JPS58107679A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS58107679A
JPS58107679A JP20867581A JP20867581A JPS58107679A JP S58107679 A JPS58107679 A JP S58107679A JP 20867581 A JP20867581 A JP 20867581A JP 20867581 A JP20867581 A JP 20867581A JP S58107679 A JPS58107679 A JP S58107679A
Authority
JP
Japan
Prior art keywords
layer
buffer layer
film
semiconductor layer
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20867581A
Other languages
Japanese (ja)
Other versions
JPS6214105B2 (en
Inventor
Takuji Shimanoe
嶋ノ江 琢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20867581A priority Critical patent/JPS58107679A/en
Publication of JPS58107679A publication Critical patent/JPS58107679A/en
Publication of JPS6214105B2 publication Critical patent/JPS6214105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To achieve a high withstand voltage and a high gain without yielding strain in the interface between an operating layer and a buffer layer, by using a super lattice structure comprising a semiconductor material, which is the same as that of the operating layer and a semiconductor material whose band gap is larger than that of the former material, for the buffer layer. CONSTITUTION:A buffer layer 14, comprising an AlxGa1-xAs film 12 and a GaAs film 13, is provided. In this way, the leakage of carriers 8 can be prevented by the interface between the operating layer 3 and the super lattice layer 14 and a barrier formed in the buffer layer 14. The height of the barrier is changed by the number of the lattice of the buffer layer 14 and the film thickness of the GaAs film 13 and the AlxGa1-xAs film. Furtheremore, by using the buffer layer 14 in the super lattice structure, strain due to junction between different kinds can be prevented, and the degradation in crystal property of the operating layer 3 and the formation of interface traps between the operating layer 3 and the buffer layer 14 are prevented. Therefore, the effect of the prevention of the leakage of the carriers 8 to the buffer 14 is directly reflected to the element characteristics, the high withstand voltage of the GaAs FET and the high gain can be achieved, and high frequency characteristics can be improved.

Description

【発明の詳細な説明】 この発明は電界効果トランジスタ(IKT )の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in field effect transistors (IKTs).

第1図は従来のFETの一例の構造を示す模式断面図で
、(1)ti半絶縁性ガリウム・ヒ素(GaAswi板
、(2)はその上に形成された高抵抗のアルミニウム・
ガリウム・ヒ素(A/工Ga1−、、As)バッファ層
(但し、O<c<1)、(3)は更にその上に形成され
たn形GaAs動作層、(4) l (5)および(6
)はそれぞれn形GaAa動作層(3)の表面に形成さ
れたソース電極、ゲート電極およびドレイン電極、(7
)はゲート電極(6) K負電圧を印加したときに動作
層(3)内に生ずる空乏層、(8)は動作キャリヤ(電
子)である。
Figure 1 is a schematic cross-sectional view showing the structure of an example of a conventional FET.
gallium arsenide (A/Ga1-, As) buffer layer (where O<c<1), (3) is an n-type GaAs active layer formed thereon, (4) l (5) and (6
) are the source electrode, gate electrode and drain electrode formed on the surface of the n-type GaAa operating layer (3), respectively, and (7
) is a depletion layer generated in the active layer (3) when a negative voltage of K is applied to the gate electrode (6), and (8) is an active carrier (electron).

このようなFETの高耐圧(高出力)化、高利得化は高
電界動作層領域つまり、ゲート電極(5)の下の、その
大部分が空乏層(7)となり動作層(3)が非常に狭く
なった領域でのキャリヤ(3)の高抵抗バッフ7層(2
)への洩れを防止することによって達成されるのである
が、従来は第1図に示すように高抵抗バッファ層(2)
に動作層(3)よりバンドギャップの大きい物質を選び
、そのエネルギー差によって形成される障壁を利用する
ことがなされていた。第2図は第1図に示したGaAs
FETのエネルギーバンドの構造を示す図で、E、は7
工ルミ準位、E。
The high breakdown voltage (high output) and high gain of such FETs are achieved in the high electric field operating layer region, that is, under the gate electrode (5), most of which becomes the depletion layer (7) and the operating layer (3) becomes extremely High-resistance buffer 7 layers (2
), but conventionally, as shown in Figure 1, a high-resistance buffer layer (2) is used.
A method has been to select a material with a larger band gap than the active layer (3) and utilize the barrier formed by the energy difference. Figure 2 shows the GaAs shown in Figure 1.
This is a diagram showing the energy band structure of FET, where E is 7.
engineering lumi level, E.

は伝導帯、E、は充満帯を示す。キャリヤ(8)#1G
aAa動作層(3)とA4.Ga、、Asの高抵抗バッ
ファ層(2)との界面に形成される障壁によって高抵抗
バッファ層(2)への注入が防止される0 しかし、この従来のFETでは異種間接合のための歪に
よって、第31’Qに模式的に示すように、転位(9)
が動作層(3)中へ進入し、その結晶性を劣化させ九り
、界面にトラップ(ト)を形成し、上述のようにキャリ
ヤ(8)の洩れは防止できても、FETとしての高周波
特性を劣化させるとともに、逆方向耐圧の向、上も阻止
される。
indicates the conduction band and E indicates the charging band. Carrier (8) #1G
aAa operating layer (3) and A4. A barrier formed at the interface with the Ga, As, high-resistance buffer layer (2) prevents injection into the high-resistance buffer layer (2). However, in this conventional FET, the strain due to the heterojunction is As shown schematically in No. 31'Q, dislocation (9)
enters the active layer (3), deteriorates its crystallinity, and forms traps at the interface. Even if the leakage of carriers (8) can be prevented as described above, the high frequency In addition to deteriorating the characteristics, the reverse breakdown voltage is also prevented from increasing.

この発明は以上のような点に鎌みてなされたもので、バ
ッファ層の構成に新規な構成を用いることによって異a
m合による歪を減少させ、従来の上述のような欠点のな
いFITを提供することを目的としている。
This invention was made in consideration of the above-mentioned points, and by using a new structure for the buffer layer structure, it is possible to achieve different characteristics.
It is an object of the present invention to provide an FIT that reduces distortion due to m-coupling and does not have the above-mentioned conventional drawbacks.

すなわち、この発明はバッファ層として動作層と同じ物
質と動作層よりバンドギャップの大きい物質との超格子
を用いることによって、異種間接合による歪が減少する
という新知見に基づくものである。
That is, the present invention is based on the new finding that strain caused by dissimilar junctions is reduced by using a superlattice of the same material as the active layer and a material with a larger band gap than the active layer as the buffer layer.

第4図社この発明の一実施例の構成を示す模式断面図、
jlIs図はそのエネルギーバンドの構造を示す図で、
従来例と同等部分は同一符号で示すOnはA/llGa
1−1IAa I[HとGaAs膜aSとの超格子から
なるバッフ7層である。
Figure 4 is a schematic sectional view showing the configuration of an embodiment of the present invention.
The jlIs diagram is a diagram showing the structure of the energy band,
Parts equivalent to the conventional example are indicated by the same symbols. On is A/llGa.
1-1IAa Seven buffer layers consisting of a superlattice of I[H and a GaAs film aS.

このような構造にすることによって、従来例と同様KS
=?ヤリャ(8)の洩れは動作層(3)と超格子ノ(ツ
ファ層幀との界面およびバッフ7層(141内に形成さ
れる障壁によって防止することができるofた、障壁の
高さもバッファ層(14の超格子の数、Gaム8膜(l
@およびA/ xGal−1llAs膜(If4の膜厚
によって変化させることもできる。さらに、超格子構造
をバッファ層04に用いることによって、従来例におけ
るような異種間接合による歪を防止でき、動作層(3)
の結晶性の劣化、およびバッフ7層(+4との間の界面
 速トラップ形成を防止することができる。従ってキャ
リヤ(8)のバッファ層04への洩れを防止し九効果が
直接素子特性に反映され、GaAsFE’l’の高耐圧
化、高利得化が達成でき、高周波特性も向上できるO なお、上記実施例はGaAsFETについて示し九が、
この発明はGaAaに限定されるものではない。
By adopting this structure, the KS
=? The leakage of Yalya (8) can be prevented by the barrier formed at the interface between the active layer (3) and the superlattice layer (Tuffa layer) and within the buffer layer (141). (Number of superlattices of 14, Ga 8 film (l
@ and A/xGal-1llAs film (can be changed depending on the film thickness of If4.Furthermore, by using a superlattice structure for the buffer layer 04, distortion due to dissimilar junctions as in the conventional example can be prevented, and the active layer (3)
It is possible to prevent the deterioration of the crystallinity of the buffer layer (+4) and the formation of fast traps at the interface between the buffer layer (+4).Therefore, the leakage of carriers (8) to the buffer layer (+4) can be prevented, and the nine effect is directly reflected on the device characteristics. By doing so, it is possible to achieve higher breakdown voltage and higher gain of GaAsFE'l', and also improve high frequency characteristics.
This invention is not limited to GaAa.

そして、この発明によるFET0ウエーハの構造は分子
エピタ千シ法を用いることによって容易に形成できる。
The structure of the FET0 wafer according to the present invention can be easily formed by using the molecular epitaxy method.

以上説明し九ように、この発明になるFE’E’ではバ
ッファ層に動作層と同じ半導体物質とこれtリバンドギ
ャップの大きい半導体物質との超格子構造を用いたので
、動作層とバッファ層との界面に歪みが発生せず、高耐
圧化、高利得化が達成でき、高周波特性も向上できる。
As explained above, in the FE'E' according to the present invention, the superlattice structure of the same semiconductor material as the active layer and a semiconductor material with a large band gap is used for the buffer layer, so that the active layer and the buffer layer are No distortion occurs at the interface, high breakdown voltage and high gain can be achieved, and high frequency characteristics can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のli’ETの一例の構成を示す模式断面
図、第2図はそのエネルギーバンドの構造を示す図、第
3園は同じ〈従来例における転位およびトラップの形成
状況を模式的に示す図、第4図はこの発明の一実施例の
構成を示す模λ断面図、第5図はこの実施例のエネルギ
ーバンドの構造を示す図である。 図において、(1)は半導体基板、(3)は動作半導体
層、(4)はソース電極、(5)はゲニト電極、(6)
iドレイン電極、t+2!JはGaAs膜(!Il1作
半導体層と同じ半導体)、0鴫はAl、Ga  As膜
(動作半導体層よりバンドギャップの大きい半導体)、
04は高抵抗バッフ7半導体層である。 なお、図中同一符号は同一または相当部分を示す。 代理人 葛野信−(外1名) 第4図       第 5図
Figure 1 is a schematic cross-sectional view showing the configuration of an example of conventional li'ET, Figure 2 is a diagram showing the structure of its energy band, and Figure 3 is the same diagram. FIG. 4 is a schematic λ cross-sectional view showing the configuration of an embodiment of the present invention, and FIG. 5 is a diagram showing the energy band structure of this embodiment. In the figure, (1) is a semiconductor substrate, (3) is an active semiconductor layer, (4) is a source electrode, (5) is a genite electrode, (6)
i drain electrode, t+2! J is a GaAs film (the same semiconductor as the semiconductor layer of Il1), 0 is Al, a GaAs film (a semiconductor with a larger band gap than the active semiconductor layer),
04 is a high resistance buffer 7 semiconductor layer. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno (1 other person) Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)  牛導体基板、高抵抗バッファ牛導体層および
、動作半導体層が順次互いに接して形成され上記動作半
導体層の表面にソース電極、ゲート電極およびドレイン
電極が設けられたものにおいて、上記動作半導体層と同
じ半導体と上記動作半導体層よりバンドギャップの大き
い半導体との超格子を上記高抵抗バッツァ半導体層とし
て用いたことを特徴とする電界効果トランジスタ。
(1) A conductor substrate, a high-resistance buffer conductor layer, and an active semiconductor layer are sequentially formed in contact with each other, and a source electrode, a gate electrode, and a drain electrode are provided on the surface of the active semiconductor layer, in which the active semiconductor layer is provided with a source electrode, a gate electrode, and a drain electrode. A field effect transistor characterized in that a superlattice of the same semiconductor as the layer and a semiconductor having a larger band gap than the operating semiconductor layer is used as the high-resistance Batza semiconductor layer.
(2)動作半導体層にガリウムeヒ素(GaA日)を、
高抵抗バッファ半導体層にガリウムφヒ@GaAs)と
アルミニウムΦガリウム・ヒ素〔ムl!、Ga1−.ム
8(ただしO<Xく1))との超格子を用いたことを特
徴とする特許#′I求の範囲第1項記載の電界効果トラ
ンジスタ。
(2) Adding gallium e arsenide (GaA) to the active semiconductor layer,
In the high resistance buffer semiconductor layer, gallium φ (GaAs) and aluminum φ gallium arsenide (Mul!) are used. , Ga1-. A field effect transistor according to item 1 of the claimed scope of patent #'I, characterized in that a superlattice with a superlattice structure (O<X1)) is used.
JP20867581A 1981-12-21 1981-12-21 Field effect transistor Granted JPS58107679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20867581A JPS58107679A (en) 1981-12-21 1981-12-21 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20867581A JPS58107679A (en) 1981-12-21 1981-12-21 Field effect transistor

Publications (2)

Publication Number Publication Date
JPS58107679A true JPS58107679A (en) 1983-06-27
JPS6214105B2 JPS6214105B2 (en) 1987-03-31

Family

ID=16560193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20867581A Granted JPS58107679A (en) 1981-12-21 1981-12-21 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS58107679A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155215A2 (en) * 1984-03-08 1985-09-18 Fujitsu Limited High electron mobility semiconductor device employing selectively doped heterojunction
JPS62298177A (en) * 1986-06-11 1987-12-25 レイセオン カンパニ− Radiation-resistant semiconductor device
JPS6327804A (en) * 1986-07-22 1988-02-05 Matsushita Electric Ind Co Ltd Semiconductor device
JPS6390850A (en) * 1986-10-03 1988-04-21 Nec Corp Hetero junction bipolar transistor
FR2611300A1 (en) * 1987-02-20 1988-08-26 Labo Electronique Physique INFORMATION STORAGE CIRCUIT WITH LOW ACCESS TIME
WO1999026297A1 (en) * 1997-11-17 1999-05-27 The Furukawa Electric Co., Ltd. Epitaxial wafer and compound semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155215A2 (en) * 1984-03-08 1985-09-18 Fujitsu Limited High electron mobility semiconductor device employing selectively doped heterojunction
JPS62298177A (en) * 1986-06-11 1987-12-25 レイセオン カンパニ− Radiation-resistant semiconductor device
JPS6327804A (en) * 1986-07-22 1988-02-05 Matsushita Electric Ind Co Ltd Semiconductor device
JPS6390850A (en) * 1986-10-03 1988-04-21 Nec Corp Hetero junction bipolar transistor
FR2611300A1 (en) * 1987-02-20 1988-08-26 Labo Electronique Physique INFORMATION STORAGE CIRCUIT WITH LOW ACCESS TIME
WO1999026297A1 (en) * 1997-11-17 1999-05-27 The Furukawa Electric Co., Ltd. Epitaxial wafer and compound semiconductor device

Also Published As

Publication number Publication date
JPS6214105B2 (en) 1987-03-31

Similar Documents

Publication Publication Date Title
US11031399B2 (en) Semiconductor device and manufacturing method of the same
US5705827A (en) Tunnel transistor and method of manufacturing same
JPH027532A (en) Laminated channel field effect transistor
JPS58107679A (en) Field effect transistor
JPH01186683A (en) Semiconductor device
JPS59103389A (en) Superconductive element and manufacture thereof
JP3601649B2 (en) Field effect transistor
JPS61147577A (en) Complementary semiconductor device
JP2964637B2 (en) Field effect transistor
JP3094500B2 (en) Field effect transistor
JPH04352332A (en) Field-effect transistor
JPS6242569A (en) Field effect transistor
JP2817718B2 (en) Tunnel transistor and manufacturing method thereof
JPH0261149B2 (en)
JPH0511656B2 (en)
US20030080348A1 (en) Heterojunction field-effect transistor
JP2658934B2 (en) Tunnel transistor
JP3256643B2 (en) Semiconductor device
JPS609174A (en) Semiconductor device
JP2541280B2 (en) Semiconductor device
JPS63252484A (en) Hetero-junction field-effect transistor
JP3431362B2 (en) Heterojunction semiconductor device
JPH04101436A (en) Field-effect transistor
JP2964625B2 (en) Compound semiconductor field effect transistor
JPH10107274A (en) Tunnel transistor and fabrication thereof