洗浄した。乾
燥工程として110℃の熱ローラー上を定長で通し
乾燥した。得られた糸には5μ以上のマクロボイ
ドが実質的に存在せず、内部表面積21.5m2/g、
平均孔径0.10μであり、糸質は3.0デニール、乾
強度:0.5m2/d、乾伸度:10%であつた。 実施例 3 酢化度61.5%のセルローストリアセテートフレ
ークをニーダーを用いてDMAc溶媒に120℃で120
分間撹拌し溶解した。直ちに温度80℃に下げて
過、脱泡してポリマー濃度20%の紡糸原液を調整
した。この原液を温度40℃に保持されたDMAc50
%水溶液中に湿式紡糸し、20m/分の速度で引き
取り、引き続き洗浄し実施例1と同様に乾燥を行
ない繊度3デニールの繊維とした。ここで本実験
では、実効ドラフト率をノズル孔径を変えること
により変更した。得られた繊維性状を第2表に示
す。 尚、比較例として実効ドラフト率0.70の場合の
繊維性状をも第2表に示した。
[Table] For reference, commercially available triacetate fiber Soalon (Mitsubishi Acetate
Co., Ltd.), the surface area of a fineness of 2.75 denier was measured.
It was 0.30m 2 /g. Example 2 Cellulose triacetate porous fibers were spun and washed in the same manner as in Experiment No. 2 of Example 1. As a drying step, it was dried by passing it over a heated roller at 110°C in a fixed length. The resulting yarn is virtually free of macrovoids larger than 5μ, has an internal surface area of 21.5m 2 /g,
The average pore diameter was 0.10μ, the yarn quality was 3.0 denier, dry strength: 0.5m 2 /d, and dry elongation: 10%. Example 3 Cellulose triacetate flakes with a degree of acetylation of 61.5% were added to DMAc solvent using a kneader at 120°C.
Stir for a minute to dissolve. Immediately, the temperature was lowered to 80°C, filtered and defoamed to prepare a spinning stock solution with a polymer concentration of 20%. This stock solution was heated to DMAc50, which was kept at a temperature of 40℃.
% aqueous solution, taken up at a speed of 20 m/min, washed and dried in the same manner as in Example 1 to obtain fibers with a fineness of 3 denier. In this experiment, the effective draft rate was changed by changing the nozzle hole diameter. The obtained fiber properties are shown in Table 2. As a comparative example, the fiber properties in the case of an effective draft rate of 0.70 are also shown in Table 2.

【表】 実施例 4 酢化度55%のセルロースジアセテートフレーク
をニーダーを用いてDMF溶媒に110℃で120分撹
拌して溶解した。直ちに温度60℃に下げ、過、
脱泡してポリマー濃度20%の紡糸原液を調整し
た。この原液をノズル孔径0.06mmφ、孔数200の
紡糸ノズルから温度45℃に保持されたDMF40%
水溶液中に湿式紡糸し、20m/分の速度で引き取
り(採用ドラフト1.70)引き続き洗浄後実施例1
と同様にして、乾燥して繊度3デニールの繊維と
した。得られた繊維性状を第3表に示す。
[Table] Example 4 Cellulose diacetate flakes with a degree of acetylation of 55% were dissolved in a DMF solvent using a kneader by stirring at 110° C. for 120 minutes. Immediately lower the temperature to 60℃,
A spinning stock solution with a polymer concentration of 20% was prepared by defoaming. This stock solution was passed through a spinning nozzle with a nozzle diameter of 0.06 mmφ and a number of holes of 40% DMF maintained at a temperature of 45°C.
Wet spinning in an aqueous solution and taking it off at a speed of 20 m/min (adopted draft 1.70) and subsequent washing Example 1
In the same manner as above, it was dried to obtain a fiber having a fineness of 3 denier. The obtained fiber properties are shown in Table 3.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は多孔質アセテート繊維の断面
電子顕微鏡写真で(3000倍)第1図は本発明以外
の、第2図は本発明の繊維である。第3図は本発
明多孔質アセテート繊維の細孔分布の積分曲線で
ある。
Figures 1 and 2 are cross-sectional electron micrographs of porous acetate fibers (3000x magnification), with Figure 1 showing a fiber other than the one according to the present invention, and Figure 2 showing a fiber according to the present invention. FIG. 3 is an integral curve of the pore distribution of the porous acetate fiber of the present invention.

Claims (1)

【特許請求の範囲】 1 セルロースアセテート又はセルロースアセテ
ートを主成分とする重合体混合物を溶媒に溶解し
た紡糸原液を用い、温度25〜75℃に保持された該
溶媒の水溶液を凝固剤として、下記(1)式に示す実
効ドラフト率が0.2〜0.6の範囲で湿式紡糸し、次
いで乾燥することを特徴とする多孔質セルロース
アセテート系繊維の製造法。 実効ドラフト率=採用ドラフト/最大ドラフト …(1) 但し最大ドラフトとは繊維が破断することなく
かけうる最大の紡糸ドラフトをいう。 2 湿式紡糸して得られた多孔質セルロースアセ
テート系繊維を延伸した後、乾燥することを特徴
とする特許請求の範囲第1項記載の方法。 3 無緊張状態で繊維を乾燥することを特徴とす
る特許請求の範囲第1項又は第2項記載の方法。
[Claims] 1. Using a spinning dope in which cellulose acetate or a polymer mixture containing cellulose acetate as a main component is dissolved in a solvent, and using an aqueous solution of the solvent maintained at a temperature of 25 to 75°C as a coagulant, the following ( 1) A method for producing porous cellulose acetate fibers, which comprises performing wet spinning at an effective draft ratio in the range of 0.2 to 0.6 as shown in the formula, and then drying. Effective draft rate = adopted draft/maximum draft...(1) However, maximum draft refers to the maximum spinning draft that can be applied without fiber breakage. 2. The method according to claim 1, wherein the porous cellulose acetate fiber obtained by wet spinning is stretched and then dried. 3. The method according to claim 1 or 2, characterized in that the fibers are dried in a non-tensioned state.
JP15484580A 1980-11-04 1980-11-04 Porous cellulose acetate fiber and its preparation Granted JPS5782514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15484580A JPS5782514A (en) 1980-11-04 1980-11-04 Porous cellulose acetate fiber and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15484580A JPS5782514A (en) 1980-11-04 1980-11-04 Porous cellulose acetate fiber and its preparation

Publications (2)

Publication Number Publication Date
JPS5782514A JPS5782514A (en) 1982-05-24
JPS6231088B2 true JPS6231088B2 (en) 1987-07-07

Family

ID=15593146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15484580A Granted JPS5782514A (en) 1980-11-04 1980-11-04 Porous cellulose acetate fiber and its preparation

Country Status (1)

Country Link
JP (1) JPS5782514A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744932A (en) * 1985-05-31 1988-05-17 Celanese Corporation Process for forming a skinless hollow fiber of a cellulose ester
JP5982412B2 (en) * 2014-02-12 2016-08-31 富士フイルム株式会社 Fiber manufacturing method, nonwoven fabric manufacturing method, fiber manufacturing facility and nonwoven fabric manufacturing facility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546918A (en) * 1977-06-20 1979-01-19 Mitsubishi Acetate Co Ltd Production of porous acetate fiber
JPS55114370A (en) * 1979-02-28 1980-09-03 Fuji Photo Film Co Ltd Treatment of plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546918A (en) * 1977-06-20 1979-01-19 Mitsubishi Acetate Co Ltd Production of porous acetate fiber
JPS55114370A (en) * 1979-02-28 1980-09-03 Fuji Photo Film Co Ltd Treatment of plate

Also Published As

Publication number Publication date
JPS5782514A (en) 1982-05-24

Similar Documents

Publication Publication Date Title
US10563323B2 (en) Method for production of carbon nanofiber mat or carbon paper
JPH06346314A (en) Regenerated silk fibroin yarn and its production
CN112626639A (en) Active carbon-loaded polyphenylene sulfide porous fiber and preparation method and application thereof
JP2007100230A (en) Inorganic particle-bearing polytetrafluoroethylene fiber and method for producing the same
US3322611A (en) Porous fibers and processes of preparing same
JPS604284B2 (en) Method for producing hydrophilic filaments or fibers
US2907096A (en) Shaped polyacrylonitrile structures
JPS585283B2 (en) Gokusaisen Ishiyuugoutai Oyobi Sonoseizouhouhou Narabini Seizou Souchi
US3867499A (en) Process for wet-spinning fibers derived from acrylic polymers
JPS6047923B2 (en) Method for producing hydrophilic filaments and fibers by dry jet wet spinning method
JPS6231088B2 (en)
JPH02160924A (en) Porous carbon fiber and production thereof
JPS5838526B2 (en) Gokubososen Inoseizouhou
JP2000226720A (en) Cellulose yarn having controlled fibrillation and its production
JPS59166208A (en) Manufacture of gas separating membrane
JPS6350447B2 (en)
US4056598A (en) Process for forming filaments from polyamic acid
JP2003290654A (en) Active carbon fiber, manufacture method therefor, for cartridge water-cleaning device and water-cleaning device
JP7340128B2 (en) Regenerated cellulose fiber, method for producing the same, and fiber structure containing the same
JPS636644B2 (en)
JPS63126911A (en) Ultrafine fiber of tetrafluoroethylene resin and production thereof
JP2543369B2 (en) Manufacturing method of super absorbent synthetic fiber
JPH02221404A (en) Porous hollow fiber and production thereof
JPH083851A (en) Polyolefin nonwoven fabric
JPH028047B2 (en)