JP2008007383A - Method of manufacturing ceramic structure and ceramic structure - Google Patents

Method of manufacturing ceramic structure and ceramic structure Download PDF

Info

Publication number
JP2008007383A
JP2008007383A JP2006181067A JP2006181067A JP2008007383A JP 2008007383 A JP2008007383 A JP 2008007383A JP 2006181067 A JP2006181067 A JP 2006181067A JP 2006181067 A JP2006181067 A JP 2006181067A JP 2008007383 A JP2008007383 A JP 2008007383A
Authority
JP
Japan
Prior art keywords
ceramic powder
ceramic
water
molded body
ceramic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006181067A
Other languages
Japanese (ja)
Inventor
Osamu Takagi
修 高木
Hidenori Nishikawa
英宣 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2006181067A priority Critical patent/JP2008007383A/en
Publication of JP2008007383A publication Critical patent/JP2008007383A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a ceramic structure free from swelling even under a humid atmosphere where moisture is present in the surroundings. <P>SOLUTION: The method of manufacturing the ceramic structure has the steps of: manufacturing a hard porous carbon material (RB ceramic) powder; forming the RB ceramic powder into a green body having a prescribed shape; and firing the green body, wherein a step of washing the RB ceramic powder and/or the green body with water is provided before the step of firing the green body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、米ぬかを原料とする硬質多孔性炭素材料(RBセラミックス)を用いたセラミックス構造物を製造する製造方法に関する。   The present invention relates to a manufacturing method for manufacturing a ceramic structure using a hard porous carbon material (RB ceramics) made from rice bran.

近年、摺動部材に使用可能な新規な素材として、米ぬかを原料とする硬質多孔性炭素材料(以下、RBセラミックスと称する)が開発されている。このRBセラミックスの製造方法は、たとえば、特許文献1に開示されている。   In recent years, a hard porous carbon material (hereinafter referred to as RB ceramics) using rice bran as a raw material has been developed as a new material that can be used for a sliding member. This manufacturing method of RB ceramics is disclosed by patent document 1, for example.

特許文献1には、粒度を調整した米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えて混練する工程、熱硬化性樹脂等の混練された麩糠類を所定粒度以下に造粒する工程、それら粒状物を所望する金型内に充填した上、加圧、脱気しながら成形する工程、金型から脱型した成形品を不活性ガス雰囲気中または真空中で所定の昇温速度に従って所望する最終焼成温度にまで達しさせて焼成、炭化する工程、および最終焼成温度から所定降温速度で常温まで冷却する工程とからなる多孔性炭素材製品の製造方法が開示されている。   Patent Document 1 includes kneading a koji by adding a thermosetting resin and an appropriate amount of an aqueous solution containing paste or water to koji such as rice bran and koji with adjusted particle size, and kneading a thermosetting resin and the like. A process of granulating porridges to a predetermined particle size or less, a step of filling the granule in a desired mold and then molding while pressing and degassing, an inert gas from the molded product demolded from the mold Porous carbon material product comprising the steps of firing and carbonizing by reaching a desired final firing temperature according to a predetermined temperature increase rate in an atmosphere or vacuum, and a step of cooling from the final firing temperature to room temperature at a predetermined temperature decrease rate A manufacturing method is disclosed.

そして、このような製造方法で製造されたRBセラミックスは、軽量、高強度、高硬度、高耐摩耗性等の効果を発揮する。これらの効果により、上記したように摺動部材に使用される。   And RB ceramics manufactured with such a manufacturing method show effects, such as light weight, high intensity, high hardness, and high abrasion resistance. Due to these effects, the sliding member is used as described above.

しかしながら、RBセラミックスは、周囲の水分を吸収して膨潤するという問題があった。つまり、膨潤を生じると、RBセラミックスの製品全体の外形が変化し、所望の摺動特性が得られなくなっていた。
特開平10−101453号公報
However, RB ceramics have a problem that they swell by absorbing surrounding moisture. That is, when swelling occurs, the external shape of the entire RB ceramic product changes, and desired sliding characteristics cannot be obtained.
JP-A-10-101453

本発明は上記実状に鑑みてなされたものであり、周囲に水分の存在する湿潤環境においても膨潤しないセラミックス構造物の製造方法を提供することを課題とする。   This invention is made | formed in view of the said actual condition, and makes it a subject to provide the manufacturing method of the ceramic structure which does not swell also in the humid environment where moisture exists in the circumference | surroundings.

上記課題を解決するために、本発明者らはRBセラミックスによるセラミックス構造物について検討を重ねた結果、RBセラミックスに含まれる水溶性の不純物が周囲の水分を吸収することに着目し、この不純物を除去する工程を有することで上記課題を解決できることを見出した。   In order to solve the above-mentioned problems, the present inventors have studied ceramic structures made of RB ceramics, and as a result, paying attention to the fact that water-soluble impurities contained in RB ceramics absorb the surrounding water. It has been found that the above-described problem can be solved by having a step of removing.

すなわち、本発明のセラミックス構造物の製造方法は、RBセラミックス粉末を製造する工程と、RBセラミックス粉末を所定の形状に成形する工程と、成形体を焼成する工程と、を有するセラミックス構造物の製造方法において、成形体を焼成する工程の前に、RBセラミックス粉末および/または成形体を水で洗浄する工程を有する。   That is, the method for manufacturing a ceramic structure according to the present invention includes the steps of manufacturing an RB ceramic powder, a step of forming the RB ceramic powder into a predetermined shape, and a step of firing the formed body. The method includes a step of washing the RB ceramic powder and / or the molded body with water before the step of firing the molded body.

また、本発明のセラミックス構造物は、RBセラミックス粉末を製造する工程と、RBセラミックス粉末を水で洗浄する工程と、RBセラミックス粉末を所定の形状に成形し、成形体を焼成する工程と、が施されてなることを特徴とする。   The ceramic structure of the present invention includes the steps of producing RB ceramic powder, washing the RB ceramic powder with water, and molding the RB ceramic powder into a predetermined shape and firing the molded body. It is characterized by being applied.

本発明の製造方法およびセラミックス構造物は、焼成前にRBセラミックス粉末および/または成形体を水で洗浄する工程を有する。この工程により、焼成前の成形体中に不純物が含まれなくなる。この結果、RBセラミックス中の不純物が周囲の水分を吸収しなくなり、形状の変化の抑えられた構造物が得られる。   The production method and ceramic structure of the present invention include a step of washing the RB ceramic powder and / or the molded body with water before firing. By this step, impurities are not contained in the molded body before firing. As a result, the impurities in the RB ceramics do not absorb the surrounding moisture, and a structure in which the shape change is suppressed is obtained.

(製造方法)
本発明の製造方法は、RBセラミックス粉末を製造する工程、RBセラミックス粉末を所定の形状に成形する工程、成形体を焼成する工程、を有する。
(Production method)
The production method of the present invention includes a step of producing an RB ceramic powder, a step of shaping the RB ceramic powder into a predetermined shape, and a step of firing the molded body.

RBセラミックス粉末の製造方法は、特に限定されるものではなく、従来公知の製造方法、たとえば、上記の特許文献1に記載の製造方法を用いることができる。また、製造されるRBセラミックス粉末の粒径は、特に限定されるものではない。つまり、セラミックス構造物の製造が可能となる粒径とすることができる。ここで、RBセラミックス粉末の粒径は、その後の工程での洗浄が容易となることから、小さいほど好ましい。   The manufacturing method of RB ceramic powder is not specifically limited, A conventionally well-known manufacturing method, for example, the manufacturing method of said patent document 1, can be used. Further, the particle size of the produced RB ceramic powder is not particularly limited. That is, the particle size can be made such that the ceramic structure can be manufactured. Here, the particle size of the RB ceramic powder is preferably as small as possible because cleaning in the subsequent steps becomes easy.

RBセラミックス粉末を所望の形状に成形する成形方法は、特に限定されるものではなく、従来公知の方法を用いることができる。成形方法は、たとえば、CIP成形、油圧プレス成形、射出成形、押出成形を挙げることができる。   The forming method for forming the RB ceramic powder into a desired shape is not particularly limited, and a conventionally known method can be used. Examples of the molding method include CIP molding, hydraulic press molding, injection molding, and extrusion molding.

RBセラミックス粉末の成形体を焼成する方法は、特に限定されるものではなく、従来公知の方法を用いることができる。たとえば、所定の雰囲気に調節した炉内で加熱する方法をあげることができる。   The method for firing the compact of the RB ceramic powder is not particularly limited, and a conventionally known method can be used. For example, a method of heating in a furnace adjusted to a predetermined atmosphere can be given.

そして、本発明の製造方法は、成形体を焼成する工程の前に、RBセラミックス粉末および/または成形体を水で洗浄する工程を有する。RBセラミックス粉末および/または成形体を水で洗浄すると、RBセラミックス粉末(および/または成形体)中に含まれる水溶性の不純物が溶出する。これにより、RBセラミックス粉末(および/または成形体)中の不純物が除去される。RBセラミックス粉末(および/または成形体)から水溶性の不純物を除去することで、その後の工程を施して製造されるセラミックス構造物が水溶性の不純物を含まなくなり、この結果、水分を吸収して膨潤することが抑えられる。   And the manufacturing method of this invention has the process of wash | cleaning RB ceramic powder and / or a molded object with water before the process of baking a molded object. When the RB ceramic powder and / or the molded body are washed with water, water-soluble impurities contained in the RB ceramic powder (and / or the molded body) are eluted. Thereby, impurities in the RB ceramic powder (and / or the molded body) are removed. By removing the water-soluble impurities from the RB ceramic powder (and / or the molded body), the ceramic structure produced by performing the subsequent process does not contain water-soluble impurities, and as a result, absorbs moisture. Swelling is suppressed.

RBセラミックス粉末(および/または成形体)の洗浄は、RBセラミックス粉末(および/または成形体)中の水溶性の不純物を溶出させることができる洗浄方法であれば、その方法が限定されるものではない。たとえば、流水中にRBセラミックス粉末(および/または成形体)を配置して連続的に洗浄する方法でも、貯留された水中にRBセラミックス粉末(および/または成形体)を投入して攪拌した後に濾別することを繰り返す洗浄方法でも、いずれの方法でもよい。   The cleaning of the RB ceramic powder (and / or molded body) is not limited as long as it is a cleaning method capable of eluting water-soluble impurities in the RB ceramic powder (and / or molded body). Absent. For example, even in a method in which RB ceramic powder (and / or compact) is placed in running water and washed continuously, the RB ceramic powder (and / or compact) is charged into the stored water and stirred, and then filtered. Any cleaning method may be used.

なお、本発明の製造方法において、RBセラミックス粉末(および/または成形体)を洗浄する水とは、純水だけでなく、水溶性の物質を溶解できる水系溶液を含む。より好ましくは、脱イオン水あるいは純水である。   In the production method of the present invention, the water for washing the RB ceramic powder (and / or the molded body) includes not only pure water but also an aqueous solution capable of dissolving a water-soluble substance. More preferably, it is deionized water or pure water.

RBセラミックス粉末および/または成形体の洗浄は、RBセラミックス粉末および/または成形体を水洗した溶液の電気伝導度が100μS/cm以下になるまで行われることが好ましい。水洗した溶液(洗浄後の溶液)の電気伝導度が100μS/cm以下となるまで水洗を行うことで、RBセラミックス粉末(および/または成形体)中の水溶性不純物が除去できる。ここで、水洗した溶液の電気伝導度は、RBセラミックス中の水溶性不純物に起因する。より具体的には、水洗すると、RBセラミックス中の水溶性の不純物が洗浄水に溶出する。不純物が溶出すると、洗浄水の電気伝導度が上昇する。この電気伝導度は、溶出した不純物量と相関関係を持つ。つまり、RBセラミックス粉末から溶出した不純物が少なくなると、電気伝導度が低下する。電気伝導度が100μS/cm以下となることで、RBセラミックス中の不純物が溶出し終わったと判断できる。本発明の製造方法において、水洗した溶液の電気伝導度は、低ければ低いほど好ましく、50μS/cmがより好ましい。   The cleaning of the RB ceramic powder and / or the molded body is preferably performed until the electric conductivity of the solution obtained by washing the RB ceramic powder and / or the molded body with water becomes 100 μS / cm or less. By performing water washing until the electrical conductivity of the washed solution (solution after washing) becomes 100 μS / cm or less, water-soluble impurities in the RB ceramic powder (and / or the molded body) can be removed. Here, the electrical conductivity of the washed solution is due to water-soluble impurities in the RB ceramics. More specifically, when washed with water, water-soluble impurities in the RB ceramic are eluted into the washing water. As impurities are eluted, the electrical conductivity of the washing water increases. This electrical conductivity has a correlation with the amount of eluted impurities. That is, when the amount of impurities eluted from the RB ceramic powder decreases, the electrical conductivity decreases. It can be judged that the impurities in the RB ceramic have been eluted when the electric conductivity is 100 μS / cm or less. In the production method of the present invention, the electric conductivity of the solution washed with water is preferably as low as possible, and more preferably 50 μS / cm.

本発明の製造方法において、焼成前に施される洗浄工程は、成形体の成形前に施されることが好ましい。つまり、RBセラミックス粉末の状態で洗浄を行うことで、RBセラミックス中の不純物の除去が容易となる。   In the production method of the present invention, it is preferable that the washing step performed before firing is performed before the molded body is molded. That is, by cleaning in the state of the RB ceramic powder, it becomes easy to remove impurities in the RB ceramic.

本発明の製造方法において、成形体の焼成前に、成形体を予備する工程を有することが好ましい。予備乾燥を行うことで、焼成時に大きな形状変化が発生することを抑えることができる。   In the production method of the present invention, it is preferable to have a step of preliminarily molding the molded body before firing the molded body. By performing preliminary drying, it is possible to suppress the occurrence of a large shape change during firing.

(セラミックス構造物)
本発明のセラミックス構造物は、本発明のセラミックス構造物は、上記の製造方法により製造されたセラミックス構造物である。つまり、焼成前に水で洗浄する工程が施されている。この結果、構造物が水溶性の不純物を含んでおらず、周囲の水分を吸収して膨潤することが抑えられた構造物となっている。
(Ceramic structure)
The ceramic structure of the present invention is a ceramic structure manufactured by the above manufacturing method. That is, a step of washing with water before firing is performed. As a result, the structure does not contain water-soluble impurities, and the structure is suppressed from absorbing and swelling around the surrounding water.

本発明のセラミックス構造物は、摺動部材であることが好ましい。RBセラミックス自身が軽量、高強度、高硬度、高耐摩耗性等の効果を発揮することから、このRBセラミックスを原料として製造したセラミックス構造物は、特に摺動部材に用いることが好ましい。本発明のセラミックス構造物が形成できる摺動部材としては、例えば、スターリングエンジンのピストン、スリーブ、シリンダー、ディスプレーサ、リップシール等を挙げることができる。   The ceramic structure of the present invention is preferably a sliding member. Since the RB ceramic itself exhibits effects such as light weight, high strength, high hardness, and high wear resistance, the ceramic structure manufactured using the RB ceramic as a raw material is particularly preferably used for the sliding member. Examples of the sliding member that can form the ceramic structure of the present invention include a Stirling engine piston, sleeve, cylinder, displacer, and lip seal.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例として、RBセラミックスよりなるセラミックス構造物を製造した。   As an example of the present invention, a ceramic structure made of RB ceramics was manufactured.

(実施例1)
まず、米ぬかを用いてRBセラミックス粉末を製造した。RBセラミックス粉末の製造は、以下に記載の方法でなされた。
(Example 1)
First, RB ceramics powder was manufactured using rice bran. The production of the RB ceramic powder was performed by the method described below.

RBセラミックス粉末は、米ぬかから油分を抽出した脱脂ぬかとフェノール樹脂とを混合してロータリーキルン炉で連続焼成を行い、粉砕、選別を行うことで製造できる。本実施例においては、RBセラミックス粉末は、市販品(三和油脂株式会社製、商品名:RBC)を用いた。   The RB ceramic powder can be produced by mixing defatted bran extracted from rice bran and phenol resin, performing continuous firing in a rotary kiln furnace, pulverizing and sorting. In this example, a commercially available product (manufactured by Sanwa Oil Co., Ltd., trade name: RBC) was used as the RB ceramic powder.

つづいて、製造されたRBセラミックス粉末を水で洗浄する。RBセラミックス粉末の洗浄は、以下に記載の方法でなされた。この洗浄は、洗浄後のRBセラミックス粉末を濾別し、濾液の電気伝導度が100μS/cm以下となるまで繰り返し行われた。ここで、RBセラミックス粉末の洗浄は、アスピレータによる吸引濾過を行うことでなされた。   Subsequently, the produced RB ceramic powder is washed with water. The RB ceramic powder was cleaned by the method described below. This washing was repeated until the washed RB ceramic powder was filtered off and the electric conductivity of the filtrate was 100 μS / cm or less. Here, the cleaning of the RB ceramic powder was performed by suction filtration with an aspirator.

その後、120℃で12時間乾燥した後に、ボールミルで粉砕した。粉砕後のRBセラミックスは、平均粒径が約50μmであった。   Then, after drying at 120 degreeC for 12 hours, it grind | pulverized with the ball mill. The RB ceramics after pulverization had an average particle size of about 50 μm.

粉砕後のRBセラミックス粉末を紙(段ボール)で形成した型内に投入し、この成形型をゴム製の袋に入れる。その後、264.9MPa(2.7t/cm2)の成形圧力でCIP成形を行った。 The RB ceramic powder after pulverization is put into a mold made of paper (corrugated cardboard), and this mold is put in a rubber bag. Thereafter, CIP molding was performed at a molding pressure of 264.9 MPa (2.7 t / cm 2 ).

成形体に脱脂・焼成を施した。この脱脂焼成は、成形体を900℃で加熱する炭化処理を施すことで行われた。この加熱により、成形体に含まれるフェノール樹脂の脱脂が行われた。   The molded body was degreased and fired. This degreasing firing was performed by subjecting the molded body to carbonization treatment by heating at 900 ° C. By this heating, degreasing of the phenol resin contained in the molded body was performed.

これにより、本実施例のセラミックス構造物が製造できた。   Thereby, the ceramic structure of the present Example was able to be manufactured.

(実施例2)
RBセラミックス粉末の原料を米ぬかを、吟醸酒の製造のための精米時に発生する米ぬかとした以外は、実施例1と同様の方法でセラミックス構造物を製造した。本実施例においても、実施例1の時と同様に、RBセラミックス粉末は、市販品(三和油脂株式会社製、商品名:GRBC)を用いた。本実施例のRBセラミックス粉末は、原料のフェノール樹脂にNaが含まれないこと以外は、実施例1と同様なRBセラミックス粉末である。
(Example 2)
A ceramic structure was produced in the same manner as in Example 1, except that the rice bran was used as the raw material for the RB ceramic powder, and the rice bran generated during the milling for the production of ginjo sake was used. Also in this example, as in Example 1, a commercially available product (manufactured by Sanwa Oil Co., Ltd., trade name: GRBC) was used as the RB ceramic powder. The RB ceramic powder of this example is the same RB ceramic powder as that of Example 1 except that Na is not contained in the raw material phenol resin.

(実施例3)
RBセラミックス粉末の原料を米ぬかを、もみ殻に由来する米ぬかとした以外は、実施例1と同様の方法でセラミックス構造物を製造した。本実施例においても、実施例1の時と同様に、RBセラミックス粉末は、市販品(三和油脂株式会社製、商品名:RHC)を用いた。本実施例のRBセラミックス粉末は、原料のフェノール樹脂にNaが含まれないこと以外は、実施例1と同様なRBセラミックス粉末である。また、もみ殻に由来の米ぬかとは、玄米を白米に精米する過程で出る米ぬかであり、ペクチン、セルロース、リクシン等の高分子物質を主成分としている。
(Example 3)
A ceramic structure was produced in the same manner as in Example 1 except that rice bran was used as the raw material for the RB ceramic powder, and rice bran derived from rice husk was used. Also in this example, as in Example 1, a commercially available product (trade name: RHC, manufactured by Sanwa Oil Co., Ltd.) was used as the RB ceramic powder. The RB ceramic powder of this example is the same RB ceramic powder as that of Example 1 except that Na is not contained in the raw material phenol resin. Rice bran derived from rice husk is a rice bran produced in the process of milling brown rice into white rice, and is mainly composed of a high-molecular substance such as pectin, cellulose, or lyxin.

(比較例1)
RBセラミックス粉末の洗浄を行わなかった以外は実施例1と同様の方法でセラミックス構造物を製造した。
(Comparative Example 1)
A ceramic structure was manufactured in the same manner as in Example 1 except that the RB ceramic powder was not washed.

(比較例2)
RBセラミックス粉末の洗浄を行わなかった以外は実施例2と同様の方法でセラミックス構造物を製造した。
(Comparative Example 2)
A ceramic structure was manufactured in the same manner as in Example 2 except that the RB ceramic powder was not washed.

(比較例3)
RBセラミックス粉末の洗浄を行わなかった以外は実施例3と同様の方法でセラミックス構造物を製造した。
(Comparative Example 3)
A ceramic structure was manufactured in the same manner as in Example 3 except that the RB ceramic powder was not washed.

(評価)
実施例および比較例のセラミックス構造物の評価として、膨潤性の評価を行った。
(Evaluation)
Swellability was evaluated as an evaluation of the ceramic structures of the examples and comparative examples.

膨潤性の評価は、具体的には、各セラミックス構造物から40×10×10mmのサンプルを切り出し、120℃で24時間保持して乾燥させた。その後、室温に保持された水中にこのサンプルを浸漬して24時間保持した。その後、再び、120℃で24時間の乾燥、室温で24時間の水への浸漬を繰り返し、120℃で24時間保持して乾燥させた。乾燥後の形状を測定し、膨潤前後での各辺の長さの変化率を求め、膨潤率とした。膨潤率の測定結果を図1に示した。   Specifically, the swelling property was evaluated by cutting a 40 × 10 × 10 mm sample from each ceramic structure and holding it at 120 ° C. for 24 hours for drying. Then, this sample was immersed in water kept at room temperature and kept for 24 hours. Thereafter, drying was repeated again at 120 ° C. for 24 hours, and immersion in water at room temperature for 24 hours was repeated and kept at 120 ° C. for 24 hours for drying. The shape after drying was measured, and the rate of change of the length of each side before and after swelling was determined to obtain the swelling rate. The measurement result of the swelling rate is shown in FIG.

図1に示したように、RBセラミックス粉末の洗浄を行った各実施例のセラミックスは、洗浄を行わなかった各比較例のセラミックスと比較すると、膨潤率が低下していることがわかる。つまり、各実施例のセラミックスは、周囲の水分による膨潤が抑えられたセラミックスとなっていることがわかる。   As shown in FIG. 1, it can be seen that the ceramics of each of the examples in which the RB ceramic powder was washed had a reduced swelling rate as compared with the ceramics of each comparative example that was not washed. That is, it can be seen that the ceramics of each example are ceramics in which swelling due to surrounding moisture is suppressed.

つづいて、各セラミックスの製造に用いたRBセラミックス粉末中に含まれる水溶性の不純物(P,Mg)の含有量を水湿法で測定し、測定結果を図2〜3に示した。具体的には、原子吸光光度法で測定を行う測定機器および吸光光度法で測定を行う測定機器を用いて湿式分析にて測定を行った。   Subsequently, the content of water-soluble impurities (P, Mg) contained in the RB ceramic powder used in the production of each ceramic was measured by a water and moisture method, and the measurement results are shown in FIGS. Specifically, the measurement was performed by wet analysis using a measuring instrument that measures by atomic absorption spectrophotometry and a measuring instrument that measures by spectrophotometry.

図2〜3のそれぞれに示したように、各実施例のセラミックスの製造に用いたRBセラミックス粉末は、洗浄を行わなかった各比較例のセラミックスの製造に用いたRBセラミックス粉末と比較すると、水溶性の不純物の含有量が大幅に低下していることがわかる。つまり、各実施例のセラミックスは、これらの不純物が周囲の水分を吸収することが抑えられている。   As shown in each of FIGS. 2 to 3, the RB ceramic powder used in the manufacture of the ceramics of each example was water-soluble compared to the RB ceramic powder used in the manufacture of the ceramics of each comparative example that was not cleaned. It can be seen that the content of volatile impurities is greatly reduced. That is, in the ceramics of each example, these impurities are suppressed from absorbing surrounding moisture.

さらに、各実施例の製造に用いたRBセラミックス粉末の水での洗浄の前後のSEM写真(100倍)を撮影した。実施例1に用いたRBセラミックス粉末の洗浄前を図4(a)に、洗浄後を図4(b)に示した。実施例2に用いたRBセラミックス粉末の洗浄前を図5(a)に、洗浄後を図5(b)に示した。実施例3に用いたRBセラミックス粉末の洗浄前を図6(a)に、洗浄後を図6(b)に示した。   Further, SEM photographs (100 times) before and after washing with water of the RB ceramic powder used in the production of each example were taken. FIG. 4A shows the RB ceramic powder used in Example 1 before cleaning, and FIG. 4B shows the cleaned RB ceramic powder. FIG. 5A shows a state before the cleaning of the RB ceramic powder used in Example 2, and FIG. 5B shows a state after the cleaning. FIG. 6 (a) shows the RB ceramic powder used in Example 3 before cleaning, and FIG. 6 (b) shows after cleaning.

図4〜6に示したように、洗浄の前後でRBセラミックス粉末の形状の変化は確認できなかった。つまり、RBセラミックス粉末を水で洗浄することで、外周形状の変化を生じさせることなく、内部の不純物を除去できた。   As shown in FIGS. 4 to 6, no change in the shape of the RB ceramic powder was observed before and after the cleaning. That is, by cleaning the RB ceramic powder with water, impurities inside could be removed without causing a change in the outer peripheral shape.

上記したように、各実施例のセラミックス構造物は、周囲の水分による膨潤等の形状変化の抑えられたセラミックス構造物となった。   As described above, the ceramic structure of each example was a ceramic structure in which a change in shape such as swelling due to surrounding moisture was suppressed.

各セラミックスの膨潤率の測定結果のグラフである。It is a graph of the measurement result of the swelling rate of each ceramic. 各RBセラミックス粉末中のPの含有率の測定結果のグラフである。It is a graph of the measurement result of the content rate of P in each RB ceramic powder. 各RBセラミックス粉末中のMgの含有率の測定結果のグラフである。It is a graph of the measurement result of the content rate of Mg in each RB ceramic powder. 実施例1に用いたRBセラミックス粉末の洗浄前後のSEM写真である。It is a SEM photograph before and behind washing | cleaning of the RB ceramic powder used for Example 1. FIG. 実施例2に用いたRBセラミックス粉末の洗浄前後のSEM写真である。4 is a SEM photograph of the RB ceramic powder used in Example 2 before and after cleaning. 実施例3に用いたRBセラミックス粉末の洗浄前後のSEM写真である。4 is a SEM photograph of the RB ceramic powder used in Example 3 before and after cleaning.

Claims (5)

RBセラミックス粉末を製造する工程と、
該RBセラミックス粉末を所定の形状に成形する工程と、
成形体を焼成する工程と、
を有するセラミックス構造物の製造方法において、
該成形体を焼成する工程の前に、該RBセラミックス粉末および/または該成形体を水で洗浄する工程を有することを特徴とするセラミックス構造物の製造方法。
Producing RB ceramic powder;
Forming the RB ceramic powder into a predetermined shape;
A step of firing the molded body;
In a method for producing a ceramic structure having
A method for producing a ceramic structure, comprising a step of washing the RB ceramic powder and / or the molded body with water before the step of firing the molded body.
前記RBセラミックス粉末および/または前記成形体の洗浄は、該RBセラミックス粉末および/または該成形体を水洗した溶液の電気伝導度が100μS/cm以下になるまで行われる請求項1記載のセラミックス構造物の製造方法。   2. The ceramic structure according to claim 1, wherein the cleaning of the RB ceramic powder and / or the molded body is performed until an electric conductivity of a solution obtained by washing the RB ceramic powder and / or the molded body with water becomes 100 μS / cm or less. Manufacturing method. RBセラミックス粉末を製造する工程と、
該RBセラミックス粉末を所定の形状に成形する工程と、
成形体を焼成する工程と、
を有する製造方法において、
該成形体を焼成する工程の前に、該RBセラミックス粉末および/または該成形体を水で洗浄する工程を有する製造方法が施されてなることを特徴とするセラミックス構造物。
Producing RB ceramic powder;
Forming the RB ceramic powder into a predetermined shape;
A step of firing the molded body;
In the manufacturing method having
A ceramic structure comprising a manufacturing method including a step of washing the RB ceramic powder and / or the formed body with water before the step of firing the formed body.
前記RBセラミックス粉末および/または前記成形体の洗浄は、該RBセラミックス粉末および/または該成形体を水洗した溶液の電気伝導度が100μS/cm以下になるまで行われる請求項3記載のセラミックス構造物。   The ceramic structure according to claim 3, wherein the cleaning of the RB ceramic powder and / or the molded body is performed until an electric conductivity of a solution obtained by washing the RB ceramic powder and / or the molded body with water becomes 100 µS / cm or less. . 前記セラミックス構造物は、摺動部材である請求項3記載のセラミックス構造物。   The ceramic structure according to claim 3, wherein the ceramic structure is a sliding member.
JP2006181067A 2006-06-30 2006-06-30 Method of manufacturing ceramic structure and ceramic structure Pending JP2008007383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181067A JP2008007383A (en) 2006-06-30 2006-06-30 Method of manufacturing ceramic structure and ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181067A JP2008007383A (en) 2006-06-30 2006-06-30 Method of manufacturing ceramic structure and ceramic structure

Publications (1)

Publication Number Publication Date
JP2008007383A true JP2008007383A (en) 2008-01-17

Family

ID=39065910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181067A Pending JP2008007383A (en) 2006-06-30 2006-06-30 Method of manufacturing ceramic structure and ceramic structure

Country Status (1)

Country Link
JP (1) JP2008007383A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385711A (en) * 1989-08-30 1991-04-10 Toho Rayon Co Ltd Acrylonitrile system active carbon fiber for polarizing electrode material
JPH0620982A (en) * 1991-10-04 1994-01-28 Matsushita Electric Ind Co Ltd Introduction of impurity atom
JPH11322322A (en) * 1998-05-11 1999-11-24 Mitsubishi Chemical Corp Carbonaceous substance and its production and electric double layer capacitor using the same
JP2002250343A (en) * 2001-02-21 2002-09-06 Minebea Co Ltd Special bearing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385711A (en) * 1989-08-30 1991-04-10 Toho Rayon Co Ltd Acrylonitrile system active carbon fiber for polarizing electrode material
JPH0620982A (en) * 1991-10-04 1994-01-28 Matsushita Electric Ind Co Ltd Introduction of impurity atom
JPH11322322A (en) * 1998-05-11 1999-11-24 Mitsubishi Chemical Corp Carbonaceous substance and its production and electric double layer capacitor using the same
JP2002250343A (en) * 2001-02-21 2002-09-06 Minebea Co Ltd Special bearing device

Similar Documents

Publication Publication Date Title
JP6545693B2 (en) Method for producing adsorbent containing activated carbon
JP2007077457A (en) Metal-matrix carbon nanotube composite material and its manufacturing method
TW200535183A (en) Carbon nanotubes aggregate, method for forming same, and biocompatible material
CN114787081A (en) Device and method for synthesizing graphene, and carbon pellet
CN105968662B (en) Ultrasound electric machine carbon micron tube filled polymer oil-containing friction material and preparation method thereof
Kundu et al. Optimisation of the process variables in production of activated carbon by microwave heating
KR20130071451A (en) Method for preparing high- purify silica derived from rice husk
CN102883591A (en) Electromagnetic wave absorber, method of producing the same, flexible printed wiring board and electronic device
KR101875908B1 (en) Manufacturing method of functional ceramic balls for antibacterial and deodorization
CN102795623B (en) Method for producing artificial graphite heat exchange element
JP2002187773A5 (en)
JP2007191381A (en) Ceramic raw material and method for producing ceramic molding
JP2008260191A (en) Method for molding fine polytetrafluoroethylene powder, preform, and molding
JPS593066A (en) Manufacture of ceramic thin tube
JP2008007383A (en) Method of manufacturing ceramic structure and ceramic structure
JP5176370B2 (en) Porous carbon body and production method thereof.
CN104308956B (en) Ceramic idiosome and the production method thereof of low-shrinkage
Nwadiogb et al. Extraction and characterization of microcrystalline cellulose from mango kernel: A waste management approach
RU2015111757A (en) METHOD FOR PRODUCING DRY COLLAGEN POWDER
WO2008023527A1 (en) Process for producing solid fuel, apparatus therefor and solid fuel produced by the process
JP6904535B2 (en) Manufacturing method of molded product and molded product
TW201728688A (en) Thermoconductive material, heat sink, heat spreader, method for producing heat spreader, and method for producing thermoconductive material
JP4095149B2 (en) Method for producing high-density ITO sintered body using ITO recycled powder
KR101140701B1 (en) The Manufacuturing Method of Sintering Charcoals Using Bamboo Charcoal Powder
JP2008254427A (en) Manufacturing method of component by pim or micro pim

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110926

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018