JPS58100411A - Method of forming ferromagnetic film - Google Patents

Method of forming ferromagnetic film

Info

Publication number
JPS58100411A
JPS58100411A JP19838981A JP19838981A JPS58100411A JP S58100411 A JPS58100411 A JP S58100411A JP 19838981 A JP19838981 A JP 19838981A JP 19838981 A JP19838981 A JP 19838981A JP S58100411 A JPS58100411 A JP S58100411A
Authority
JP
Japan
Prior art keywords
ferromagnetic film
substrate
sputtering
magnetic field
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19838981A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakakima
博 榊間
Mitsuo Satomi
三男 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19838981A priority Critical patent/JPS58100411A/en
Publication of JPS58100411A publication Critical patent/JPS58100411A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To remove magnetic anistropy and to obtain excellent magnetic characteristics by a method wherein a ferromagnetic film is produced in the rotating magnetic field through evaporation or sputtering. CONSTITUTION:A magnet 5 mounted to a yoke 4 directly coupled to a rotary shaft is rotated round a substrate holder 2 to apply the rotating magnetic field in parallel to the plane surface of a substrate 1. At the time of sputtering, after evacuating the interior of a vacuum container to 3X10<-7> Torr, As gas is introduced from an inlet port 6 to reach 2X10<-2> Torr. Pre-sputtering is first made for 30min and then main sputtering is performed on the glass substrate. The sputter film thus attained had a thickness of about 15mum.

Description

【発明の詳細な説明】 本発明は、強磁性体膜の垣成方法に関する。近年ス・ぐ
ツタ−法及び蒸着法等による強磁性体膜の作製研究が盛
んに行われるようになった。しかしながらこのようにし
て得られる強磁性膜の磁気特性は、一般にはバルクの材
料はど良くない。この原因としては、基板と強磁性膜と
の間の熱膨張係数の差やその他の原因によって膜内に歪
が残留し、特性を劣化させているものと考えられている
。しかしながらほぼ磁歪が零の強磁性膜においても何ら
かの磁気異方性のためにあまシ優れた磁気特性を示さな
い。本発明は回転する磁場中で強磁性膜を蒸着もしくは
スノぐツタ−することによシ、前述の原因不明で生ずる
磁気異方性を取−シ除き優れた磁気特性を得ることを可
能にするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a ferromagnetic film. In recent years, research has been actively conducted on the production of ferromagnetic films by methods such as the S.G.T. method and the vapor deposition method. However, the magnetic properties of the ferromagnetic film obtained in this way are generally not as good as those of the bulk material. This is thought to be due to the difference in thermal expansion coefficients between the substrate and the ferromagnetic film or other causes that cause residual strain in the film, degrading the characteristics. However, even a ferromagnetic film with almost zero magnetostriction does not exhibit excellent magnetic properties due to some kind of magnetic anisotropy. The present invention makes it possible to remove the aforementioned magnetic anisotropy caused by unknown causes and obtain excellent magnetic properties by depositing or snorting a ferromagnetic film in a rotating magnetic field. It is something.

現在、蒸着もしくはス・臂ツター法によシ作製されてい
る強磁性膜には・平−マロイ、センダスト。
At present, ferromagnetic films manufactured by vapor deposition or star-stripping methods include flat malloy and sendust.

非晶質合金等がある。こあうち特に本発明の回転磁場中
ス・母ツター法が有効なのは非晶質合金で次K ノf−
マロイ、センダストの順である。又、特ニ非晶質合金の
中でもキュリ一点Tcの高いメタル−メタル系のものに
本発明の薄膜形成法は顕著な効果を示すことが実験の結
果わかった。このうち非晶質化しやすく、又耐摩耗特性
に優れているものは次の組成で表わされるCoを主成分
とする合金である。
There are amorphous alloys, etc. Of these, the rotating magnetic field sintering method of the present invention is particularly effective for amorphous alloys.
Malloy and Sendust in that order. Further, as a result of experiments, it has been found that the thin film forming method of the present invention is particularly effective for metal-metal alloys having a high Curie point Tc among amorphous alloys. Among these, alloys that are easily amorphous and have excellent wear resistance are alloys whose main component is Co, which is represented by the following composition.

ColMbTcXd M = Fe +Ni 、 Cr oMo yW+Mn
のうちの一種もしくは二種以上の金属 T = Tt aZr*Hf +Nb +Taのうちの
一種もしくは二種・以上の金属 X = Si、B、C,At、Geのうちの一種もしく
は二種以上の半金属 ただし上記合金系が非晶質化するためには、70≦a≦
95.5くcく20 であることか必要である。Tは非晶質形成能の高い金属
でTに何を選ぶかによって磁歪をほぼ零に調整するため
に入れる添加金属Mが決まるつ例えばT=Tiの場合は
Mはほとんど必要でないが、T=Zrの場合はMとして
Ni r Cr * Mo mWが有効であるし、T=
Nbの場合はFs 2Mnが有効であシいずれにせよほ
ぼ磁歪を零にするには 0くbく20 であることが望ましい。本発明の回転磁場中スノ臂ツタ
−が有効なのは磁歪が小さい合金系のみに対゛してであ
り、磁歪の大きな材料は歪による特性劣化があまりに大
なるため、本発明方式では何ら磁気特性が改善されない
。−Xは本質的には必要で表いが、微かにこれを添加す
ることによシ非晶質合−金の結晶化温度を上昇させるこ
とができるので、安定した磁気特性を得るのに有効な元
素で也る。
ColMbTcXd M = Fe + Ni, CroMo yW + Mn
One or more metals T = TtaZr*Hf +Nb + One or more metals X = One or more halves of Si, B, C, At, Ge However, in order for the above alloy system to become amorphous, 70≦a≦
It needs to be 95.5 x 20. T is a metal with a high ability to form an amorphous state, and depending on what is selected for T, the additive metal M to be added to adjust the magnetostriction to almost zero is determined.For example, when T=Ti, M is hardly needed, but when T= In the case of Zr, Ni r Cr * Mo mW is valid as M, and T=
In the case of Nb, Fs 2Mn is effective, but in any case, in order to make the magnetostriction almost zero, it is desirable that it be 0 or less. The inventive method of snow-cuttering in a rotating magnetic field is effective only for alloys with low magnetostriction, and materials with high magnetostriction suffer too much deterioration of their properties due to strain, so the method of the present invention does not affect the magnetic properties at all. No improvement. -X is essentially necessary, but adding a small amount of it can raise the crystallization temperature of the amorphous alloy, so it is effective in obtaining stable magnetic properties. It is made of elements.

ただしこれは1eチ以上入れると極端に耐摩耗性が劣化
してセンダスト以下の耐摩耗性しか得られなくなるので 0くd(10 であることが望ましい。
However, if more than 1e is added, the abrasion resistance will be extremely deteriorated and the abrasion resistance will be less than that of sendust, so it is desirable that it be 0d(10).

以下、具体的な実施例により本発明の効果を示す0 〈実施例1〉 図に示したようなス・臂ツター装置を用いてノク−マロ
イ、センダスト、非晶質合金COB oMo j oZ
 r 1゜のスノクツター膜を作製した。第1図におい
て1はターゲット、2は基板ホルダー、3は基板で回転
軸と直結したヨーク4に取付けられた磁石5は基板ホル
ダーのまわりを回転して基板平面に平行に回転磁場が加
わるようになっている。なおスパッターに際しては真空
容器内を3 X 10−’Torrにした後導入口6よ
シArガスを導入し、2 X 10−2Torrとし、
30分間のプレスバッターの後ガラス基板上に本スパッ
ターを行なった。回転磁場の強さはH”1000e、回
転数ωは1100r−p−とした。なお比較のため磁石
を取シ除きH=Oの場合と、回転を停止してユ、分向に
H=2000eを加えた条件下でもス・ぞツタ−を行な
った。得られたス・母ツター膜は厚さ約15μmのもの
であったが、基板ごと超音波加工によシ外径8m内径4
mのリング形状とし巻き線をほどこして磁気特性の測定
を行なった。結果を表−1及び表−2に示す。
Hereinafter, the effects of the present invention will be described with reference to specific examples. Example 1 Nocmaroy, Sendust, amorphous alloy COB oMoj oZ
A Snockter film with r 1° was prepared. In Fig. 1, 1 is a target, 2 is a substrate holder, and 3 is a substrate, and a magnet 5 attached to a yoke 4 directly connected to the rotation axis rotates around the substrate holder so that a rotating magnetic field is applied parallel to the plane of the substrate. It has become. For sputtering, after setting the inside of the vacuum container to 3 x 10-' Torr, Ar gas was introduced through the inlet 6, and the pressure was set to 2 x 10-2 Torr.
After press battering for 30 minutes, main sputtering was performed on the glass substrate. The strength of the rotating magnetic field was H"1000e, and the rotational speed ω was 1100r-p-.For comparison, the magnet was removed and H = O, and the rotation was stopped and the direction was set to H = 2000e. The obtained sulfur base film was approximately 15 μm thick, but the substrate was processed by ultrasonic processing to a diameter of 8 m in outer diameter and 4 m in inner diameter.
The wire was wound into a ring shape of m, and the magnetic properties were measured. The results are shown in Table-1 and Table-2.

表−1 表−2 〈実施例2〉 実施例1と同様な方法でH”= 2000e 、ω=1
0 Or、p、mの回転磁場中で各種非晶質合金のス/
fPツターを行なった。結果を以下に示す。
Table-1 Table-2 <Example 2> Using the same method as in Example 1, H"=2000e, ω=1
S/ of various amorphous alloys in a rotating magnetic field of 0 Or, p, m
I did fP tutu. The results are shown below.

表−3 表−3に示した実験結果より、本発明方式はSiるF8
788i10B12やFe4oNi4oP14B6には
あまシ顕著な効果は示さなかった。
Table 3 From the experimental results shown in Table 3, the method of the present invention is based on SiF8
No significant effects were shown for 788i10B12 or Fe4oNi4oP14B6.

〈実施例3〉 真控容器内を3 X 10−’Torrにした後Arを
導入して2 X 10””Torrとし30分間のプレ
スバッターをした抜本スパ、ターを回転磁場の強さ及び
回転〆 数を変化させて、ス・り、ター膜への影響を調べた。
<Example 3> After setting the inside of the vacuum container to 3 x 10-' Torr, Ar was introduced and the pressure was set to 2 x 10'' Torr, and a press batter was applied for 30 minutes. By varying the number of layers, we investigated the effects on the film.

/ 実験ではFe4CO77Nb14Bsの非晶質合金膜を
作製しその1 kHzにおける透磁率を調べた。結果を
以下に示す。
/ In the experiment, an amorphous alloy film of Fe4CO77Nb14Bs was prepared and its magnetic permeability at 1 kHz was investigated. The results are shown below.

表−4 表−4に示した実験結果からもわかるように、回転数が
高く磁場強度が強いほど効果が大きいことがわかる。
Table 4 As can be seen from the experimental results shown in Table 4, the higher the rotation speed and the stronger the magnetic field strength, the greater the effect.

〈実施例4〉 電子ビーム蒸着装置内で、2×1O−5Torrにおい
て蒸着法により実施例1と同様な薄膜作成実験を行なっ
た。結果は実施例1と同様であった。
<Example 4> A thin film production experiment similar to that in Example 1 was conducted by a vapor deposition method at 2×1 O −5 Torr in an electron beam evaporation apparatus. The results were similar to Example 1.

以上のことかられかるように、本発明の強磁性体膜形成
方法によれば、磁気特性の優れた強磁性膜をス・クツタ
ー法で作るのに極めて有効である。
As can be seen from the above, the method of forming a ferromagnetic film of the present invention is extremely effective in producing a ferromagnetic film with excellent magnetic properties by the scattering method.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のス・セッタ一方式を模式的に示した図であ
る。 1・・・ターr、)、2・・・基板 ホルダー、3・・
・基板、4・・・ヨーク、5・・・磁石、6・・・Ar
ガス導入口、7・・・排気口、8・・・シャッター。
The figure is a diagram schematically showing one type of setter according to the present invention. 1... Tarr, ), 2... Board holder, 3...
・Substrate, 4...Yoke, 5...Magnet, 6...Ar
Gas inlet, 7...exhaust port, 8...shutter.

Claims (2)

【特許請求の範囲】[Claims] (1)気体を凝固させて基板上に薄膜を形成する装置中
の前記基板面に平行で、かつ基板面内で回転する磁場の
下で気体を凝固させて強磁性体膜を基板上に形成するこ
とを特徴とする強磁性体膜の形成方法。
(1) A ferromagnetic film is formed on the substrate by solidifying the gas under a magnetic field that is parallel to the substrate surface and rotating within the substrate surface in an apparatus that solidifies the gas to form a thin film on the substrate. A method for forming a ferromagnetic film characterized by:
(2)形成される強磁性体膜の原子組成が、ColMb
TcXdで表わされる非晶質合金であることを特徴とす
る特許請求の範囲第(1)項記載の強磁性体膜の形成方
法。 但し、M ” Fe + Nl  r Cr * Mo
 r W r Mnよシなる群から選ばれる一種又は二
種以上の金属、T=Tt 、 Zr r Hf 、 N
b 、 Taから選ばれる一種又は二種以上の金属、 X”Si 、B、C,At、Geより選ばれる一種又は
二種以上の半金属、 70≦a≦95,0≦b≦20,5≦C≦20,0≦d
≦10゜a + b + c + d = 1 0 0
(3)薄膜形成法としてス・臂ツター法を用いたことを
特徴とする特許請求の範囲第(1)項記載の強磁性体膜
の形成方法。
(2) The atomic composition of the ferromagnetic film to be formed is ColMb
The method for forming a ferromagnetic film according to claim 1, wherein the ferromagnetic film is an amorphous alloy represented by TcXd. However, M ” Fe + Nl r Cr * Mo
One or more metals selected from the group consisting of rWrMn, T=Tt, ZrrHf, N
b, one or more metals selected from Ta, one or more metalloids selected from X"Si, B, C, At, Ge, 70≦a≦95, 0≦b≦20,5 ≦C≦20, 0≦d
≦10゜a + b + c + d = 1 0 0
(3) A method for forming a ferromagnetic film according to claim (1), characterized in that a star-strike method is used as the thin film forming method.
JP19838981A 1981-12-11 1981-12-11 Method of forming ferromagnetic film Pending JPS58100411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19838981A JPS58100411A (en) 1981-12-11 1981-12-11 Method of forming ferromagnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19838981A JPS58100411A (en) 1981-12-11 1981-12-11 Method of forming ferromagnetic film

Publications (1)

Publication Number Publication Date
JPS58100411A true JPS58100411A (en) 1983-06-15

Family

ID=16390308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19838981A Pending JPS58100411A (en) 1981-12-11 1981-12-11 Method of forming ferromagnetic film

Country Status (1)

Country Link
JP (1) JPS58100411A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021504A (en) * 1983-07-16 1985-02-02 Alps Electric Co Ltd Soft magnetic material
JPS60143611A (en) * 1984-10-05 1985-07-29 Hitachi Ltd Magnetic head
JPS6254907A (en) * 1985-09-04 1987-03-10 Hitachi Ltd Sputtering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021504A (en) * 1983-07-16 1985-02-02 Alps Electric Co Ltd Soft magnetic material
JPH0517681B2 (en) * 1983-07-16 1993-03-09 Alps Electric Co Ltd
JPS60143611A (en) * 1984-10-05 1985-07-29 Hitachi Ltd Magnetic head
JPS6254907A (en) * 1985-09-04 1987-03-10 Hitachi Ltd Sputtering device
JPH0564846B2 (en) * 1985-09-04 1993-09-16 Hitachi Ltd

Similar Documents

Publication Publication Date Title
JPS60214417A (en) Vertical magnetic recording medium
JP4223614B2 (en) Sputtering method and apparatus, and electronic component manufacturing method
JPS58100411A (en) Method of forming ferromagnetic film
WO2020226130A1 (en) Ni-BASED SPUTTERING TARGET AND MAGNETIC RECORDING MEDIUM
JP6254295B2 (en) Ni-based sputtering target material and magnetic recording medium
JP4900992B2 (en) Sputtering target and Ge layer, Ge compound layer, Ge alloy layer and optical disk, electric / electronic component, magnetic component using the sputtering target
JPH05143988A (en) Production of magnetic recording medium
TWI823989B (en) Sputtering targets for soft magnetic layers of magnetic recording media and magnetic recording media
JP2871990B2 (en) Magnetoresistive element thin film
JP3545050B2 (en) Sputtering apparatus and sputtering thin film production method
JP2842683B2 (en) Soft magnetic thin film material
JPS59136415A (en) Manufacture of high magnetic permeability alloy film
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPS62120627A (en) Magnetic recording medium
JPS63140509A (en) Manufacture of magnetically soft film
JPS62120624A (en) Magnetic recording medium
JPH11135312A (en) Permanent magnet powder
JPS62120625A (en) Magnetic recording medium
JPH0518899B2 (en)
JPH0517868A (en) Production of sputtering target
JPH0228883B2 (en) JISEIHAKUMAKUOYOBISONOSEIZOHOHO
JPS5963031A (en) Manufacture of magnetic recording medium
JPH04228568A (en) Production of amorphous thin film
JPS63266066A (en) Alloy target and production thereof
JPH0192358A (en) Manufacture of thin amorphous film