JPS5838526B2 - Gokubososen Inoseizouhou - Google Patents
Gokubososen InoseizouhouInfo
- Publication number
- JPS5838526B2 JPS5838526B2 JP8118675A JP8118675A JPS5838526B2 JP S5838526 B2 JPS5838526 B2 JP S5838526B2 JP 8118675 A JP8118675 A JP 8118675A JP 8118675 A JP8118675 A JP 8118675A JP S5838526 B2 JPS5838526 B2 JP S5838526B2
- Authority
- JP
- Japan
- Prior art keywords
- pva
- fibers
- water
- degree
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Description
【発明の詳細な説明】
本発明は繊維の構成成分の一部を水洗処理により溶解除
去する実用的な極細繊維の製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a practical method for producing ultrafine fibers in which a part of the constituent components of the fibers are dissolved and removed by washing with water.
最近、衣料製品の高級化、多様化にともない繊維の極細
化による風合改良が試みられ、また合成紙、不織布など
の用途開発が進むにつれ合成フィブリル状極細繊維の製
造法の開発が望まれるようになってきた。Recently, as clothing products become more sophisticated and diversified, attempts have been made to improve the texture by making fibers ultra-fine, and as the development of applications for synthetic paper and non-woven fabrics progresses, there is a desire to develop methods for producing synthetic fibrillar ultra-fine fibers. It has become.
しかし、通常の紡糸方法で得られる細デニール繊維はせ
いぜい0.5〜1.0デニ一ル程度が限界であり、0.
1デニールあるいはこれ以下の極細繊維の製造方法は、
方法としては各種の方法が提案されているがいまだ実用
化に移されていないのが現状である。However, the fine denier fiber obtained by ordinary spinning methods has a limit of about 0.5 to 1.0 denier at most, and 0.5 to 1.0 denier at most.
The method for producing ultrafine fibers of 1 denier or less is as follows:
Although various methods have been proposed, the current situation is that they have not yet been put into practical use.
たとえば特公昭44−21167号公報に2種以上の異
種成分を混合紡糸した後、1種以上の成分を特定の溶媒
で溶解除去して極細繊維を製造する方法が提案されてい
るが、かかる方法は溶媒として有機系のものが使用され
ているため、臭気、引火爆発など安全の問題があり、ま
た混合紡糸する成分によって溶媒が限定されるだけでな
く溶解除去に際して安全のための装置と条件が限定され
るので実用化が困難であった。For example, Japanese Patent Publication No. 44-21167 proposes a method of manufacturing ultrafine fibers by mixing and spinning two or more different components and then dissolving and removing one or more components with a specific solvent. Because organic solvents are used, there are safety issues such as odor and flammability.Furthermore, the solvents are limited depending on the components to be mixed and spun, and safety equipment and conditions are required for dissolving and removing them. It was difficult to put it into practical use because of the limitations.
本発明者らは、かかる従来法の問題点が溶媒として有機
系のものを使用せざるを得ない点にあり有機溶媒に代え
て水で繊維の構成成分の1部を溶解除去できれば2種以
上の成分を混合紡糸する極細繊維の製造法が極めて容易
に実用化できるだけでなく、用途によっては繊維あるい
は繊維製品の通常施こされる水洗処理工程で溶解除去で
きるのでその価値は甚大であると判断し、水に容易に溶
解しかつ他の繊維形成能を有する高分子化合物と混合紡
糸あるいは複合紡糸し得る高分子化合物について鋭意研
究した結果、平均重合度50〜300、ケン化度50〜
80モル%のポリビニルアルコール(以下PVAという
)が水溶性かつ熱溶融性を有しさらに繊維形成能を有す
ることをみいだし本発明を完成した。The present inventors believe that the problem with the conventional method is that an organic solvent must be used as the solvent. The manufacturing method of ultrafine fibers by mixing and spinning the following components is not only extremely easy to put into practical use, but also can be dissolved and removed in the water washing process that is normally applied to fibers and textile products, depending on the application, so it is considered to be of great value. As a result of extensive research on polymer compounds that are easily soluble in water and can be mixed or composite-spun with other polymer compounds that have fiber-forming ability, we found that the average degree of polymerization is 50-300 and the degree of saponification is 50-300.
The present invention was completed by discovering that 80 mol% polyvinyl alcohol (hereinafter referred to as PVA) is water-soluble and heat-meltable, and also has fiber-forming ability.
すなわち、本発明は平均重合度50〜300、ケン化度
50〜80モル%のPVAと繊維形成能を有する高分子
化合物とを混合紡糸あるいは複合紡糸し、要すれば延伸
熱処理を施こした後、得られた繊維を水洗処理してPV
Aを溶解除去せしめることを特徴とする極細繊維の製造
法である。That is, in the present invention, PVA having an average degree of polymerization of 50 to 300 and a degree of saponification of 50 to 80 mol% and a polymer compound having fiber-forming ability are mixed-spun or composite-spun, and if necessary, after being subjected to stretching heat treatment. , the obtained fibers are washed with water and PV
This is a method for producing ultrafine fibers characterized by dissolving and removing A.
本発明に使用する平均重合度50〜300、ケン化度5
0〜80モル%のPVAは、たとえば重合時の温度のも
とで20X10−’以上の連鎖移動定数をもつアルコー
ル類中で酢酸ビニルを平均重合度50〜300に重合し
、加熱下に溶剤を追いだしたのち、無水メタノールに混
合溶解しアルカリを加えて脱酢酸化することにより製造
することができる。Average degree of polymerization used in the present invention 50-300, degree of saponification 5
0 to 80 mol% PVA can be obtained, for example, by polymerizing vinyl acetate to an average degree of polymerization of 50 to 300 in an alcohol having a chain transfer constant of 20X10-' or more at the polymerization temperature, and then removing the solvent while heating. After expelling the mixture, it can be produced by mixing and dissolving in anhydrous methanol and adding an alkali to deacetate the mixture.
このようにして得られた平均重合度50〜300、ケン
化度50〜80モル%のPVAは、PVA単独あるいは
該PVAに適当量の融剤を添加すれば100〜240℃
の任意の温度で加熱溶融することができるのでナイロン
、ポリエステル、ポリエチレン、ポリプロピレン、ポリ
パラオキシベンゾエートなど殆どの熱溶融性高分子化合
物と溶融混合紡糸あるいは溶融複合紡糸することができ
る。The thus obtained PVA with an average degree of polymerization of 50 to 300 and a degree of saponification of 50 to 80 mol% can be heated to a temperature of 100 to 240°C by using PVA alone or by adding an appropriate amount of a fluxing agent to the PVA.
Since it can be heated and melted at any temperature, it can be melt-mixed or composite-spun with most heat-melting polymer compounds such as nylon, polyester, polyethylene, polypropylene, and polyparaoxybenzoate.
また、本発明に使用する平均重合度50〜300、ケン
化度50〜80モル%のPVAは常温の水に溶解するの
で水を溶媒とする通常のPVAあるいはポリフラールと
混合紡糸することができ、さらにアセトン、ジメチルア
セトアミド、ジメチルホルムアミドなどの有機溶媒にも
溶解するので、これらの溶媒を用いた紡糸原液から紡糸
するアセテート、PVC(乾燥法)、ポリアクリロニト
リル、ポリウレタンとも混合紡糸することができる。In addition, since the PVA used in the present invention with an average degree of polymerization of 50 to 300 and a degree of saponification of 50 to 80 mol% is soluble in water at room temperature, it can be mixed and spun with ordinary PVA or polyfural using water as a solvent. Furthermore, since it is soluble in organic solvents such as acetone, dimethylacetamide, and dimethylformamide, it can be mixed and spun with acetate, PVC (dry method), polyacrylonitrile, and polyurethane, which are spun from a spinning dope using these solvents.
本発明はかかる特定PVAと繊維形成能を有する高分子
化合物とを混合あるいは複合紡糸して後、該得られた繊
維を水洗処理して繊維を構成するPVAを溶解除去する
ものであるから、特定PVAは他の繊維形成能を有する
高分子化合物と混合あるいは複合紡糸ができるだけでな
く、繊維形成後において該PVAが容易に水洗除去でき
るものでなげればならない。In the present invention, after mixing or composite spinning such specific PVA and a polymer compound having fiber-forming ability, the resulting fibers are washed with water to dissolve and remove the PVA constituting the fibers. PVA must not only be able to be mixed with other polymeric compounds having fiber-forming ability or composite-spun, but also be able to be easily removed by washing with water after fiber formation.
しかるに平均重合度50未満のPVAは製造が困難であ
るばかりか他の高分子化合物との混合紡糸が困難であり
、一方平均重合度が300を越えると熱溶融性が悪くな
るので他の高分子化合物との溶融混合紡糸が困難となり
本発明に適用できなくなる。However, PVA with an average degree of polymerization of less than 50 is not only difficult to manufacture, but also difficult to mix and spin with other polymers.On the other hand, if the average degree of polymerization exceeds 300, the thermal meltability deteriorates, making it difficult to mix and spin PVA with other polymers. Melt-mix spinning with the compound becomes difficult and cannot be applied to the present invention.
また平均重合度50〜300のPVAであってもケン化
度が50〜80モル%を外れると熱溶融性あるいは水溶
性のいずれかの性質が失なわれるため、やはり本発明に
適用できなくなる。Furthermore, even if PVA has an average degree of polymerization of 50 to 300, if the degree of saponification is outside of 50 to 80 mol %, it will lose either heat-melting or water-solubility properties, and thus cannot be applied to the present invention.
したがって、本発明に適用するPVAは平均重合度50
〜300、ケン化度50〜80モル%のものであること
が必要である。Therefore, the PVA applied to the present invention has an average polymerization degree of 50
-300 and a degree of saponification of 50-80 mol%.
かかる特定PVAは、該PVAに対し50%以下の融剤
たとえば多価アルコール類、尿素誘導体などを混合して
しても容易に水に溶解するので、他の高分子化合物と混
合紡糸する際融剤を該PVAに対し50重量%以下添加
してもよい。Such specific PVA easily dissolves in water even if 50% or less of a fluxing agent such as polyhydric alcohols or urea derivatives is mixed with the PVA. The agent may be added in an amount of 50% by weight or less based on the PVA.
本発明で使用する平均重合度50〜300、ケン化度5
0〜80モル%のPVAあるいは該PVAに対し50重
量%以下の融剤を添加したものは他の繊維形成能を有す
る高分子化合物と混合溶融あるいは溶媒を使用して混合
しても各原液は完全には混合されずそれぞれ独自の成分
を保持しているので混合紡糸に際して適当な混合率を選
定することにより得られる極細繊維の繊度を任意に調節
することができる。Average degree of polymerization used in the present invention 50-300, degree of saponification 5
0 to 80 mol% of PVA or PVA to which 50% by weight or less of a fluxing agent is added can be mixed with other polymeric compounds having fiber-forming ability by melting or using a solvent. Since they are not completely mixed and each retains its own unique components, the fineness of the resulting ultrafine fibers can be adjusted as desired by selecting an appropriate mixing ratio during mixed spinning.
また溶融紡糸の場合、特定PVAを海成分に他の高分子
化合物を島成分に複合紡糸してもよい。In the case of melt spinning, composite spinning may be performed in which the specific PVA is used as a sea component and other polymer compounds are used as an island component.
このようにして得られる混合紡糸繊維あるいは複合紡糸
繊維は要すれば容易に延伸、熱処理(収縮)を行なうこ
とができるので得られる繊維の繊度をさらに任意に調節
することができる。The mixed spun fibers or composite spun fibers thus obtained can be easily stretched and heat treated (shrinked) if necessary, so that the fineness of the resulting fibers can be further adjusted as desired.
本発明で使用する平均重合度50〜300、ケン化度5
0〜80モル%のPVAは、通常の繊維原料用高分子と
異なり配向性が非常に小さいので、溶融紡糸、乾式紡糸
あるいは湿式紡糸時の紡糸延伸あるいは後処理としての
延伸を行なっても繊維中では無配列状態であり極めて容
易に該PVA成分を水洗により溶解除去することができ
るのである。Average degree of polymerization used in the present invention 50-300, degree of saponification 5
PVA of 0 to 80 mol% differs from ordinary fiber raw material polymers in that it has very low orientation, so even if it is stretched during melt spinning, dry spinning, or wet spinning, or stretched as a post-treatment, it will not remain in the fiber. Since the PVA component is in a non-aligned state, it is very easy to dissolve and remove the PVA component by washing with water.
本発明は特定PVAと繊維形成能を有する高分子化合物
とを混合あるいは複合紡糸し、要すれば延伸、熱処理を
施こした後、該繊維を水洗処理してPVAを溶解除去す
るものであるが、紡糸に際して特定PVAは単独または
50重量%以下の融剤と混合し加熱溶融してチップとし
た後、他の繊維形成能を有する高分子化合物と混合して
溶融、乾式あるいは湿式紡糸することができる。In the present invention, specific PVA and a polymer compound having fiber-forming ability are mixed or composite-spun, stretched and heat treated if necessary, and then the fibers are washed with water to dissolve and remove the PVA. During spinning, specific PVA can be used alone or mixed with 50% by weight or less of a flux, heated and melted to form chips, and then mixed with other polymeric compounds capable of forming fibers and melted and then subjected to dry or wet spinning. can.
また得られた繊維は延伸、熱処理等の処理を施こした後
、直ちに水洗処理すればPVAが溶解除去された極細繊
維が得られるが、水洗処理なしあるいは少量のPVAを
残存化めた状態で製織製編等の加工をした後得られた布
帛の加工時に残存PVAを溶解除去して極細繊維製品を
直接製造することも可能である。Furthermore, if the obtained fibers are subjected to treatments such as drawing and heat treatment, and then immediately washed with water, ultrafine fibers with PVA dissolved and removed can be obtained. It is also possible to directly produce ultrafine fiber products by dissolving and removing residual PVA during processing of the fabric obtained after processing such as weaving and knitting.
本発明の方法で得られる極細繊維は完全にPVAを溶解
除去すれば、糸の取扱い、あるいは製編織時の加工性が
低下するが、一部または全部のPVAを残存した繊維は
加工時の操業性が良いだけでなく、このような繊維を製
編織した布帛はあらかじめPVAを完全に溶解した極細
繊維を使用して製編織した布帛と異なり、優れた風合を
有する。If PVA is completely dissolved and removed from the ultrafine fibers obtained by the method of the present invention, the handling of the yarn or the processability during weaving and weaving will be reduced, but the fibers with some or all of the PVA remaining will be In addition to having good properties, fabrics made from such fibers have an excellent feel, unlike fabrics made from ultrafine fibers in which PVA has been completely dissolved.
また本発明を混合紡糸法で実施すればフィブリル状の極
細繊維が容易に得られ、そのうえ溶解除去すべきPVA
が再湿接着能を有するのでたとえば水洗の程度を加減す
れば抄紙、不織布等に有用な極細繊維とすることも可能
である。Furthermore, if the present invention is carried out by a mixed spinning method, fibrillar ultrafine fibers can be easily obtained, and in addition, PVA to be dissolved and removed can be easily obtained.
Since it has rewetting adhesive ability, it is possible to make ultrafine fibers useful for paper making, nonwoven fabrics, etc. by controlling the degree of water washing.
このように本発明の方法で得られる繊維は一方の成分が
水に容易に溶解する特定PVAで構成されているため、
単に実用化が容易であるというのみならず、特定PVA
の特性である接着能を利用することも可能であるから、
本発明の繊維の用途は広汎であり、かつその価値は甚大
である。In this way, the fibers obtained by the method of the present invention are composed of a specific PVA that is easily dissolved in water as one component.
Not only is it easy to put into practical use, but specific PVA
It is also possible to utilize the adhesive ability, which is a characteristic of
The fibers of the present invention have a wide range of applications and are of great value.
次に、実施例により本発明をさらに詳細に説明するが、
本発明はその要旨を越えない限りこれらの実施例によっ
て限定されるものではない。Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these Examples unless it goes beyond the gist thereof.
実施例中に単に部とあるのは重量部である。In the examples, "parts" simply refer to parts by weight.
実施例 1
平均重合度250、ケン化度60モル%のPVA 10
0部とグリセリン10部を加熱混合溶融して押出成形し
てチップを得た。Example 1 PVA 10 with an average degree of polymerization of 250 and a degree of saponification of 60 mol%
0 parts and 10 parts of glycerin were heated, mixed, melted, and extruded to obtain chips.
このチップは160℃で完全に溶融しまた20℃以上の
水中に完全に溶解分散した。This chip completely melted at 160°C and was completely dissolved and dispersed in water at 20°C or higher.
該チップをポリエチレン(分子量48000、融点12
0〜122℃)と各種重量割合に混合し、スクリュー直
径が30朋、長さ450朋の溶融押出機に投入して16
0℃で溶融混練し、孔径0.6mm、孔数40のノズル
より紡糸したところ100〜500i/分の速度で各種
重量割合の繊維を捲取ることができた。The chip was made of polyethylene (molecular weight 48,000, melting point 12
0 to 122°C) in various weight proportions, and put it into a melt extruder with a screw diameter of 30mm and a length of 450mm, and
When the mixture was melt-kneaded at 0°C and spun using a nozzle with a hole diameter of 0.6 mm and 40 holes, fibers of various weight ratios could be wound up at speeds of 100 to 500 i/min.
そのうち該チップ70部とポリエチレン30部とを混合
し200 m7分で紡出した11.0デニルの原繊維を
140℃の熱延伸機により2倍に延伸したところ5.8
デニール、強度2.79/d、伸度23.8%の延伸繊
維が得られた。Of these, 70 parts of the chips and 30 parts of polyethylene were mixed and a raw fiber of 11.0 denyl was spun at 200 m for 7 minutes, and when it was drawn to double the original fiber size using a hot drawing machine at 140°C, it was 5.8
A drawn fiber having a denier, a strength of 2.79/d, and an elongation of 23.8% was obtained.
この繊維を30℃の流水中で3分間の水洗処理をしたと
ころ含有される水溶性成分はほとんど水中に溶解し、直
径約0.6μのフィブリ状のポリエチレン繊維が得られ
た。When this fiber was washed in running water at 30° C. for 3 minutes, most of the water-soluble components contained therein were dissolved in the water, and fibrillar polyethylene fibers with a diameter of about 0.6 μm were obtained.
実施例 2
平均重合度120、ケン化度72モル%のPVA50部
と、通常のPVA(平均重合度1700、ケン化度99
.95モル%)50部とを混合して水中へ投入し、加熱
、溶解、濾過して固形分濃度18.0%の紡糸用原液を
得た。Example 2 50 parts of PVA with an average degree of polymerization of 120 and a degree of saponification of 72 mol% and ordinary PVA (average degree of polymerization of 1700 and saponification degree of 99%)
.. 95 mol %) and poured into water, heated, dissolved and filtered to obtain a spinning stock solution with a solid content concentration of 18.0%.
この原液を通常のビニロン湿式紡糸条件にしたがい硫酸
ナトリウム飽和水溶液を紡浴とし、浸漬長1.2rrL
、速度8m/分、紡糸延伸3.0倍で紡糸し、常法の湿
熱処理(硫酸ナトリウム25o?/l、硫酸5ダ/l、
90℃、1分)、および乾燥を行ない、次いで230℃
の加熱空気中で3.5倍熱延伸し、さらに238℃の加
熱空気中で3.5倍熱延伸し、さらに238°Cの加熱
空気中で5%熱収縮した。This stock solution was subjected to the usual vinylon wet spinning conditions using a saturated aqueous solution of sodium sulfate as a spinning bath, and the immersion length was 1.2 rr.
The fibers were spun at a speed of 8 m/min, with a spinning stretch of 3.0 times, and subjected to conventional moist heat treatment (sodium sulfate 25 o/l, sulfuric acid 5 da/l,
90°C, 1 minute) and drying, then 230°C
It was hot stretched 3.5 times in heated air at 238°C, further hot stretched 3.5 times in heated air at 238°C, and further heat-shrinked by 5% in heated air at 238°C.
この熱処理繊維は2.5デニール、強度3.49/d、
伸度16.8%であった。This heat-treated fiber has a denier of 2.5 and a strength of 3.49/d.
The elongation was 16.8%.
この繊維を30℃の流水中で2分間水洗処理した結果、
含有された水溶性の成分は完全に水中へ溶出され、直径
約0.8μのフィブリル状PVA繊維を得る事ができた
。As a result of washing this fiber in running water at 30°C for 2 minutes,
The water-soluble components contained were completely eluted into water, and fibrillar PVA fibers with a diameter of about 0.8 μm could be obtained.
実施例 3
平均重合度80、ケン化度57モル%のPVAは95%
アセトンに完全溶解し、また20℃の水中に溶解した。Example 3 PVA with average polymerization degree of 80 and saponification degree of 57 mol% is 95%
It was completely dissolved in acetone and also dissolved in water at 20°C.
該PVA50部とアセテートフレーク(セルロースジア
セテート、重合度190、酢化度54.3%)50部と
を95%アセトンに溶解し26.5%の紡糸用原液を得
て、通常のアセテート乾式紡糸条件にしたがい約100
℃の加熱空気を送入した紡糸筒の上部から約350 m
7分で紡糸した。50 parts of the PVA and 50 parts of acetate flakes (cellulose diacetate, degree of polymerization 190, degree of acetylation 54.3%) were dissolved in 95% acetone to obtain a 26.5% spinning stock solution, which was then used for ordinary acetate dry spinning. Approximately 100 depending on conditions
Approximately 350 m from the top of the spinning tube into which heated air at ℃ was introduced.
Spinning took 7 minutes.
得られた繊維を常温の水で水洗したところ、直径約1μ
のフィブリル状アセテート繊維が得られた。When the obtained fibers were washed with water at room temperature, they had a diameter of approximately 1μ.
fibrillar acetate fibers were obtained.
実施例 4
平均重合度250、ケン化度60モル%のPVAを海成
分として用い、密度0.91.メルトインデックス32
/分のポリプロピレンを島成分として用い、吐出量をP
VA4.6f/分、ポリプロピレン4.4?/分に調整
して、1本のフィラメント中の島成分の本数が20本で
ある複合繊維を、孔数10のノズルを用い、400 m
7分の速度、210℃で紡糸した。Example 4 PVA with an average degree of polymerization of 250 and a degree of saponification of 60 mol% was used as the sea component, and the density was 0.91. melt index 32
/min polypropylene is used as the island component, and the discharge amount is P
VA4.6f/min, polypropylene 4.4? /min, and using a nozzle with 10 holes, a composite fiber in which the number of island components in one filament is 20 was heated for 400 m.
Spun at 210° C. at a speed of 7 minutes.
得られた繊維を190℃で7倍熱延伸して2.89デニ
ール、強度3.71/d、伸度18.5%の延伸繊維を
得た。The obtained fiber was hot-stretched 7 times at 190° C. to obtain a drawn fiber having a denier of 2.89, a strength of 3.71/d, and an elongation of 18.5%.
この繊維を40℃の流水中で水洗処理したところ、PV
Aの部分はほとんど溶出し、0.07デニールの極細ポ
リプロピレン繊維が得られ、その強度は4.6f/dで
あった。When this fiber was washed in running water at 40°C, the PV
Most of the portion A was eluted, and ultrafine polypropylene fibers of 0.07 denier were obtained, and the strength thereof was 4.6 f/d.
Claims (1)
のポリピニルアノニトルと繊維形成能を有する高分子化
合物とを混合紡糸あるいは複合紡糸し、要すれば延伸、
熱処理を施こした後、得られた繊維を水洗処理してポリ
ビニルアルコールを溶解除去せしめることを特徴とする
極細繊維の製造法。1 Average weight 50-300, degree of saponification 50-80 mol%
Polypynylanonitrile and a polymer compound having fiber-forming ability are mixed-spun or composite-spun, and if necessary, stretched,
A method for producing ultrafine fibers, which comprises heat-treating and then washing the resulting fibers with water to dissolve and remove polyvinyl alcohol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8118675A JPS5838526B2 (en) | 1975-06-30 | 1975-06-30 | Gokubososen Inoseizouhou |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8118675A JPS5838526B2 (en) | 1975-06-30 | 1975-06-30 | Gokubososen Inoseizouhou |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS525318A JPS525318A (en) | 1977-01-17 |
JPS5838526B2 true JPS5838526B2 (en) | 1983-08-23 |
Family
ID=13739425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8118675A Expired JPS5838526B2 (en) | 1975-06-30 | 1975-06-30 | Gokubososen Inoseizouhou |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5838526B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59118733U (en) * | 1983-01-31 | 1984-08-10 | 金沢樹脂工業株式会社 | plastic storage container |
WO1997044511A1 (en) * | 1995-04-25 | 1997-11-27 | Kuraray Co., Ltd. | Easily fibrillable fiber |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541346A (en) * | 1977-06-03 | 1979-01-08 | Matsushita Electric Ind Co Ltd | Adhesive |
JPS60162805A (en) * | 1984-01-31 | 1985-08-24 | Kuraray Co Ltd | High-tenacity polyvinyl alcohol based ultrafine fiber and production thereof |
US5164132A (en) * | 1991-04-05 | 1992-11-17 | Air Products And Chemicals, Inc. | Process for the production of ultra-fine polymeric fibers |
US5405698A (en) * | 1993-03-31 | 1995-04-11 | Basf Corporation | Composite fiber and polyolefin microfibers made therefrom |
JP4984278B2 (en) * | 2000-05-31 | 2012-07-25 | 三谷セキサン株式会社 | Method for separating single rod and excavating rod |
CN107090607B (en) * | 2017-05-26 | 2020-12-01 | 恒天海龙(潍坊)新材料有限责任公司 | Preparation method of PVA/cellulose composite fiber |
JP2022531132A (en) * | 2019-04-24 | 2022-07-06 | モノソル リミテッド ライアビリティ カンパニー | Non-woven water-dispersible article for unit dose packaging |
-
1975
- 1975-06-30 JP JP8118675A patent/JPS5838526B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59118733U (en) * | 1983-01-31 | 1984-08-10 | 金沢樹脂工業株式会社 | plastic storage container |
WO1997044511A1 (en) * | 1995-04-25 | 1997-11-27 | Kuraray Co., Ltd. | Easily fibrillable fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS525318A (en) | 1977-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0131274B1 (en) | Water soluble polyvinyl alcohol-based fiber | |
CA2082340A1 (en) | Starch-containing fibers, process for their production and products made therefrom | |
US4409289A (en) | Cellulose-acrylonitrile polymer solutions, articles, and methods of making same | |
JPS5838526B2 (en) | Gokubososen Inoseizouhou | |
JP2569352B2 (en) | High strength water-soluble polyvinyl alcohol fiber and method for producing the same | |
US4810449A (en) | Process for the production of hydrophilic polyacrylonitrile filaments or fibers | |
CN1081686C (en) | Wet PVA-crosslinking spinning technology | |
JPH10168753A (en) | Polyvinyl alcohol fiber and its production | |
JP2008190063A (en) | Method for producing soft spun raw yarn having excellent feeling and textile product obtained from the same | |
JP3364099B2 (en) | Dividable acrylic synthetic fiber and method for producing the same | |
JPS6367577B2 (en) | ||
US4224271A (en) | Process for biconstituent polymer compositions | |
JPH07173723A (en) | Sheath-core type conjugated fiber, fiber structure and production thereof | |
JP3609851B2 (en) | Water-soluble polyvinyl alcohol fiber | |
JPS6233328B2 (en) | ||
JPS61119710A (en) | Production of acrylic fiber having high tenacity and modules | |
JPS6136082B2 (en) | ||
JPS5837411B2 (en) | Carbon fiber manufacturing method | |
JPS6094613A (en) | Production of high-strength and high-modulus fiber | |
KR20230097195A (en) | Polyvinyl alcohol-based fiber, fiber structure and manufacturing method thereof | |
JP2007332479A (en) | Mixture-spun fiber | |
JP2002161431A (en) | Water-soluble polyvinyl alcohol-based fiber | |
JPS63105112A (en) | Multi-component fiber suitable for production of fine fiber bundle and production of said fiber | |
JPH03161505A (en) | Production of acrylic fiber having high water-retaining property | |
JPH0457910A (en) | Acrylic yarn having high water retention and its production |