JPH0385711A - Acrylonitrile system active carbon fiber for polarizing electrode material - Google Patents

Acrylonitrile system active carbon fiber for polarizing electrode material

Info

Publication number
JPH0385711A
JPH0385711A JP1223951A JP22395189A JPH0385711A JP H0385711 A JPH0385711 A JP H0385711A JP 1223951 A JP1223951 A JP 1223951A JP 22395189 A JP22395189 A JP 22395189A JP H0385711 A JPH0385711 A JP H0385711A
Authority
JP
Japan
Prior art keywords
electrode material
acrylonitrile
carbon fiber
content
active carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1223951A
Other languages
Japanese (ja)
Other versions
JP2794463B2 (en
Inventor
Naoki Sakai
直樹 酒井
Kenji Shimazaki
賢司 島崎
Hiroyasu Ogawa
博靖 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP1223951A priority Critical patent/JP2794463B2/en
Publication of JPH0385711A publication Critical patent/JPH0385711A/en
Application granted granted Critical
Publication of JP2794463B2 publication Critical patent/JP2794463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To obtain a polarizing electrode which is suitable for an electric double-layer capacitor having a large capacitance and little self-discharge by a method wherein specific acrylonitrile system active carbon fiber is employed as polarizing electrode material. CONSTITUTION:The iron content of acrylonitrile system active carbon fiber, icluding a form of compound, must be less than 300ppm. If the iron content exceeds 300ppm, the tendency of self-discharge is increased and electric charge stored in a capacitor is rapidly reduced. Further, the total zinc content must be 500-4000ppm. If the zinc content is less than 500ppm, the electric resistance of the electrode material is increased and, if the zinc content exceeds 4000ppm, the increase of self-discharge can not neglected. Basically, the acrylonitrile system active carbon fiber is obtained by a known method wherein acrylonitrile system fiber is subjected to an oxidizing treatment in an oxidizing atmosphere and then subjected to an activating treatment in active gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分極性電極と電解液界面とで形成される電気
二重層を利用した電気二重層コンデ本発明のアクリロニ
トリル系活性炭素繊維を分極性電極材として使用した場
合、その、窒素、鉄、亜鉛の含有率を調整することによ
り、静電容置が大きく、かつ自己放電が少ない電気二重
層コンデンナを得ることができる。
Detailed Description of the Invention [Industrial Field of Application] The present invention is an electric double layer connector that uses an electric double layer formed between a polarizable electrode and an electrolyte interface. When used as a polar electrode material, an electric double layer capacitor with a large electrostatic capacity and low self-discharge can be obtained by adjusting the contents of nitrogen, iron, and zinc.

(従来技術と新知見) 電気二重層コンデンサは、コンデンサでありながら電池
に近い大容量を持つものとして、マイクロコンピュータ
のバンクアップ電源などに近年需要が増大している。
(Conventional technology and new knowledge) Although electric double layer capacitors are capacitors, they have a large capacity similar to that of batteries, and demand has been increasing in recent years for applications such as bank-up power supplies for microcomputers.

電気二重層コンデンサの容量は、基本的に分極性電極の
表面積に比例して増大するので、大容量を得るためには
分極性電極どして高い比表面積を有し、かつ、i#電性
を有する活性炭を用いるのが普通である。
The capacitance of an electric double layer capacitor basically increases in proportion to the surface area of the polarizable electrode, so in order to obtain a large capacitance, the polarizable electrode must have a high specific surface area and be It is common to use activated carbon with a

従来、この分極性電極材用活性炭として、炭素mu、特
に活性炭素mH(ACF) をフxルト状、クロス状、
ペーパー状、又はミルド化し用いることが広く行なわれ
てきた。
Conventionally, as activated carbon for polarizable electrode materials, carbon mu, especially activated carbon mH (ACF), has been used in the form of flutes, crosses,
It has been widely used in paper form or milled form.

繊維状である八C「を電極材として用いた場合には、特
公昭60−15138号公報に開示されているように、
加工性、利用効率及び単位体積あたりの容量の改善を図
ることができる。
When fibrous 8C is used as an electrode material, as disclosed in Japanese Patent Publication No. 60-15138,
Processability, utilization efficiency, and capacity per unit volume can be improved.

この他に、ミルド化したACFを用いた場合にも、特開
昭62−179711号公報に開示されているように、
より比表面積の大きなACFが使用可能となるため容量
の増大が期待できる。
In addition, even when milled ACF is used, as disclosed in JP-A-62-179711,
Since ACF with a larger specific surface area can be used, an increase in capacity can be expected.

このようにACFは電極材として好適であるが、より静
電容量が大きく自己放電が少ない電気二重層コンデンサ
を得るために、これまでもその使用形態や電極作成方法
については多くの提案がなされてきた。
As described above, ACF is suitable as an electrode material, but in order to obtain electric double layer capacitors with higher capacitance and less self-discharge, many proposals have been made regarding its usage and electrode fabrication methods. Ta.

しかし、電極材そのものであるACFの組成に着目した
例はなかった。
However, there has been no example focusing on the composition of ACF, which is the electrode material itself.

例えば、電気材料である以上、導電性を有する金属を含
有すれば、その含有率の電気的性質への影響が大きいこ
とが当然予想されるが、八〇Fの金属含有率に言及した
ものとして特開昭59−172230号公報があるもの
の、賦活に際しある種の金属塩を共存させるよう提案し
たその目的は、細孔径分布の改良されたACFを得るこ
とにあり、何らACFの組成そのものを規定するもので
はなかった。
For example, since it is an electrical material, if it contains a conductive metal, it is naturally expected that the content will have a large effect on the electrical properties, but when referring to the metal content of 80F, Although there is Japanese Unexamined Patent Publication No. 59-172230, the purpose of proposing the coexistence of a certain metal salt during activation is to obtain an ACF with improved pore size distribution, and does not specify the composition of the ACF itself. It wasn't something to do.

この点に鑑み、本発明者らは、電気二重層コンデンサの
静電容量の増大と自己放電の減少を分極性電極の材質の
面から検討したところ、特定のアクリロニトリル系AC
Fがこれら特性の改善に著しく有効であることを見出し
、その新知見に基づいて本発明に到達した。
In view of this, the present inventors investigated the increase in capacitance and the decrease in self-discharge of electric double layer capacitors from the viewpoint of the material of polarizable electrodes, and found that a specific acrylonitrile-based AC
We have discovered that F is extremely effective in improving these properties, and have arrived at the present invention based on this new finding.

(発明の目的〕 本発明は、分極性電極と電解液界面とで形成される電気
二重層を利用した電気二重層コンデンサの分極性電極利
用に使用される電極材、特に静電容量が大きく、かつ自
己放電の少ない分極性電極用電極材を提供することを目
的とする。
(Object of the Invention) The present invention relates to an electrode material used for a polarizable electrode of an electric double layer capacitor that utilizes an electric double layer formed by a polarizable electrode and an electrolytic solution interface, particularly a material having a large capacitance. Another object of the present invention is to provide an electrode material for a polarizable electrode that causes less self-discharge.

〔発明の構成〕[Structure of the invention]

本発明は下記の構成からなる。 The present invention consists of the following configuration.

窒素含有率4.5重量%以下、鉄含有率3ooppm以
下、かつ、亜鉛含有率500〜4000ppmであるこ
とを特徴とする電気二重層コンデンサの分極性電極材用
アクリロニトリル系活性炭素繊維。
An acrylonitrile activated carbon fiber for a polarizable electrode material of an electric double layer capacitor, characterized by having a nitrogen content of 4.5% by weight or less, an iron content of 3 ooppm or less, and a zinc content of 500 to 4000 ppm.

本発明においては、上記特定のアクリロニトリル系AC
Fであることが必要である。
In the present invention, the above-mentioned specific acrylonitrile-based AC
It is necessary to be F.

これ以外の炭素質材料では、好ましい電気的特性を発揮
する特定の含炭素分子構造や結晶構造が異なるため、少
なくとも単独では用いることができない。
Other carbonaceous materials cannot be used alone at least because they have different specific carbon-containing molecular structures and crystal structures that exhibit preferable electrical properties.

アクリロニトリル系ACFは原料のアクリロニトリルに
由来する窒素弁を有し、その含有率は0〜30重量%の
範囲で任意のものが得られるが、本発明の目的のために
は、窒素含有率が4.5重量%以下であることが必要で
ある。
Acrylonitrile-based ACF has a nitrogen valve derived from the raw material acrylonitrile, and any content can be obtained within the range of 0 to 30% by weight, but for the purpose of the present invention, nitrogen content of 4% is preferable. It is necessary that the amount is .5% by weight or less.

窒素含有率がこの値より大きくなるに従い、電気二重層
コンデンサの分極性電極として使用した場合の静電容量
が、急速に減少する。
As the nitrogen content becomes larger than this value, the capacitance when used as a polarizable electrode of an electric double layer capacitor rapidly decreases.

アクリロニトリル系ACFは各種の金属化合物を含有す
ることができるが、電気二重層コンデンサの電気的性能
に最も影響を与えるものとして鉄及び亜鉛、又は、その
化合物が特に注目される。
Acrylonitrile-based ACF can contain various metal compounds, but iron and zinc or their compounds are particularly noteworthy as they have the greatest influence on the electrical performance of electric double layer capacitors.

このうち本発明においては、化合物の形をとるものも含
め、AC「全体での鉄含有率が300ppIIILJ、
下であることが必要である。
Among these, in the present invention, AC "with a total iron content of 300 ppIIILJ, including those in the form of compounds,
It needs to be below.

鉄含有率がこの値を超えると自己放電の増大5 を招き、コンデンサの保持している電気量が時間の経過
とともに急速に減少し、実用に有利な範囲で容量を保持
することが困難となる。
If the iron content exceeds this value, self-discharge increases5 and the amount of electricity held by the capacitor rapidly decreases over time, making it difficult to maintain the capacity within a range that is advantageous for practical use. .

また、亜鉛含有率についても、ACFに含まれる亜鉛の
総量が500〜4000ppmであることが必要である
Moreover, regarding the zinc content, it is necessary that the total amount of zinc contained in the ACF is 500 to 4000 ppm.

亜鉛含有率が500ppm未満では、電極材の電気抵抗
が増大し、しかも電気抵抗は亜鉛含有率及び他の不純物
に敏感で変動しやすい。亜鉛含有率が4000ppmを
超すと、自己放電の増大が無視し得なくなる。
When the zinc content is less than 500 ppm, the electrical resistance of the electrode material increases, and the electrical resistance is sensitive to the zinc content and other impurities and easily fluctuates. When the zinc content exceeds 4000 ppm, the increase in self-discharge cannot be ignored.

亜鉛含有率が500〜4000ppmでは、その電極材
は実用にさしつかえない低い抵抗が安定して得られ、鉄
で見られるような放電特性の悪化も比較的小さい。
When the zinc content is 500 to 4000 ppm, the electrode material stably has a low resistance that is acceptable for practical use, and the deterioration in discharge characteristics as seen with iron is relatively small.

本発明で使用されるアクリロニトリル系AC「は、基本
的には、アクリロニトリル系繊維を酸化性雰囲気下で酸
化処理し、ついで、活性ガス中で賦活処理するという既
知の方法によって得られる。
Acrylonitrile AC used in the present invention is basically obtained by a known method of oxidizing acrylonitrile fibers in an oxidizing atmosphere and then activating them in an active gas.

−〇 ここに原料のアクリロニトリル系繊維は、本発明の窒素
含有率を満足させるためアクリロニトリルを少なくとも
80重量%以上含む重合体又は共重合体よりなり、過剰
な金属を除いた灰分l 08001〜0゜100重量%
のアクリロニトリル系繊維であり、このようなアクリロ
ニトリル系繊維は、アクリロニトリルや]モノマーの精
製を強化づることや、紡糸後の繊維の洗浄を強化するこ
とによって得られる。
-〇The raw material acrylonitrile fiber here is made of a polymer or copolymer containing at least 80% by weight of acrylonitrile in order to satisfy the nitrogen content of the present invention, and has an ash content of 08001~0° after removing excess metals. 100% by weight
These acrylonitrile fibers can be obtained by strengthening the purification of acrylonitrile and monomers and by strengthening the cleaning of the fibers after spinning.

アクリロニトリル系m維の酸化処理は、該繊維を酸化性
雰囲気中、200〜400℃に加熱処理することによっ
て行なわれる。酸化性雰囲気の媒体どしては、空気、酸
素、塩化水素、亜硫酸ガス又はこれらの混合ガスが用い
られるが、主とじで空気及び空気と窒素との混合ガスが
、経済性及び工程の安定性の点から最適である。
The oxidation treatment of the acrylonitrile-based m fibers is carried out by heating the fibers at 200 to 400°C in an oxidizing atmosphere. Air, oxygen, hydrogen chloride, sulfur dioxide gas, or a mixture of these gases are used as the medium for the oxidizing atmosphere, but air or a mixture of air and nitrogen gas is used for the main binding because of economical efficiency and process stability. It is optimal from this point of view.

得られた酸化繊維の賦活方法は、バッチ式又は連続式の
いずれも採用可能であるが、酸化繊細を賦活炉内へ連続
的に供給していく連続式が好ましい。
The method for activating the obtained oxidized fibers can be either a batch method or a continuous method, but a continuous method in which the oxidized fiber is continuously supplied into the activation furnace is preferable.

賦活ガスとしては、スチーム、二酸化炭素等が用いられ
るが、スチームを主にした二酸化炭素及び(又は〉窒素
の混合ガスを用いるのが好ましい。
As the activating gas, steam, carbon dioxide, etc. are used, but it is preferable to use a mixed gas of carbon dioxide and/or nitrogen, which is mainly steam.

賦活温度は800〜1100℃、特に900〜1000
℃が好ましい。
Activation temperature is 800-1100℃, especially 900-1000℃
°C is preferred.

賦活時間は、賦活湿度により異なるが、1〜120分が
好ましい。
The activation time varies depending on the activation humidity, but is preferably 1 to 120 minutes.

本発明では賦活温度及び賦活時間を調節することによっ
て、得られるアクリロニトリル系へ〇Fの窒素含有率を
必要な値に調節することが好ましい。
In the present invention, it is preferable to adjust the nitrogen content of the resulting acrylonitrile system to a required value by adjusting the activation temperature and activation time.

その際、ACFの比表面積は500〜1200m ’/
gの範囲にあることが好ましい。
At that time, the specific surface area of ACF is 500 to 1200 m'/
It is preferable that it is in the range of g.

本発明において規定される鉄及び亜鉛の含有率を達成す
るには、各種の方法がある。
There are various methods to achieve the iron and zinc content specified in the present invention.

例えば、鉄については製造装置からの混入により含有率
が過剰となることが懸念されるため、重合、紡糸、耐炎
化、賦活の各工程において、装置への鉄使用の制限、耐
蝕性材料の使用、塗装、工程の密閉化などの対策が有効
である。
For example, there is a concern that the iron content may be excessive due to contamination from manufacturing equipment, so in each process of polymerization, spinning, flame resistance, and activation, restrictions are placed on the use of iron in equipment, and the use of corrosion-resistant materials. , painting, and sealing the process are effective measures.

亜鉛を本発明所定の含有率に調節するためには、東金、
紡糸、耐炎化、賦活の各工程、又は、いずれかの]二程
にて、亜鉛又はその化合物をACF又はその前駆体、或
は、その原液に添加することか必要である。
In order to adjust the zinc content to the predetermined content of the present invention, Togane,
It is necessary to add zinc or a compound thereof to ACF or a precursor thereof, or a stock solution thereof at each step of spinning, flame resistance, and activation.

添加可能な亜鉛化合物としては、塩化亜鉛、水酸化亜鉛
、硫酸亜鉛、硝酸亜鉛などの塩類や、酸化亜鉛などがあ
るが、前駆体の原液の段階において、原液に溶解するよ
うな亜鉛化合物を添加する方法が均−組成のACFを得
るという点から望ましい。
Examples of zinc compounds that can be added include salts such as zinc chloride, zinc hydroxide, zinc sulfate, and zinc nitrate, as well as zinc oxide, but it is recommended to add zinc compounds that are soluble in the stock solution at the precursor stock solution stage. This method is desirable from the viewpoint of obtaining ACF with a uniform composition.

得られたACFの鉄又は亜鉛含有率が本発明で規定した
値を超えた場合には、これら含有率を規定の値まで減少
させるため、塩酸で洗浄する。
If the iron or zinc content of the obtained ACF exceeds the value specified in the present invention, it is washed with hydrochloric acid in order to reduce these contents to the specified value.

更に、上記ACF又はその微粉砕化物に粉末炭等の炭素
質材料を加え、よく混合したものを電極材に利用するこ
ともできる。
Furthermore, it is also possible to add a carbonaceous material such as powdered charcoal to the above-mentioned ACF or its finely pulverized product, and to use the mixture well for the electrode material.

その際、両者の混合を均一にするため、平均粒径が50
μm以下、好ましくは15μm以下にまで微粉砕化した
後混合することが望ましい。
At that time, in order to ensure uniform mixing of both, the average particle size was 50
It is desirable that the particles be pulverized to a size of 15 μm or less, preferably 15 μm or less, and then mixed.

ここでいう粉末炭等の炭素質飼料としては、木炭、ヤシ
ガラ炭、石炭又はその焼成物、石炭及び石油ピッチの焼
成物、或は、レーヨン繊組、フェノール繊維、ピッチ繊
維、アクリロニトリル系繊維などを焼成して得た炭素I
!雑又は活性炭素IM維などを用いることかできるが、
その組成は鉄含有率300ppm以下、亜鉛含有率50
0〜4000ppmが必要であり、灰分は5重量%以下
であることが好ましい。
The carbonaceous feed such as powdered charcoal mentioned here includes charcoal, coconut shell charcoal, coal or its burned products, burned products of coal and petroleum pitch, or rayon fibers, phenolic fibers, pitch fibers, acrylonitrile fibers, etc. Carbon I obtained by firing
! Although it is possible to use miscellaneous or activated carbon IM fibers,
Its composition is less than 300 ppm iron content and 50 ppm zinc content.
0 to 4000 ppm is required, and the ash content is preferably 5% by weight or less.

その場合にも、ACFと粉末炭との混合物全体の組成は
ACF単独の場合と同じく、窒素含有率4.5重量%以
下、鉄含有率300ppm以下、亜鉛含有率500〜4
000ppmを満足していることが必要である。
In that case, the overall composition of the mixture of ACF and powdered coal is the same as in the case of ACF alone, with a nitrogen content of 4.5% by weight or less, an iron content of 300ppm or less, and a zinc content of 500 to 4%.
It is necessary that the content satisfies 000 ppm.

〔発明の効果] 本発明のACFを用いれば、容量が大ぎく自己放電の少
ない電気二重層コンデンサに好適な分極性電極を得るこ
とができる。即ち、容量の0− 増大は電気二重層コンデンサの小型化に、自己放電の減
少は信頼性向上などに役立ち、電気重層コンデンサの産
業への応用を著しく容易にする。
[Effects of the Invention] By using the ACF of the present invention, it is possible to obtain a polarizable electrode suitable for an electric double layer capacitor having a large capacity and little self-discharge. That is, increasing the capacitance by 0- is useful for downsizing the electric double layer capacitor, and reducing self-discharge is useful for improving reliability, etc., and this greatly facilitates the industrial application of the electric double layer capacitor.

〔実施例及び比較例〕[Examples and comparative examples]

本発明における電気二重層コンデンサ用電極材の評価は
次の方法にて行なった。
Evaluation of the electrode material for an electric double layer capacitor in the present invention was performed by the following method.

即ち、ACFからなるフェルトを20mX2Cmの大き
さに切り出し、この2枚のシートを両極の分極性電極と
して用い、この2枚の間にテフロン製メンブランフィル
タ−(孔径3μm)を挾み、この両端をステンレスの針
金をリード線として持つステンレス金網で押え、これを
1mo Q/にの過塩素酸リチウム−プロピレンカーボ
ネト溶液30m2の中にいれ、電気二重層コンデンサと
した。
That is, felt made of ACF was cut out to a size of 20 m x 2 cm, these two sheets were used as polarizable electrodes, a Teflon membrane filter (pore diameter 3 μm) was sandwiched between these two sheets, and both ends of the sheet were cut out. This was held down with a stainless wire mesh having a stainless steel wire as a lead wire, and placed in 30 m2 of a 1 mo Q/2 lithium perchlorate-propylene carbonate solution to prepare an electric double layer capacitor.

以下、本発明の実施例を示す。なお、これらは実施例で
あって本発明はこの例に限定されるものではない。
Examples of the present invention will be shown below. Note that these are examples, and the present invention is not limited to these examples.

実施例1 アクリロニトリル91.51坦%、メチルメタクリレー
ト8.0重量%、アクリルア旦ド0.5重量%よりなる
共重合組成のポリマーに塩化亜鉛を加え、紡糸し、2重
電%塩酸を用いて洗浄を行ない、灰分量o、oos重量
%、54万デニールのアクリル繊維トウ(単糸Ili度
i、5d )を得た。このトウを空気中240℃で2時
間、更に270℃で0.5時間自由収縮率の70〜80
%になるような張力で酸化処理したところ、酸素結合量
18.5重量%の酸化繊維を得た。
Example 1 Zinc chloride was added to a copolymer composition consisting of 91.51% acrylonitrile, 8.0% by weight of methyl methacrylate, and 0.5% by weight of acrylic acid, spun, and spun using 2% hydrochloric acid. After washing, an acrylic fiber tow (single yarn Ili degree i, 5d) having an ash content o, oos weight %, and 540,000 denier was obtained. This tow was heated in air at 240°C for 2 hours, and then at 270°C for 0.5 hours at a free shrinkage rate of 70 to 80.
When the fibers were oxidized under a tension such that the amount of oxygen bonded was 18.5% by weight, an oxidized fiber with an oxygen bond amount of 18.5% by weight was obtained.

更に、この酸化繊維を賦活温度920℃、炉内圧0.0
05kg/ cm’ にて賦活ガス(口20 / CO
’ /N2= 5/ 1/ 1)により連続的に賦活し
た。
Furthermore, this oxidized fiber was activated at a temperature of 920°C and a furnace pressure of 0.0.
05 kg/cm' with activation gas (20/CO
'/N2=5/1/1).

その際、賦活時間を変えることにより、窒素含有率の異
なる5種類のACF)−ウ(A−E)を得た。
At that time, five types of ACF)-U(A-E) with different nitrogen contents were obtained by changing the activation time.

製造にあたっては、対腐蝕性の対策を施した装置を十分
浄化した後用い、不純物の混入を防いだ。
During manufacturing, equipment with anti-corrosion measures was used after thorough purification to prevent contamination with impurities.

得られたACFは、繊維径5〜14μm1密度1.9〜
2.1g /cm’の範囲にあった。このACFトウよ
りフェルトを作成した後、前述の方法に従い電気二重層
コンデンサとし、その静電容量(F/+1>を測定した
The obtained ACF has a fiber diameter of 5 to 14 μm and a density of 1.9 to 14 μm.
It was in the range of 2.1 g/cm'. After making felt from this ACF tow, it was made into an electric double layer capacitor according to the method described above, and its capacitance (F/+1>) was measured.

その静電容量は第1表に示すごとくであり、窒素含有率
が低いほど同一構造のコンデンサでも大きな静電容量が
得られ好都合である。
The capacitance is as shown in Table 1, and it is advantageous that the lower the nitrogen content, the larger the capacitance can be obtained even with a capacitor of the same structure.

第1表 実施例2 実施例1にて得たACFフェルトのうち前記(A)を試
料として用い、5重量%塩化鉄水溶液に浸漬したもの(
F)、5重量%塩化亜鉛水溶液に浸漬したもの〔G〕、
多量の10重量%塩3− 化水素水溶液にて煮沸したもの〔口〕を得た。
Table 1 Example 2 Among the ACF felts obtained in Example 1, the sample (A) was immersed in a 5% by weight iron chloride aqueous solution (
F), immersed in 5% by weight zinc chloride aqueous solution [G],
A large amount of 10% by weight salt 3-hydrogen hydride aqueous solution was boiled to obtain the product.

各試料につき自己放電率を測定した結果を、その鉄及び
亜鉛含有率とともに第2表に示す。
The results of measuring the self-discharge rate of each sample are shown in Table 2 along with their iron and zinc contents.

本発明の鉄及び亜鉛含有率を満足したへ〇Fフェルトの
みが自己放電(率)が少なく、充電後圧時間を経ても良
くその容量を保持し、実用性に優れている。
Only the F felt that satisfies the iron and zinc content of the present invention has a low self-discharge (rate), retains its capacity even after charging for a long time, and is excellent in practicality.

第2表 ここで自己放電率とは次式で示す値である。Table 2 Here, the self-discharge rate is a value expressed by the following formula.

実施例3 実施例1にて得たへ〇Fトウのうち(A)を試料として
用い、これをボールミルにて微粉砕14− 化し平均粒径3μmのACF粉末とした。
Example 3 Of the 〇F tow obtained in Example 1, (A) was used as a sample, and this was pulverized to 14-mm in a ball mill to obtain ACF powder with an average particle size of 3 μm.

別に、灰分1.3銀星%、鉄含有率210ppm、亜鉛
含有率70ppmであり、平均粒径が2.5μmである
ヤシガラ炭粉末を用意した。
Separately, coconut husk charcoal powder was prepared which had an ash content of 1.3% silver, an iron content of 210 ppm, a zinc content of 70 ppm, and an average particle size of 2.5 μm.

ACF粉末にヤシガラ炭粉末を2:1の比率にて加え、
得られた混合物にポリテトラフルオロエチレンからなる
人造ラテックスを加え攪拌し、ついで乾燥させ、更にプ
レス機にて加圧成型し、これを分極性電極として用い、
前述の方法により電気二重層コンデンサとした。
Add coconut husk charcoal powder to ACF powder at a ratio of 2:1,
An artificial latex made of polytetrafluoroethylene was added to the resulting mixture, stirred, dried, and then pressure-molded in a press, which was then used as a polarizable electrode.
An electric double layer capacitor was prepared by the method described above.

得られた電気二重層コンデンサにおける、電極中に含ま
れる炭素質混合物の単位質量あたりの静電容量を、炭素
質混合物中のACF粉末とヤシガラ炭の混合比率、及び
、その窒素含有率とともに第3表に示す。
In the obtained electric double layer capacitor, the capacitance per unit mass of the carbonaceous mixture contained in the electrode was determined by the third method, along with the mixing ratio of ACF powder and coconut husk charcoal in the carbonaceous mixture, and its nitrogen content. Shown in the table.

第3表の結果から、ACF粉末にヤシガラ炭を混合して
も、前記、特定の組成を満足していれば電極材として、
静電容量に何ら遜色ないことが明らかである。
From the results in Table 3, even if coconut husk charcoal is mixed with ACF powder, it can be used as an electrode material as long as it satisfies the above-mentioned specific composition.
It is clear that there is no inferiority in capacitance.

第 表 これらの表より明らかなように、本発明の八〇Fを用い
れば、容量が大きく、自己放電の少ない電気二重層コン
デンサに好適な分極性電極を得ることができる。
Table 1 As is clear from these tables, by using 80F of the present invention, it is possible to obtain a polarizable electrode suitable for electric double layer capacitors having a large capacity and little self-discharge.

Claims (1)

【特許請求の範囲】[Claims]  窒素含有率4.5重量%以下、鉄含有率300ppm
以下、かつ、亜鉛含有率500〜4000ppmである
ことを特徴とする電気二重層コンデンサの分極性電極材
用アクリロニトリル系活性炭素繊維。
Nitrogen content 4.5% by weight or less, iron content 300ppm
An acrylonitrile-based activated carbon fiber for a polarizable electrode material of an electric double layer capacitor, which has the following properties and a zinc content of 500 to 4000 ppm.
JP1223951A 1989-08-30 1989-08-30 Acrylonitrile activated carbon fiber for polarizable electrode material Expired - Fee Related JP2794463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223951A JP2794463B2 (en) 1989-08-30 1989-08-30 Acrylonitrile activated carbon fiber for polarizable electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223951A JP2794463B2 (en) 1989-08-30 1989-08-30 Acrylonitrile activated carbon fiber for polarizable electrode material

Publications (2)

Publication Number Publication Date
JPH0385711A true JPH0385711A (en) 1991-04-10
JP2794463B2 JP2794463B2 (en) 1998-09-03

Family

ID=16806254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223951A Expired - Fee Related JP2794463B2 (en) 1989-08-30 1989-08-30 Acrylonitrile activated carbon fiber for polarizable electrode material

Country Status (1)

Country Link
JP (1) JP2794463B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391433A (en) * 1991-11-29 1995-02-21 Mitsubishi Pencil Kabushiki Kaisha Carbon material for electrodes and process for preparing it
US6309428B1 (en) * 1998-11-25 2001-10-30 Ngk Insulators, Ltd. Method for producing electrochemical capacitor
EP1296338A1 (en) * 2001-08-23 2003-03-26 Asahi Glass Company Ltd. Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor
JP2008007383A (en) * 2006-06-30 2008-01-17 Tokyo Yogyo Co Ltd Method of manufacturing ceramic structure and ceramic structure
JP2008141116A (en) * 2006-12-05 2008-06-19 Gunma Univ Carbon material for electric double-layer capacitor, manufacturing method therefor and the electric double-layer capacitor using the carbon material
JP2013507500A (en) * 2009-10-15 2013-03-04 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング COMPOSITE MATERIAL HAVING GRAPHENE LAYER AND PRODUCTION AND USE THEREOF
CN112331484A (en) * 2020-10-28 2021-02-05 成都先进金属材料产业技术研究院有限公司 Nano zinc oxide-zinc doped carbon fiber felt composite electrode material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391433A (en) * 1991-11-29 1995-02-21 Mitsubishi Pencil Kabushiki Kaisha Carbon material for electrodes and process for preparing it
US6309428B1 (en) * 1998-11-25 2001-10-30 Ngk Insulators, Ltd. Method for producing electrochemical capacitor
EP1296338A1 (en) * 2001-08-23 2003-03-26 Asahi Glass Company Ltd. Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor
JP2008007383A (en) * 2006-06-30 2008-01-17 Tokyo Yogyo Co Ltd Method of manufacturing ceramic structure and ceramic structure
JP2008141116A (en) * 2006-12-05 2008-06-19 Gunma Univ Carbon material for electric double-layer capacitor, manufacturing method therefor and the electric double-layer capacitor using the carbon material
JP2013507500A (en) * 2009-10-15 2013-03-04 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング COMPOSITE MATERIAL HAVING GRAPHENE LAYER AND PRODUCTION AND USE THEREOF
CN112331484A (en) * 2020-10-28 2021-02-05 成都先进金属材料产业技术研究院有限公司 Nano zinc oxide-zinc doped carbon fiber felt composite electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP2794463B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP3446339B2 (en) Activated carbon production method
JP3791180B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
KR100569188B1 (en) Carbon-porous media composite electrode and preparation method thereof
US7309543B2 (en) Layered lithium-nickel-based compound oxide powder and its production process
EP1526114A1 (en) Activated carbon, method for production thereof, polarized electrode and electrical double layer capacitor
JP2014130844A (en) Method for manufacturing electrode of lithium ion secondary battery and lithium ion secondary battery
JPWO2006057240A1 (en) Inorganic fiber paper
CN112751003B (en) Carbon-coated lithium iron phosphate and preparation method thereof, lithium iron phosphate positive plate and lithium iron phosphate battery
JP4434727B2 (en) Alkaline battery with improved cathode
JPWO2011068215A1 (en) Binder particles for electrochemical devices
JPH0385711A (en) Acrylonitrile system active carbon fiber for polarizing electrode material
CN109665523A (en) A kind of preparation method and supercapacitor of graphene composite stone oil coke matrix activated carbon
JP2012094331A (en) Manufacturing method of electrode for electricity-storage devices, electrode for electricity-storage device, and electricity-storage device
CN113544888B (en) Carbon electrode material and redox cell
CA2288157A1 (en) Vinylidene fluoride polymer-based binder solution and electrode-forming composition
JP2001122607A (en) Activated carbon powder and method of menufacturing the same
JP4179581B2 (en) Activated carbon, its production method and its use
JP4138510B2 (en) Polyacrylonitrile-based carbon fiber sheet and method for producing the same
JPS6350447B2 (en)
JP2007158163A (en) Electrode sheet and its manufacturing method
KR100513209B1 (en) Supercapacitor and methods for manufacturing Ruthenium Oxide and Electrode used in the Supercapacitor
JP2858605B2 (en) Alkaline battery separator
WO2024154809A1 (en) Fluoropolymer composition, binder for electrochemical device, electrode mixture, electrode, and secondary battery
WO2024154810A1 (en) Tetrafluoroethylene-based polymer composition, binder for electrochemical devices, electrode mix, electrode, and secondary battery
CN109665524A (en) A kind of preparation method and supercapacitor of small particle graphene composite stone oil coke matrix activated carbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees