JPH0517868A - Production of sputtering target - Google Patents

Production of sputtering target

Info

Publication number
JPH0517868A
JPH0517868A JP19609091A JP19609091A JPH0517868A JP H0517868 A JPH0517868 A JP H0517868A JP 19609091 A JP19609091 A JP 19609091A JP 19609091 A JP19609091 A JP 19609091A JP H0517868 A JPH0517868 A JP H0517868A
Authority
JP
Japan
Prior art keywords
powder
sintered
magnetic
film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19609091A
Other languages
Japanese (ja)
Inventor
Akihiro Isomura
明宏 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP19609091A priority Critical patent/JPH0517868A/en
Publication of JPH0517868A publication Critical patent/JPH0517868A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PURPOSE:To produce a sputtering target increased in saturation magnetic flux, excellent in soft-magnetic properties, having superior heat resistance, and facilitating the formation of carbide dispersion type soft-magnetic film. CONSTITUTION:A powder of >=50mum average grain size of at least one element among Fe, Co, and Ni or alloy thereof previously subjected to reduction treatment in a reducing atmosphere of hydrogen gas, etc., a powder of at least one element among Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, and a C powder are mixed by means of a powder mixer, etc. The resulting powder mixture is compacted and is then sintered in a reducing atmosphere of hydrogen gas, etc., again or sintered by means of hot isostatic pressing. At this time, when sintering temp. exceeds 1000 deg.C, the reactions between the group IVa, Va, and VIa elements and C can be accelerated and the carbides of the group IVa, Va, and VIa elements can be formed in the resulting sintered compact, and, as a result, the initial purpose can be accomplished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高飽和磁束密度が要求さ
れる高密度磁気記録用磁気ヘッドの磁極材を形成する軟
磁性薄膜を成膜する際に用いられるスパッタターゲット
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputter target used for forming a soft magnetic thin film for forming a magnetic pole material of a magnetic head for high density magnetic recording which requires a high saturation magnetic flux density.

【0002】[0002]

【従来の技術】一般に磁気記録を高密度化するためには
記録媒体の保磁力Hcを増大させなければならないが、
それと同時に高飽和磁束密度をもつ磁気ヘッド材が要求
されている。従来、磁気記録再生用磁気ヘッドの磁極を
構成する材料としてはフェライト、パーマロイ、センダ
スト、Co系アモルファス合金等が使用されている。
2. Description of the Related Art Generally, the coercive force Hc of a recording medium must be increased in order to increase the density of magnetic recording.
At the same time, a magnetic head material having a high saturation magnetic flux density is required. Conventionally, ferrite, permalloy, sendust, Co-based amorphous alloys, etc. have been used as materials for forming magnetic poles of magnetic heads for magnetic recording and reproduction.

【0003】[0003]

【発明が解決しようとする課題】しかし、フェライト、
パーマロイ、センダストは記録媒体の保磁力に対して飽
和磁束密度が小さく、十分な高密度磁気記録が実現でき
ない欠点がある。また、Co系アモルファスでは飽和磁
束密度が13〜15kGと現在の磁気記録媒体のもつHc
に対し十分大きいが、熱的安定性に欠け、ガラス溶着の
工程で数100℃以上の高温にさらされると結晶化する
ために、その良好な軟磁気特性を失うという欠点があ
る。
[Problems to be Solved by the Invention] However, ferrite,
Permalloy and Sendust have a small saturation magnetic flux density with respect to the coercive force of the recording medium, and have a drawback that sufficient high density magnetic recording cannot be realized. Further, the saturation magnetic flux density of Co-type amorphous is 13 to 15 kG, which is Hc of the current magnetic recording medium.
However, it has a drawback that it lacks thermal stability and crystallizes when exposed to a high temperature of several hundreds of degrees Celsius or more in the glass welding process, so that its good soft magnetic properties are lost.

【0004】また、磁気ヘッドの磁極材として高飽和磁
束密度を有する合金系で単層膜を得ても、成膜時のエピ
タキシャル成長、ヘッド加工時の高温下での結晶粒成長
によって高周波領域で軟磁気特性が劣化するという問題
点がある。これを解決するための1つの手段として積層
化する方法があるが、中間層自体が熱安定性に乏しい場
合には高温にさらされることによって界面での構成元素
同士の拡散が起こり、積層軟磁性膜本来の高磁束密度、
高透磁率の特徴が失われる。
Even when a single layer film is obtained from an alloy system having a high saturation magnetic flux density as a magnetic pole material of a magnetic head, it is softened in a high frequency region due to epitaxial growth during film formation and crystal grain growth at a high temperature during head processing. There is a problem that the magnetic characteristics are deteriorated. There is a method of laminating as one means for solving this, but when the intermediate layer itself has poor thermal stability, it is exposed to a high temperature to cause diffusion of constituent elements at the interface, resulting in lamination soft magnetic properties. Original high magnetic flux density,
The high permeability feature is lost.

【0005】これらの欠点を克服する磁極材としてF
e,Co,Ni、あるいはそれらの合金等のマトリック
ス中にIVa,Va,VIa族の炭化物等の微粒子を分散さ
せ、高透磁率、高飽和磁化、良好な耐熱性を付与せしめ
た軟磁性薄膜材料が注目を浴びている。このような膜で
炭素を膜中に添加するには、CH4 等の反応ガスを用い
た反応性スパッタリング法のほか、複合ターゲット法が
用いられている。しかし、いずれも研究開発段階におけ
る成膜には適しているが量産には不向きであるという憾
みがある。この微粒子分散型の軟磁性膜はIVa,Va,
VIa族元素の窒化物・炭化物生成能が大きいことを活用
したものであるが、スパッタターゲットを製造する場合
にはこの特質はむしろ大きな障害となる。即ち、IVa,
Va,VIa族元素の窒化物・炭化物が存在するようなタ
ーゲットを用いて成膜しても成膜直後の膜中にIVa,V
a,VIa族元素の窒化物・炭化物が存在し、良好な軟磁
性膜を得ることが極めて困難である。
F as a magnetic pole material that overcomes these drawbacks
A soft magnetic thin film material in which fine particles of IVa, Va, VIa group carbides or the like are dispersed in a matrix of e, Co, Ni, or an alloy thereof to give high permeability, high saturation magnetization, and good heat resistance. Is in the spotlight. In order to add carbon to the film in such a film, a composite target method is used in addition to the reactive sputtering method using a reaction gas such as CH 4 . However, all of them are suitable for film formation at the research and development stage, but are unsuitable for mass production. This fine particle-dispersed soft magnetic film has IVa, Va,
This is made use of the fact that the group VIa element has a large ability to form nitrides and carbides, but this characteristic is rather a major obstacle when manufacturing a sputter target. That is, IVa,
Even if a film is formed using a target containing nitrides and carbides of Va and VIa group elements, IVa and V are formed in the film immediately after the film formation.
Since nitrides and carbides of the a and VIa group elements are present, it is extremely difficult to obtain a good soft magnetic film.

【0006】そこで、本発明の技術的課題は上述の問題
点を解決するためのもので、飽和磁束密度が大きく、か
つ軟磁気特性に優れるとともに耐熱性の良好な炭化物分
散型軟磁性膜の形成を容易にするスパッタターゲットの
成造方法を提供することである。
Therefore, the technical problem of the present invention is to solve the above-mentioned problems, and to form a carbide-dispersed soft magnetic film having a large saturation magnetic flux density, excellent soft magnetic properties, and good heat resistance. It is to provide a method for forming a sputter target that facilitates the above.

【0007】[0007]

【課題を解決するための手段】本発明によれば、Fe,
Co,Niのうち少なくとも一種、またはそれらの合金
微粉末と、Ti,V,Cr,Zr,Nb,Mo,Hf,
Ta,Wのうち少なくとも一種の粉末、及びCの粉末と
を混合する工程と、該混合された粉末を成形する工程
と、該成形された粉末を1000℃以下の温度で焼結す
る工程とを含み、当該磁性金属マトリックス中にIVa,
Va,VIa族元素、及びCの粒子を独立に存在させるこ
とを特徴とする強磁性合金薄膜を成膜するためのスパッ
タターゲットの製造方法が得られる。
According to the present invention, Fe,
At least one of Co and Ni, or an alloy fine powder thereof, and Ti, V, Cr, Zr, Nb, Mo, Hf,
A step of mixing at least one powder of Ta and W, and a powder of C, a step of molding the mixed powder, and a step of sintering the molded powder at a temperature of 1000 ° C. or lower. And including IVa in the magnetic metal matrix,
A method of manufacturing a sputter target for forming a ferromagnetic alloy thin film, characterized in that particles of Va, VIa group elements and C are independently present.

【0008】[0008]

【作用】あらかじめ水素ガス等の還元雰囲気中で還元処
理されたFe,Co,Niのうち少なくとも一種、また
はそれらの合金の平均粒径50μm 以下の粉末と、T
i,V,Cr,Zr,Nb,Mo,Hf,Ta,Wのう
ち少なくとも一種の粉末、及びCの粉末とを混合機等で
混合する。この混合粉末を成形した後、再び水素ガス等
の還元雰囲気中で焼結するか、または熱間静水圧中で焼
結する。この時、焼結温度が1000℃を越えるとIV
a,Va,VIa族元素とCの反応が促進され焼結体中に
IVa,Va,VIa族元素の炭化物が生成され、初期の目
的を実現することができない。また、平均粒径が50μ
m を越えるFe,Co,Ni、あるいはそれらの合金粉
末を用いて焼結した場合、熱間静水圧中で焼結しても1
000℃以下の温度では十分に焼結密度が上がらない。
[Function] At least one of Fe, Co, and Ni, which has been reduced in advance in a reducing atmosphere such as hydrogen gas, or a powder of an alloy thereof having an average particle size of 50 μm or less, and T
At least one kind of powder among i, V, Cr, Zr, Nb, Mo, Hf, Ta and W and the powder of C are mixed with a mixer or the like. After molding this mixed powder, it is sintered again in a reducing atmosphere such as hydrogen gas, or in hot isostatic pressure. At this time, if the sintering temperature exceeds 1000 ° C, IV
Reaction of a, Va, VIa group elements and C is promoted and
Carbides of IVa, Va, and VIa group elements are formed, and the initial purpose cannot be achieved. The average particle size is 50μ
When sintered with Fe, Co, Ni, or their alloy powders exceeding m 3, even if sintered under hot isostatic pressure, 1
At a temperature of 000 ° C or lower, the sintered density does not increase sufficiently.

【0009】本発明のスパッタターゲットにおいては、
Fe,Co,Niの磁性金属マトリックス中にIVa,V
a,VIa族元素の微粒子とCの微粒子とが互いに独立し
つつ分散している。このため、ターゲット表面は複合タ
ーゲットと同様の状態になっており、容易に合金膜を得
ることができる。また、ターゲット中に非磁性元素が分
散しているため透磁率が低下するので、漏れ磁束が得や
すく、マグネトロンスパッタリングを行なうのが極めて
容易になるという利点を合わせ持つ。
In the sputter target of the present invention,
IVa, V in magnetic metal matrix of Fe, Co, Ni
Fine particles of a and VIa group elements and fine particles of C are dispersed independently of each other. Therefore, the target surface is in the same state as the composite target, and the alloy film can be easily obtained. Further, since the non-magnetic element is dispersed in the target, the magnetic permeability is lowered, so that it is easy to obtain a leakage magnetic flux, and it is extremely easy to perform magnetron sputtering.

【0010】[0010]

【実施例】以下、本発明の実施例を実験結果にもとづい
て説明する。
EXAMPLES Examples of the present invention will be described below based on experimental results.

【0011】本発明の一実施例は、磁性金属としてF
e、添加元素としてTa、及びCを用いている。水素ガ
ス中で還元処理した平均粒径3.0μm のFe粉末と同
じく還元処理した100メッシュ以下325メッシュ以
上のTa粉末、及びC粉末を69.3at%Fe−7.7
at%Ta−23.0at%Cの比で混合・成形した後、水
素ガス中800℃で焼結する。この時得られた本実施例
の焼結体のX線回析パターンを図1(a)に示す。比較
のために、同様の組成で溶解して得られた比較例の合金
のX線回析パターンを図1(b)に示す。本実施例の焼
結体からは単体のFe,Taのピークが観察されるのみ
であるのに対し、溶解して得た合金からはα−Feの他
に、TaC,Fe3 Cなどの化合物が存在する。
In one embodiment of the present invention, F is used as the magnetic metal.
e, Ta and C are used as additional elements. 69.3 at% Fe-7.7 of Fe powder having an average particle size of 3.0 μm reduced in hydrogen gas, Ta powder of 100 mesh or less and 325 mesh or more, and C powder, which are similarly reduced.
After mixing and molding at a ratio of at% Ta-23.0 at% C, it is sintered at 800 ° C. in hydrogen gas. The X-ray diffraction pattern of the sintered body of this example obtained at this time is shown in FIG. For comparison, the X-ray diffraction pattern of the alloy of Comparative Example obtained by melting with the same composition is shown in FIG. 1 (b). Only the Fe and Ta peaks of the simple substance are observed from the sintered body of the present example, while the alloy obtained by melting contains α-Fe and compounds such as TaC and Fe 3 C. Exists.

【0012】次にこれら2種のターゲットを用い、マグ
ネトロン・スパッタリング法により成膜実験を行なっ
た。以下、それぞれ焼結ターゲット、溶解ターゲットと
称する。スパッタリングに先立ち、まず、真空容器内を
1×10-8Torr以下まで排気した後、Arガスを導入、
ガス圧を3mTorrとし、膜厚約5.0μm の膜を得た。
なお、基板には結晶化ガラスを使用した。図2(a)に
焼結ターゲットから得た薄膜のX線回析パターンを図2
(b)に比較例の溶解ターゲットから得た膜のX線回析
パターンを示す。本発明の一実施例の焼結ターゲットか
ら得た成膜はアモルファス化しているのに対し、溶解タ
ーゲットから得た成膜にはFe3 C,TaCの存在が認
められる。
Next, a film forming experiment was carried out by a magnetron sputtering method using these two types of targets. Hereinafter, they are referred to as a sintering target and a melting target, respectively. Prior to sputtering, first evacuate the vacuum chamber to 1 × 10 −8 Torr or less, and then introduce Ar gas,
A gas pressure was set to 3 mTorr and a film having a film thickness of about 5.0 μm was obtained.
Crystallized glass was used for the substrate. The X-ray diffraction pattern of the thin film obtained from the sintered target is shown in FIG.
The X-ray diffraction pattern of the film obtained from the dissolution target of the comparative example is shown in (b). The film obtained from the sintered target of one example of the present invention is amorphous, whereas the film obtained from the melted target shows the presence of Fe 3 C and TaC.

【0013】次に、これらの成膜を600℃で20分間
熱処理した。熱処理後のヒステリシス曲線を図3
(a),(b)に示す。(a)は本発明の一実施例の焼
結ターゲットから得た膜、(b)は比較例の溶解ターゲ
ットから得た成膜のヒステリシス曲線である。本発明の
一実施例ではHcは実質上49A/mと良好な軟磁気特
性を示しているのに対し、比較例ではヘビ型のヒステリ
シス曲線を呈し、保磁力も約4000A/mと前者に比
べ非常に大きい。
Next, these films were heat-treated at 600 ° C. for 20 minutes. Figure 3 shows the hysteresis curve after heat treatment
Shown in (a) and (b). (A) is a film obtained from a sintered target of one example of the present invention, and (b) is a hysteresis curve of film formation obtained from a dissolution target of a comparative example. In one embodiment of the present invention, Hc shows a good soft magnetic property of substantially 49 A / m, while in the comparative example, a snake-type hysteresis curve is exhibited and the coercive force is about 4000 A / m, which is higher than that of the former. Very big.

【0014】[0014]

【発明の効果】以上説明したように、本発明のスパッタ
ターゲットの製造方法によれば、1000℃以下の焼結
工程を有するから、飽和磁気密度が大きく、かつ軟磁気
特性に優れるとともに耐熱性の良好な炭化物分散型軟磁
性膜の形成が容易になるという効果がある。
As described above, according to the method for producing a sputter target of the present invention, since it has a sintering step at 1000 ° C. or less, it has a large saturation magnetic density, excellent soft magnetic characteristics and heat resistance. This has the effect of facilitating the formation of a good carbide-dispersed soft magnetic film.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)が本発明の一実施例、(b)が比較例の
ターゲットによるX線回析パターンを示す図である。
FIG. 1A is a diagram showing an X-ray diffraction pattern of a target of an example of the present invention, and FIG. 1B is a diagram of a target of a comparative example.

【図2】(a)が図1(a)、(b)が図1(b)の各
ターゲットによるFe−Ta−C薄膜のX線回析パター
ンを示す図である。
FIG. 2A is a diagram showing an X-ray diffraction pattern of a Fe—Ta—C thin film by each target of FIG. 1A and FIG. 1B.

【図3】(a)が図2(a),(b)が図2(b)の各
成膜のヒステリシス曲線を示す図である。
FIG. 3 (a) is a diagram showing a hysteresis curve of each film formation of FIG. 2 (a) and FIG. 2 (b).

Claims (1)

【特許請求の範囲】 【請求項1】 Fe,Co,Niのうち少なくとも一
種、またはそれらの合金微粉末と、Ti,V,Cr,Z
r,Nb,Mo,Hf,Ta,Wのうち少なくとも一種
の粉末、及びCの粉末とを混合する工程と、該混合され
た粉末を成形する工程と、該成形された粉末を1000
℃以下の温度で焼結する工程とを含み、当該磁性金属マ
トリックス中にIVa,Va,VIa族元素、及びCの粒子
を独立に存在させることを特徴とする強磁性合金薄膜を
成膜するためのスパッタターゲットの製造方法。
What is claimed is: 1. At least one of Fe, Co, and Ni, or an alloy fine powder thereof, and Ti, V, Cr, and Z.
a step of mixing at least one of powders of r, Nb, Mo, Hf, Ta, and W, and a powder of C; a step of molding the mixed powder;
A step of sintering at a temperature of ℃ or less, for forming a ferromagnetic alloy thin film, characterized in that particles of group IVa, Va, VIa and C are independently present in the magnetic metal matrix. Method for manufacturing sputter target.
JP19609091A 1991-07-11 1991-07-11 Production of sputtering target Withdrawn JPH0517868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19609091A JPH0517868A (en) 1991-07-11 1991-07-11 Production of sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19609091A JPH0517868A (en) 1991-07-11 1991-07-11 Production of sputtering target

Publications (1)

Publication Number Publication Date
JPH0517868A true JPH0517868A (en) 1993-01-26

Family

ID=16352048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19609091A Withdrawn JPH0517868A (en) 1991-07-11 1991-07-11 Production of sputtering target

Country Status (1)

Country Link
JP (1) JPH0517868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012591A1 (en) * 2003-08-05 2005-02-10 Nikko Materials Co., Ltd. Sputtering target and method for production thereof
EP1813694A1 (en) * 2004-11-15 2007-08-01 Nikko Materials Co., Ltd. Sputtering target for production of metallic glass film and process for producing the same
US7789948B2 (en) 2004-11-15 2010-09-07 Nippon Mining & Metals Co., Ltd Hydrogen separation membrane, sputtering target for forming said hydrogen separation membrane, and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012591A1 (en) * 2003-08-05 2005-02-10 Nikko Materials Co., Ltd. Sputtering target and method for production thereof
CN100457963C (en) * 2003-08-05 2009-02-04 日矿金属株式会社 Sputtering target and method for production thereof
JP2009242947A (en) * 2003-08-05 2009-10-22 Nippon Mining & Metals Co Ltd Sputtering target and method for production thereof
JP2009263796A (en) * 2003-08-05 2009-11-12 Nippon Mining & Metals Co Ltd Sputtering target and method for production thereof
US8430978B2 (en) 2003-08-05 2013-04-30 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
EP1813694A1 (en) * 2004-11-15 2007-08-01 Nikko Materials Co., Ltd. Sputtering target for production of metallic glass film and process for producing the same
EP1813694A4 (en) * 2004-11-15 2009-05-06 Nikko Materials Co Ltd Sputtering target for production of metallic glass film and process for producing the same
US7789948B2 (en) 2004-11-15 2010-09-07 Nippon Mining & Metals Co., Ltd Hydrogen separation membrane, sputtering target for forming said hydrogen separation membrane, and manufacturing method thereof
US8663439B2 (en) 2004-11-15 2014-03-04 Jx Nippon Mining & Metals Corporation Sputtering target for producing metallic glass membrane and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2006265653A (en) Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2006299401A (en) Method for producing cobalt alloy and cobalt alloy produced by the method
JPS63119209A (en) Soft magnetic thin-film
WO2008026439A1 (en) Magnetic thin film
JPH0797665A (en) Soft magnetic material, production thereof and magnetic head
JPH0517868A (en) Production of sputtering target
JP2692088B2 (en) Soft magnetic laminated film
US5069983A (en) Magnetic recording member
JP3076141B2 (en) Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same
JP3235127B2 (en) Soft magnetic thin film
JPH07192244A (en) Perpendicular magnetic recording medium and its production
US5879798A (en) Heat resistant, high saturation magnetic flux density film
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JP2516064B2 (en) Magnetic recording medium and manufacturing method thereof
JP2551008B2 (en) Soft magnetic thin film
JP2707213B2 (en) Iron-based soft magnetic thin film alloy for magnetic head and method of manufacturing the same
JP2784105B2 (en) Soft magnetic thin film
JP2893706B2 (en) Iron-based soft magnetic film
JPH05251236A (en) Soft magnetic film
JP2771664B2 (en) Soft magnetic alloy film
JPH04214831A (en) Soft magnetic film
JP2979557B2 (en) Soft magnetic film
JP2604372B2 (en) Manufacturing method of soft magnetic amorphous alloy
JP2546275B2 (en) Soft magnetic thin film
JPH1092640A (en) Ultra high-density magnetic recording medium and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008