JPH11135312A - Permanent magnet powder - Google Patents

Permanent magnet powder

Info

Publication number
JPH11135312A
JPH11135312A JP9309871A JP30987197A JPH11135312A JP H11135312 A JPH11135312 A JP H11135312A JP 9309871 A JP9309871 A JP 9309871A JP 30987197 A JP30987197 A JP 30987197A JP H11135312 A JPH11135312 A JP H11135312A
Authority
JP
Japan
Prior art keywords
magnetic
magnet powder
permanent magnet
coercive force
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9309871A
Other languages
Japanese (ja)
Inventor
Atsushi Kawamoto
淳 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9309871A priority Critical patent/JPH11135312A/en
Publication of JPH11135312A publication Critical patent/JPH11135312A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0552Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a revere magnetic domain core generating permanent magnet powder, the coercive force of which does not decline much at a high temperature, while the force is maintained at an appropriate value at a room temperature. SOLUTION: Permanent magnet powder is composed of reverse magnetic domain core generating magnet particles of a rare earth-transition-metal system, etc., and magnetic thin films covering the surface of each magnet particle and having a strong coercive force and an exchange coupling force acts between each particle and the magnetic thin film coating the particle. Since the magnet particles are coated with the magnetic thin films, the occurrence of a reverse magnetic domain core is suppressed, and the exchange coupling force acts between each magnetic particle and the thin film coating the particle, the coercive force of the permanent magnetic particle can be controlled. Moreover, since the magnetic films coating the surfaces of the magnetic particles are thin, the magnetic characteristics, such as magnetization, etc., other than the coercive force of the magnetic powder are maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石粉末に係
り、特に、保磁力の温度特性に優れた逆磁区核発生型永
久磁石粉末の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet powder, and more particularly to an improvement of a reversed magnetic domain nucleation type permanent magnet powder having excellent temperature characteristics of coercive force.

【0002】[0002]

【従来の技術】例えば、希土類−遷移金属系永久磁石は
高性能な永久磁石として知られているが、この希土類−
遷移金属系永久磁石の中でもSmCo系やSmFeN
系、NdFeB系等の急冷粉は粉末としても磁石特性を
発現するため、この粉末をエポキシ系、ナイロン系等の
合成樹脂や金属亜鉛等をバインダーとして成形し磁石と
する結合型磁石の用途に広く用いられている。
2. Description of the Related Art Rare earth-transition metal permanent magnets are known as high-performance permanent magnets.
Among transition metal permanent magnets, SmCo-based and SmFeN
Quenched powders such as NdFeB-based and NdFeB-based powders also exhibit magnet properties even as powders. Used.

【0003】[0003]

【発明が解決しようとする課題】ところで、これ等希土
類−遷移金属系の永久磁石は概してその温度特性が悪
く、特に、その保磁力が高温になるほど低下して磁力が
弱まるといった欠点を有していた。このため、これ等永
久磁石の室温での保磁力を高める等の手法を採ること
で、高温で保磁力が低下しても相対的に磁力が低下しな
いようにする試みがなされている。しかし、このような
方法では室温での保磁力が高くなり過ぎてしまい、これ
に起因して着磁が完全に行えなくなることから室温での
磁力が十分でない等の問題点を有していた。
However, these rare earth-transition metal permanent magnets generally have poor temperature characteristics, and in particular, have the disadvantage that the coercive force decreases as the temperature increases and the magnetic force decreases. Was. For this reason, attempts have been made to increase the coercive force of these permanent magnets at room temperature so that the magnetic force does not relatively decrease even if the coercive force decreases at high temperatures. However, such a method has a problem in that the coercive force at room temperature becomes too high and magnetization cannot be completely performed due to this, so that the magnetic force at room temperature is not sufficient.

【0004】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、室温での保磁力を
適正に保ったまま(すなわち、室温での保磁力を高める
等の上記手法を採ることなく)、高温での保磁力の低下
が少ない温度特性に優れた永久磁石粉末を提供すること
にある。
The present invention has been made in view of such a problem, and an object thereof is to maintain the coercive force at room temperature properly (ie, to increase the coercive force at room temperature, etc.). An object of the present invention is to provide a permanent magnet powder having excellent temperature characteristics with little decrease in coercive force at a high temperature without employing the above method).

【0005】[0005]

【課題を解決するための手段】そこで、本発明者はこの
課題を解決するため鋭意研究を重ねた結果、希土類−遷
移金属系等の永久磁石粉末の表面を、この粉末とは別の
磁気特性を有する磁性薄膜で被覆し、かつ、永久磁石粉
末と上記磁性薄膜との間に交換結合力を作用させること
で、永久磁石粉末における保磁力の温度特性をある程度
任意に制御できることを見出すに至った。
The inventor of the present invention has conducted intensive studies in order to solve this problem, and as a result, the surface of a permanent magnet powder such as a rare earth-transition metal system has been changed to a magnetic property different from that of this powder. It has been found that the temperature characteristics of the coercive force of the permanent magnet powder can be controlled to some extent by coating with a magnetic thin film having the above, and by applying an exchange coupling force between the permanent magnet powder and the magnetic thin film. .

【0006】例えば、希土類−遷移金属系の永久磁石、
この中でもSm1Co5系、若しくはSm2Fe173系、
あるいはNdFeB系磁石等逆磁区核発生型の保磁力発
生機構を持つ、いわゆるニュークリエーション型磁石で
は、保磁力の大きさはその逆磁区が発生する磁石表面の
状態に影響される。このため、磁石の表面を何らかの手
法で制御し、逆磁区発生の活性化エネルギーを制御でき
れば上記保磁力を制御することが可能となる。
For example, rare earth-transition metal based permanent magnets,
Among them, Sm 1 Co 5 system or Sm 2 Fe 17 N 3 system,
Alternatively, in a so-called nucleation type magnet having a reverse magnetic domain nucleus generating type coercive force generating mechanism such as an NdFeB magnet, the magnitude of the coercive force is affected by the state of the magnet surface where the reverse magnetic domain is generated. For this reason, if the surface of the magnet can be controlled by some method and the activation energy for generating the reverse magnetic domain can be controlled, the coercive force can be controlled.

【0007】一方、磁性相と軟磁性相をナノスケールで
微細に混在させることで、磁性相に近い保磁力と軟磁性
相の高い磁化を持つ磁石(交換スプリング磁石と呼ばれ
ている)ができることが知られている。これは、磁性相
と軟磁性相が交換結合により結合されることで、磁性相
の保磁力に引きずられて混合相全体の保磁力が高まるこ
とによるものである。
On the other hand, by finely mixing the magnetic phase and the soft magnetic phase on a nano scale, a magnet having a coercive force close to the magnetic phase and a high magnetization of the soft magnetic phase (called an exchange spring magnet) can be obtained. It has been known. This is because the magnetic phase and the soft magnetic phase are coupled by exchange coupling, and are dragged by the coercive force of the magnetic phase to increase the coercive force of the entire mixed phase.

【0008】そこで、この交換スプリング磁石の特徴を
応用して、逆磁区核発生型の永久磁石に対しその表面を
例えば保磁力の大きい別の磁性相で被覆し、かつ、この
磁性相と永久磁石との間に交換結合力を作用させた場
合、永久磁石の保磁力とその温度特性が改善されるとの
予測の下、鋭意実験を繰り返したところ、上述したよう
に希土類−遷移金属系等の永久磁石粉末における保磁力
の温度特性をある程度任意に制御できることを見出すに
至った。更に、逆磁区核発生型の永久磁石においてはご
く薄い表面の状態が保磁力に大きく作用するため、保磁
力の大きい上記磁性相はその膜厚が薄くても永久磁石に
おける保磁力制御の効果を発揮させることが可能とな
る。このことは、通常、特性が低くて磁石材料として使
えないような磁化の低い材料でも、保磁力さえ大きけれ
ば上記永久磁石の表面を被覆する磁性相として採用でき
ることを意味しておりその技術的意義は大きい。つま
り、上記永久磁石の保磁力制御のためにその表面を被覆
する磁性相は、その磁化が低くてもこの磁性相の膜厚を
薄く設定できることから、全体としての磁化は元の永久
磁石の特性をほぼ保持させることができ、永久磁石の保
磁力のみを表面の磁性相で制御できることを意味してい
るからである。本発明はこの様な技術的検討を経て完成
されたものである。
Therefore, by applying the characteristics of the exchange spring magnet, the surface of the permanent magnet of the reverse magnetic domain nucleation type is coated with another magnetic phase having a large coercive force, for example. When an exchange coupling force was applied between the two, the coercive force of the permanent magnet and its temperature characteristics were predicted to be improved. It has been found that the temperature characteristics of the coercive force of the permanent magnet powder can be controlled to some extent arbitrarily. Further, in a reversed domain nucleation type permanent magnet, the extremely thin surface state has a large effect on the coercive force. It is possible to demonstrate. This means that a material having a low magnetization, which usually cannot be used as a magnet material because of its low properties, can be used as a magnetic phase covering the surface of the permanent magnet as long as the coercive force is large. Is big. In other words, the magnetic phase covering the surface for controlling the coercive force of the permanent magnet can be set to a thin film thickness even if its magnetization is low, so that the overall magnetization is the characteristic of the original permanent magnet. This means that only the coercive force of the permanent magnet can be controlled by the surface magnetic phase. The present invention has been completed through such technical studies.

【0009】すなわち、請求項1に係る発明は、逆磁区
核発生型の保磁力発生機構を有する磁石粉末から成る永
久磁石粉末を前提とし、逆磁区核発生型の磁石粉末とこ
の磁石粉末の表面を被覆する保磁力の大きい磁性薄膜と
で構成され、かつ、磁石粉末と磁性薄膜との間に交換結
合力が作用していることを特徴とし、請求項2に係る発
明は、請求項1記載の永久磁石粉末を前提とし、上記逆
磁区核発生型の磁石粉末が、Sm1Co5系、Sm2Fe
173系、及び、Nd2Fe141系から選択されたいず
れかの希土類−遷移金属系磁石粉末で構成されているこ
とを特徴とするものである。
That is, the invention according to claim 1 is based on the premise that a permanent magnet powder made of a magnet powder having a reverse domain nucleus generation type coercive force generating mechanism is used. And a magnetic thin film having a large coercive force covering the magnetic powder, and an exchange coupling force acts between the magnet powder and the magnetic thin film. Assuming that the permanent magnet powder is of the type described above, the magnet powder of the reverse domain nucleation type is Sm 1 Co 5 system, Sm 2 Fe
17 N 3 based, and, any of the rare earth selected from Nd 2 Fe 14 B 1 type - is characterized in that it is constituted by a transition metal-based magnetic powder.

【0010】次に、請求項3に係る発明は、請求項1ま
たは2記載の永久磁石粉末を前提とし、上記磁性薄膜が
希土類と遷移金属から成るアモルファス合金にて構成さ
れていることを特徴とし、請求項4に係る発明は、請求
項1、2または3記載の永久磁石粉末を前提とし、上記
磁性薄膜における保磁力の温度係数が室温で正であるこ
とを特徴とするものである。
Next, a third aspect of the present invention is based on the permanent magnet powder of the first or second aspect, wherein the magnetic thin film is made of an amorphous alloy comprising a rare earth and a transition metal. The invention according to a fourth aspect is based on the permanent magnet powder according to the first, second or third aspect, wherein the temperature coefficient of coercive force in the magnetic thin film is positive at room temperature.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0012】まず、本発明に係る永久磁石粉末は、上述
したように逆磁区核発生型の磁石粉末とこの磁石粉末の
表面を被覆する保磁力の大きい磁性薄膜とで構成され、
かつ、磁石粉末と磁性薄膜との間に交換結合力が作用し
ていることを特徴とするものである。
First, the permanent magnet powder according to the present invention is composed of a magnetic domain nucleation type magnet powder as described above and a magnetic thin film having a large coercive force covering the surface of the magnet powder,
In addition, an exchange coupling force acts between the magnet powder and the magnetic thin film.

【0013】そして、上記逆磁区核発生型の磁石粉末と
して、特に、Sm1Co5系、若しくはSm2Fe17
3系、あるいはNd2Fe141系から選択された希土類
−遷移金属系磁石粉末が適用された場合(請求項2)、
本発明の効果をより一層得ることができる。
[0013] As the above-mentioned magnet powder of the reverse domain nucleus generation type, particularly, Sm 1 Co 5 -based or Sm 2 Fe 17 N
3 system, or Nd 2 Fe 14 B 1 type selected from rare earth - if a transition metal based magnet powder is applied (claim 2),
The effect of the present invention can be further obtained.

【0014】また、上記磁石粉末の表面を被覆する磁性
薄膜としては、保磁力が大きく、好ましくは磁気異方性
が大きい材料で、例えば、希土類と遷移金属から成るア
モルファス合金が適用でき(請求項3)、具体的には、
Tb、Dy、Sm、Gdの中から選択された少なくとも
一種の希土類と、Fe、Coの中から選択された少なく
とも一種の遷移金属からアモルファス合金が挙げられ、
特に希土類の原子割合が15〜40at%のアモルファス
合金が適している。また、高温下での保磁力の低下を抑
制する観点から、保磁力の温度係数が室温で正である磁
性薄膜の適用が好ましい(請求項4)。また、磁性薄膜
に適用されるこれ等合金には、上述した希土類や遷移金
属の元素以外に磁石粉末の耐食性等を改善する目的で、
Cr、V、Mo、Ti等の元素を1〜5at%程度添加し
てもよい。
As the magnetic thin film covering the surface of the magnet powder, a material having a large coercive force and preferably a large magnetic anisotropy, for example, an amorphous alloy comprising a rare earth and a transition metal can be applied. 3) Specifically,
At least one rare earth element selected from Tb, Dy, Sm, and Gd, and an amorphous alloy from at least one transition metal selected from Fe and Co,
In particular, an amorphous alloy having an atomic ratio of rare earth of 15 to 40 at% is suitable. From the viewpoint of suppressing a decrease in coercive force at a high temperature, it is preferable to use a magnetic thin film whose temperature coefficient of coercive force is positive at room temperature (claim 4). In addition, these alloys applied to the magnetic thin film include, for the purpose of improving the corrosion resistance and the like of the magnet powder in addition to the rare earth and transition metal elements described above,
Elements such as Cr, V, Mo, and Ti may be added at about 1 to 5 at%.

【0015】次に、希土類−遷移金属系等の上記磁石粉
末の表面に磁性薄膜を被覆する方法は任意であり、例え
ば、図2に示すように製膜室(容器)1内にモータ20
で駆動される撹拌羽2を設置し、この攪拌羽2で磁石粉
末100を撹拌させながら製膜を行うスパッタリングや
蒸着法等の物理的気相成長(PVD)法、あるいは、熱
CVD、プラズマCVD等の化学的気相成長(CVD)
法等で磁性薄膜を被覆することができる。尚、上記撹拌
羽2に変えて図3に示すように製膜室(容器)1の底面
側に偏芯モータ3を設置し、この偏芯モータ3により製
膜室(容器)1内の磁石粉末100を振動させながらP
VD法やCVD法で磁性薄膜を被覆することも可能であ
る。尚、希土類−遷移金属系等の磁石粉末と磁性薄膜と
の間に交換結合力が確実に作用するようにするため、磁
性薄膜が製膜される前の磁石粉末についてはその表面を
エッチング処理する等、希土類−遷移金属系等の磁石粉
末表面に酸化層等の異物が存在しないようにすることが
望ましい。
Next, the method of coating the surface of the magnet powder of a rare earth-transition metal or the like with a magnetic thin film is optional. For example, as shown in FIG.
A physical vapor deposition (PVD) method such as a sputtering or vapor deposition method in which a film is formed while stirring the magnetic powder 100 with the stirring blade 2, or a thermal CVD or a plasma CVD. Chemical vapor deposition (CVD)
The magnetic thin film can be coated by a method or the like. As shown in FIG. 3, an eccentric motor 3 is installed on the bottom surface side of the film forming chamber (container) 1 instead of the stirring blade 2, and the eccentric motor 3 controls the magnet in the film forming chamber (container) 1. P while vibrating powder 100
The magnetic thin film can be coated by a VD method or a CVD method. In order to ensure that the exchange coupling force acts between the rare earth-transition metal based magnet powder and the magnetic thin film, the surface of the magnet powder before the magnetic thin film is formed is subjected to an etching treatment. It is desirable that there be no foreign matter such as an oxide layer on the surface of the rare earth-transition metal based magnet powder.

【0016】また、希土類−遷移金属系等の磁石粉末の
表面に被覆する磁性薄膜の膜厚については磁石粉末にお
ける保磁力の改善が図れる範囲において任意に設定され
るが、上述した希土類と遷移金属から成るアモルファス
合金を適用する場合、上記磁性薄膜の膜厚は30Å(オ
ングストローム)以上に設定することが好ましい。30
Å(オングストローム)未満の場合、例えば希土類−遷
移金属系の磁石粉末における保磁力制御の効果が十分に
現れないことがあるからである。他方、上記膜厚の上限
は特にないが、2000Å(オングストローム)を越え
る厚さに設定しても保磁力制御の効果はあまり変わら
ず、かえって生産性が低下したり保磁力以外の磁気特
性、特に磁化が低下する場合があるため2000Å(オ
ングストローム)以下に設定することが好ましい。
The thickness of the magnetic thin film that covers the surface of the rare earth-transition metal based magnetic powder is arbitrarily set within a range where the coercive force of the magnet powder can be improved. When an amorphous alloy consisting of: is used, the thickness of the magnetic thin film is preferably set to 30 ° (angstrom) or more. 30
If it is less than Å (angstrom), for example, the effect of controlling the coercive force of rare earth-transition metal based magnet powder may not be sufficiently exhibited. On the other hand, although there is no particular upper limit of the film thickness, the effect of the coercive force control does not change so much even if the film thickness is set to more than 2000 ° (angstrom). On the contrary, the productivity is reduced and the magnetic properties other than the coercive force, especially Since the magnetization may decrease, it is preferable to set the angle to 2000 ° (angstrom) or less.

【0017】[0017]

【実施例】以下、本発明の実施例について具体的に説明
する。
Embodiments of the present invention will be specifically described below.

【0018】尚、図2と図3は本実施例で使用されたス
パッタリング装置の概略構成を示す説明図である。すな
わち、図2で示されるスパッタリング装置は、上方側に
真空排気系5とアルゴンガス(Ar)導入系6が設けら
れかつアースされた製膜室(容器)1と、この製膜室
(容器)1内に配置されたカソード7と、このカソード
7に接続されたスパッタ用電源70と、上記カソード7
に取付けられたスパッタターゲット9と、上記製膜室
(容器)1内に設置された撹拌羽2と、この撹拌羽2を
回転駆動するモータ20とでその主要部が構成されてい
る。
FIGS. 2 and 3 are explanatory views showing the schematic arrangement of the sputtering apparatus used in this embodiment. That is, the sputtering apparatus shown in FIG. 2 is provided with a vacuum evacuation system 5 and an argon gas (Ar) introduction system 6 on the upper side and is grounded and a film forming chamber (container) 1 and this film forming chamber (container) 1, a cathode power supply 70 connected to the cathode 7,
The main parts are constituted by a sputter target 9 attached to the above, a stirring blade 2 installed in the film forming chamber (container) 1, and a motor 20 for rotating the stirring blade 2.

【0019】他方、図3で示されるスパッタリング装置
は、図2のスパッタリング装置で用いられた撹拌羽2と
モータ20に代えて偏芯モータ3が適用され、かつ、製
膜室(容器)1の底面側に取付けられたスプリング状支
持部10により製膜室(容器)1が振動可能に支持され
ている点を除いて図2のスパッタリング装置と略同一で
ある。
On the other hand, the sputtering apparatus shown in FIG. 3 employs an eccentric motor 3 instead of the stirring blade 2 and the motor 20 used in the sputtering apparatus shown in FIG. It is substantially the same as the sputtering apparatus of FIG. 2 except that the film forming chamber (container) 1 is supported so as to be able to vibrate by a spring-like supporting portion 10 attached to the bottom surface side.

【0020】[実施例1]予め表面がエッチングされた
平均粒径6μmのSmFeN系(Sm:24.0重量%、F
e:72.5重量%、N:3.5重量%)永久磁石粉末500
gを図2に示されたスパッタリング装置の製膜室(容
器)1内に収容した。尚、スパッタリング装置のカソー
ド7にはスパッタターゲット9としてTbが25at%、
Feが75at%の合金ターゲットが取付けられている。
Example 1 An SmFeN-based material having an average particle diameter of 6 μm (Sm: 24.0% by weight, F
e: 72.5% by weight, N: 3.5% by weight) Permanent magnet powder 500
g was housed in the film forming chamber (vessel) 1 of the sputtering apparatus shown in FIG. The cathode 7 of the sputtering apparatus had Tb of 25 at% as a sputtering target 9.
An alloy target with 75 at% Fe is mounted.

【0021】次に、製膜室(容器)1内を真空に引いた
後、上記製膜室(容器)1内が1×10-2torrとなるよ
うにアルゴンガスを導入した。
Next, after the inside of the film forming chamber (container) 1 was evacuated, argon gas was introduced so that the inside of the film forming chamber (container) 1 became 1 × 10 -2 torr.

【0022】次に、上記撹拌羽2を回転させて磁石粉末
100を撹拌しながらカソード7に−500Vの電圧を
かけ、スパッタリングを3時間行って磁石粉末100の
表面に上記合金ターゲットと同一組成の磁性薄膜を製膜
した。尚、磁性薄膜の膜厚は1000Å(オングストロ
ーム)であった。
Next, a voltage of -500 V is applied to the cathode 7 while rotating the stirring blades 2 to stir the magnet powder 100, and sputtering is performed for 3 hours, so that the surface of the magnet powder 100 has the same composition as the alloy target. A magnetic thin film was formed. The thickness of the magnetic thin film was 1000 ° (angstrom).

【0023】そして、磁性薄膜により表面が覆われた実
施例1に係る永久磁石粉末について25℃と100℃条
件下における磁気特性(残留磁化と保磁力)をそれぞれ
測定した。測定結果を以下の表1に示す。
The magnetic properties (residual magnetization and coercive force) of the permanent magnet powder according to Example 1 whose surface was covered with the magnetic thin film were measured at 25 ° C. and 100 ° C., respectively. The measurement results are shown in Table 1 below.

【0024】また、実施例1に係る永久磁石粉末の磁化
曲線も合わせて求めた。
Further, the magnetization curve of the permanent magnet powder according to Example 1 was also determined.

【0025】尚、図1は磁化曲線の模式図であり、実施
例1に係る永久磁石粉末の磁化曲線を実線aで示す。ま
た、一点鎖線bは上記磁性薄膜を被覆する前の永久磁石
粉末の磁化曲線、二点鎖線cは上記磁性薄膜の磁化曲線
をそれぞれ示す。
FIG. 1 is a schematic diagram of a magnetization curve, and the magnetization curve of the permanent magnet powder according to Example 1 is indicated by a solid line a. The dashed line b indicates the magnetization curve of the permanent magnet powder before coating the magnetic thin film, and the dashed line c indicates the magnetization curve of the magnetic thin film.

【0026】そして、実線a、一点鎖線b、二点鎖線c
から明らかなように、実施例1に係る永久磁石粉末の磁
化曲線上は、磁性薄膜を被覆する前の永久磁石粉末、上
記磁性薄膜を単独で測定したものの単純な加算ではな
く、一つの段のないループを示していて磁石粉末と磁性
薄膜との間に交換結合力が十分作用していることが確認
される。
The solid line a, the one-dot chain line b, and the two-dot chain line c
As is apparent from the graph, the magnetization curve of the permanent magnet powder according to the example 1 is not a simple addition of the permanent magnet powder before coating the magnetic thin film and the magnetic thin film alone, but one step. It shows no loop, confirming that the exchange coupling force is sufficiently acting between the magnet powder and the magnetic thin film.

【0027】[実施例2]スパッタリング時間が8分間
で、製膜された上記磁性薄膜の膜厚が50Å(オングス
トローム)であった点を除き実施例1と略同一の工程に
従い、磁石粉末とその表面を被覆する磁性薄膜とで構成
された実施例2に係る永久磁石粉末を製造した。
Example 2 A magnet powder and a magnetic powder were formed according to substantially the same steps as in Example 1 except that the sputtering time was 8 minutes and the thickness of the formed magnetic thin film was 50 ° (angstrom). A permanent magnet powder according to Example 2 comprising a magnetic thin film covering the surface was manufactured.

【0028】そして、実施例2に係る永久磁石粉末につ
いても25℃と100℃条件下における磁気特性(残留
磁化と保磁力)をそれぞれ測定した。測定結果を以下の
表1に示す。
The magnetic properties (residual magnetization and coercive force) of the permanent magnet powder according to Example 2 were measured at 25 ° C. and 100 ° C., respectively. The measurement results are shown in Table 1 below.

【0029】[実施例3]スパッタリング時間が3分間
で、製膜された上記磁性薄膜の膜厚が15Å(オングス
トローム)であった点を除き実施例1と略同一の工程に
従い、磁石粉末とその表面を被覆する磁性薄膜とで構成
された実施例3に係る永久磁石粉末を製造した。
Example 3 A magnet powder and a magnetic powder were prepared according to substantially the same steps as in Example 1 except that the sputtering time was 3 minutes and the thickness of the formed magnetic thin film was 15 ° (angstrom). A permanent magnet powder according to Example 3 constituted by a magnetic thin film covering the surface was manufactured.

【0030】そして、実施例3に係る永久磁石粉末につ
いても25℃と100℃条件下における磁気特性(残留
磁化と保磁力)をそれぞれ測定した。測定結果を以下の
表1に示す。
The magnetic properties (residual magnetization and coercive force) of the permanent magnet powder according to Example 3 were measured at 25 ° C. and 100 ° C., respectively. The measurement results are shown in Table 1 below.

【0031】[実施例4]スパッタリング時間が10時
間で、製膜された上記磁性薄膜の膜厚が3500Å(オ
ングストローム)であった点を除き実施例1と略同一の
工程に従い、磁石粉末とその表面を被覆する磁性薄膜と
で構成された実施例4に係る永久磁石粉末を製造した。
Example 4 The procedure of Example 1 was repeated except that the sputtering time was 10 hours and the thickness of the formed magnetic thin film was 3500 ° (angstrom). A permanent magnet powder according to Example 4 including a magnetic thin film covering the surface was manufactured.

【0032】そして、実施例4に係る永久磁石粉末につ
いても25℃と100℃条件下における磁気特性(残留
磁化と保磁力)をそれぞれ測定した。測定結果を以下の
表1に示す。
The magnetic properties (residual magnetization and coercive force) of the permanent magnet powder according to Example 4 were measured at 25 ° C. and 100 ° C., respectively. The measurement results are shown in Table 1 below.

【0033】[実施例5]図3に示されたスパッタリン
グ装置が用いられている点を除き実施例1と略同一の工
程に従い、磁石粉末とその表面を被覆する磁性薄膜とで
構成された実施例5に係る永久磁石粉末を製造した。
[Embodiment 5] An embodiment comprising a magnet powder and a magnetic thin film covering the surface thereof according to substantially the same steps as in Embodiment 1 except that the sputtering apparatus shown in FIG. 3 is used. A permanent magnet powder according to Example 5 was produced.

【0034】そして、実施例5に係る永久磁石粉末につ
いても25℃と100℃条件下における磁気特性(残留
磁化と保磁力)をそれぞれ測定した。測定結果を以下の
表1に示す。
The magnetic properties (residual magnetization and coercive force) of the permanent magnet powder according to Example 5 were measured at 25 ° C. and 100 ° C., respectively. The measurement results are shown in Table 1 below.

【0035】[実施例6]平均粒径6μmのSmFeN
系(Sm:24.0重量%、Fe:72.5重量%、N:3.5重
量%)永久磁石粉末に変えて平均粒径20μmのSmC
o系(Sm:25.5重量%、Co:66.9重量%、Pr:7.
6重量%)永久磁石粉末を適用している点と、スパッタ
リング時間が1時間である点を除き実施例1と略同一の
工程に従い、磁石粉末とその表面を被覆する磁性薄膜と
で構成された実施例6に係る永久磁石粉末を製造した。
Example 6 SmFeN having an average particle size of 6 μm
System (Sm: 24.0% by weight, Fe: 72.5% by weight, N: 3.5% by weight) SmC with an average particle size of 20 μm instead of permanent magnet powder
o system (Sm: 25.5% by weight, Co: 66.9% by weight, Pr: 7.
6% by weight) The magnet powder and the magnetic thin film covering the surface were formed according to substantially the same steps as in Example 1 except that the permanent magnet powder was applied and the sputtering time was 1 hour. Example 6 A permanent magnet powder according to Example 6 was manufactured.

【0036】そして、実施例6に係る永久磁石粉末につ
いても25℃と100℃条件下における磁気特性(残留
磁化と保磁力)をそれぞれ測定した。測定結果を以下の
表1に示す。
The magnetic properties (residual magnetization and coercive force) of the permanent magnet powder of Example 6 were measured at 25 ° C. and 100 ° C., respectively. The measurement results are shown in Table 1 below.

【0037】[比較例1]磁性薄膜が被覆されていない
平均粒径6μmのSmFeN系(Sm:24.0重量%、F
e:72.5重量%、N:3.5重量%)永久磁石粉末自体を
比較例1に係る永久磁石粉末とする。
Comparative Example 1 An SmFeN-based material having an average particle size of 6 μm (Sm: 24.0 wt%, F
e: 72.5% by weight, N: 3.5% by weight) The permanent magnet powder itself is used as the permanent magnet powder according to Comparative Example 1.

【0038】そして、比較例1に係る永久磁石粉末につ
いても25℃と100℃条件下における磁気特性(残留
磁化と保磁力)をそれぞれ測定した。測定結果を以下の
表1に示す。
The magnetic properties (residual magnetization and coercive force) of the permanent magnet powder according to Comparative Example 1 were measured at 25 ° C. and 100 ° C., respectively. The measurement results are shown in Table 1 below.

【0039】[比較例2]磁性薄膜が被覆されていない
平均粒径20μmのSmCo系(Sm:25.5重量%、C
o:66.9重量%、Pr:7.6重量%)永久磁石粉末自体
を比較例2に係る永久磁石粉末とする。
Comparative Example 2 An SmCo-based material having an average particle size of 20 μm (Sm: 25.5% by weight, C
o: 66.9% by weight, Pr: 7.6% by weight) The permanent magnet powder itself is used as the permanent magnet powder according to Comparative Example 2.

【0040】そして、比較例2に係る永久磁石粉末につ
いても25℃と100℃条件下における磁気特性(残留
磁化と保磁力)をそれぞれ測定した。測定結果を以下の
表1に示す。
The magnetic properties (residual magnetization and coercive force) of the permanent magnet powder according to Comparative Example 2 were measured at 25 ° C. and 100 ° C., respectively. The measurement results are shown in Table 1 below.

【0041】[0041]

【表1】 [Table 1]

【0042】(評 価) (1)実施例1〜5と比較例1との比較、並びに、実施
例6と比較例2との比較から、測定温度25℃下での残
留磁化と保磁力の値は実施例と比較例とで大きな差異は
認められないが、測定温度100℃下での残留磁化と保
磁力の値は実施例と比較例とで大きな差異が認められ
る。このことから、各比較例に係る永久磁石粉末に較べ
て各実施例に係る永久磁石粉末は保磁力の温度変化が少
なく、優れた温度特性を具備していることが評価され
る。
(Evaluation) (1) From the comparison between Examples 1 to 5 and Comparative Example 1 and the comparison between Example 6 and Comparative Example 2, the residual magnetization and coercive force at a measurement temperature of 25 ° C. Although there is no significant difference between the values of the embodiment and the comparative example, the values of the residual magnetization and the coercive force at the measurement temperature of 100 ° C. are significantly different between the example and the comparative example. From this, it is evaluated that the permanent magnet powder according to each of the examples has less temperature change of coercive force and has excellent temperature characteristics as compared with the permanent magnet powder according to each of the comparative examples.

【0043】(2)また、実施例3と実施例1〜2との
比較から、磁石粉末表面を被覆する上記磁性薄膜の膜厚
が15Å(オングストローム)と極端に薄い場合には、
磁性薄膜を設けたことによる保磁力の改善効果が若干弱
いことも確認される。
(2) From the comparison between Example 3 and Examples 1 and 2, when the thickness of the magnetic thin film covering the surface of the magnet powder is extremely thin, 15 ° (angstrom),
It is also confirmed that the effect of improving the coercive force by providing the magnetic thin film is slightly weak.

【0044】(3)他方、実施例4と実施例1〜2との
比較から、磁石粉末表面を被覆する上記磁性薄膜の膜厚
が3500Å(オングストローム)と必要以上に厚く設
定されている場合、磁性薄膜を設けたことによる保磁力
の改善効果は認められるが、適正膜厚の実施例1〜2よ
り優れた結果とはなっておらず、かえって残留磁化が他
の実施例より若干劣ってしまう傾向が確認される。
(3) On the other hand, from the comparison between Example 4 and Examples 1 and 2, when the thickness of the magnetic thin film covering the surface of the magnet powder is set to 3500 ° (angstrom), which is unnecessarily large, Although the effect of improving the coercive force due to the provision of the magnetic thin film is recognized, the results are not superior to those of Examples 1 and 2 having an appropriate film thickness, and the residual magnetization is slightly inferior to the other examples. A trend is confirmed.

【0045】[0045]

【発明の効果】請求項1〜3記載の発明に係る永久磁石
粉末によれば、逆磁区核発生型の磁石粉末表面が別の磁
性薄膜で被覆されていることから上記表面での逆磁区核
の発生が抑制され、かつ、磁石粉末と保磁力の大きい上
記磁性薄膜との間に交換結合力が作用しているため永久
磁石粉末における保磁力を制御することが可能となる。
According to the permanent magnet powder according to the first to third aspects of the present invention, since the surface of the reverse magnetic domain nucleation type magnet powder is coated with another magnetic thin film, the reverse magnetic domain nuclei on the surface are provided. Is suppressed, and an exchange coupling force acts between the magnet powder and the magnetic thin film having a large coercive force, so that the coercive force of the permanent magnet powder can be controlled.

【0046】更に、逆磁区核発生型の磁石粉末表面を被
覆する磁性膜は薄膜であることから上記磁石粉末の保磁
力以外の磁気特性は保持される。
Further, since the magnetic film covering the surface of the reverse magnetic domain nucleation type magnet powder is a thin film, magnetic properties other than the coercive force of the magnet powder are maintained.

【0047】従って、逆磁区核発生型の磁石粉末におけ
る磁化等の磁気特性を保持したまま保磁力の温度特性が
改善される効果を有している。
Therefore, there is an effect that the temperature characteristics of the coercive force are improved while maintaining the magnetic characteristics such as magnetization in the reverse magnetic domain nucleation type magnet powder.

【0048】特に、請求項4記載の発明に係る永久磁石
粉末によれば、逆磁区核発生型の磁石粉末表面を被覆す
る上記磁性薄膜における保磁力の温度係数が室温で正で
あるため、希土類−遷移金属系等の永久磁石における保
磁力の温度特性を更に改善できる効果を有している。
In particular, according to the permanent magnet powder according to the fourth aspect of the present invention, since the temperature coefficient of coercive force of the magnetic thin film covering the surface of the reverse magnetic domain nucleation type magnet powder is positive at room temperature, -Has the effect of further improving the temperature characteristics of the coercive force of a permanent magnet such as a transition metal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係る永久磁石粉末の磁化曲線の模式
図。
FIG. 1 is a schematic diagram of a magnetization curve of a permanent magnet powder according to Example 1.

【図2】実施例で用いられたスパッタリング装置の概略
構成説明図。
FIG. 2 is a schematic structural explanatory view of a sputtering apparatus used in an example.

【図3】実施例で用いられた他のスパッタリング装置の
概略構成説明図。
FIG. 3 is a schematic structural explanatory view of another sputtering apparatus used in the embodiment.

【符号の説明】[Explanation of symbols]

1 製膜室(容器) 2 撹拌羽 3 偏芯モータ 7 カソード 9 スパッタターゲット 20 モータ 100 磁石粉末 DESCRIPTION OF SYMBOLS 1 Film-forming chamber (vessel) 2 Stirring blade 3 Eccentric motor 7 Cathode 9 Sputter target 20 Motor 100 Magnet powder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】逆磁区核発生型の磁石粉末とこの磁石粉末
の表面を被覆する保磁力の大きい磁性薄膜とで構成さ
れ、かつ、磁石粉末と磁性薄膜との間に交換結合力が作
用していることを特徴とする永久磁石粉末。
1. A magnetic powder comprising reverse magnetic domain nucleation type magnetic powder and a magnetic thin film having a large coercive force covering the surface of the magnetic powder, and an exchange coupling force acts between the magnetic powder and the magnetic thin film. Permanent magnet powder characterized by having.
【請求項2】上記逆磁区核発生型の磁石粉末が、Sm1
Co5系、Sm2Fe173系、及び、Nd2Fe141
から選択されたいずれかの希土類−遷移金属系磁石粉末
で構成されていることを特徴とする請求項1記載の永久
磁石粉末。
2. The method according to claim 1, wherein said reverse magnetic domain nucleation type magnet powder is Sm 1
Co 5 system, Sm 2 Fe 17 N 3 based, and, either selected from Nd 2 Fe 14 B 1 type rare earth - according to claim 1, characterized in that it is constituted by a transition metal-based magnetic powder Permanent magnet powder.
【請求項3】上記磁性薄膜が、希土類と遷移金属から成
るアモルファス合金にて構成されていることを特徴とす
る請求項1または2記載の永久磁石粉末。
3. The permanent magnet powder according to claim 1, wherein the magnetic thin film is made of an amorphous alloy comprising a rare earth and a transition metal.
【請求項4】上記磁性薄膜における保磁力の温度係数が
室温で正であることを特徴とする請求項1、2または3
記載の永久磁石粉末。
4. The magnetic thin film according to claim 1, wherein the temperature coefficient of coercive force is positive at room temperature.
The permanent magnet powder as described.
JP9309871A 1997-10-24 1997-10-24 Permanent magnet powder Pending JPH11135312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9309871A JPH11135312A (en) 1997-10-24 1997-10-24 Permanent magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9309871A JPH11135312A (en) 1997-10-24 1997-10-24 Permanent magnet powder

Publications (1)

Publication Number Publication Date
JPH11135312A true JPH11135312A (en) 1999-05-21

Family

ID=17998311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9309871A Pending JPH11135312A (en) 1997-10-24 1997-10-24 Permanent magnet powder

Country Status (1)

Country Link
JP (1) JPH11135312A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251993A (en) * 2007-03-30 2008-10-16 Tdk Corp Magnetic material and magnet using the same
JP2013219352A (en) * 2012-04-04 2013-10-24 Gm Grobal Technology Operations Llc Vibrator for performing powder coating
DE102012000421B4 (en) 2011-01-14 2023-09-28 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Method for producing sintered Nd-Fe-B magnets with Dy or Tb

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251993A (en) * 2007-03-30 2008-10-16 Tdk Corp Magnetic material and magnet using the same
DE102012000421B4 (en) 2011-01-14 2023-09-28 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Method for producing sintered Nd-Fe-B magnets with Dy or Tb
JP2013219352A (en) * 2012-04-04 2013-10-24 Gm Grobal Technology Operations Llc Vibrator for performing powder coating

Similar Documents

Publication Publication Date Title
JPS6274048A (en) Permanent magnet material and its production
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
JP2007088108A (en) Magnet, magnetic material for magnet, coat film formation process liquid, and rotating machine
WO2005091315A1 (en) R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
WO1999054890A1 (en) Corrosion-resisting permanent magnet and method for producing the same
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
TW584670B (en) Fabrication of nanocomposite thin films for high density magnetic recording media
Hasegawa et al. Structural and soft magnetic properties of nanocrystalline (Fe, Co, Ni)-Ta-C films with high thermal stability
JP2001523767A (en) Method for manufacturing Ni-Si magnetron sputtering target and target manufactured by the method
JPH04129203A (en) Permanent magnet powder
JPH11135312A (en) Permanent magnet powder
EP1239494A2 (en) Fept magnet and manufacturing method thereof
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JP2005209669A (en) Rare-earth magnet and magnetic circuit using it
JPH07272929A (en) Rare earth element-fe-b-thin film permanent magnet
JP3305790B2 (en) Manufacturing method of thin film permanent magnet
JPH0569282B2 (en)
Park et al. Effects of annealing condition on the structural and magnetic properties of FePt thin films
JP2000150213A (en) Rare earth magnetic powder for bonded magnet and its manufacture
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JPH07335575A (en) Manufacture of thin film
JP3106484B2 (en) Method of forming rare earth alloy thin film magnet
JPS61281850A (en) Permanent magnet material
JP3969125B2 (en) Fe-Pt magnet and method for producing the same
JPH097833A (en) Thin film magnet