JP3235127B2 - Soft magnetic thin film - Google Patents

Soft magnetic thin film

Info

Publication number
JP3235127B2
JP3235127B2 JP20599691A JP20599691A JP3235127B2 JP 3235127 B2 JP3235127 B2 JP 3235127B2 JP 20599691 A JP20599691 A JP 20599691A JP 20599691 A JP20599691 A JP 20599691A JP 3235127 B2 JP3235127 B2 JP 3235127B2
Authority
JP
Japan
Prior art keywords
soft magnetic
grain size
coercive force
crystal grain
average crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20599691A
Other languages
Japanese (ja)
Other versions
JPH0547551A (en
Inventor
光治 庄子
健二 香取
広之 大森
和彦 林
興一 阿蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20599691A priority Critical patent/JP3235127B2/en
Publication of JPH0547551A publication Critical patent/JPH0547551A/en
Application granted granted Critical
Publication of JP3235127B2 publication Critical patent/JP3235127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3204Exchange coupling of amorphous multilayers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気ヘッド材料等に利
用される軟磁性薄膜に関するものであり、特にFe,S
i,Alを主成分とする軟磁性薄膜の軟磁気特性の改善
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic thin film used as a material for a magnetic head or the like.
The present invention relates to improvement of soft magnetic properties of a soft magnetic thin film containing i and Al as main components.

【0002】[0002]

【従来の技術】Fe,Si,Alを主成分とする軟磁性
薄膜は、センダストと称され、高透磁率、低保磁力であ
り、しかもフェライトに比べて飛躍的に高い飽和磁束密
度を有する材料であることから、高画質VTR用の磁気
ヘッド材料としての研究が進められており、既に実用化
されている。
2. Description of the Related Art A soft magnetic thin film mainly composed of Fe, Si, and Al is called sendust and has a high magnetic permeability, a low coercive force, and a significantly higher saturation magnetic flux density than ferrite. Therefore, research as a magnetic head material for a high-quality VTR is being promoted and has already been put to practical use.

【0003】[0003]

【発明が解決しようとする課題】ところで、一般に結晶
質軟磁性材料は非晶質軟磁性材料に比べて熱安定性に優
れると言われており、前述のFe−Si−Al合金も例
外ではない。しかし、この結晶質軟磁性材料の欠点とし
ては、アニール処理を施さないと十分な軟磁気特性が発
現されないことが挙げられ、Fe−Si−Al合金の場
合、数百℃でアニール処理を施さないと保磁力が十分に
小さな値とならない。このことは、例えば薄膜磁気ヘッ
ドのコア材料としての用途を考えた場合、上層コアを成
膜した後にアニール処理が必要になることを意味し、層
間絶縁膜の材質に制約が生ずる等、実用化の妨げとな
る。
It is generally said that crystalline soft magnetic materials have better thermal stability than amorphous soft magnetic materials, and the above-mentioned Fe-Si-Al alloy is no exception. . However, a drawback of this crystalline soft magnetic material is that sufficient soft magnetic properties are not exhibited unless annealing is performed. In the case of an Fe-Si-Al alloy, annealing is not performed at several hundred degrees Celsius. And the coercive force does not become a sufficiently small value. This means that, for example, when considering the use as a core material of a thin-film magnetic head, it is necessary to perform an annealing treatment after forming the upper core, and there is a restriction on the material of the interlayer insulating film, and the practical use of the material is restricted. Hinders

【0004】また、例えばバルク型磁気ヘッドの場合、
優れた信頼性を得るためにはその製造に際して550℃
程度のガラス融着工程が必要であり、このような高温で
の熱処理後にも優れた軟磁気特性を発揮することが要求
されるが、かかる観点から見た場合、前記Fe−Si−
Al合金の熱安定性は必ずしも十分なものとは言えな
い。
In the case of a bulk type magnetic head, for example,
In order to obtain excellent reliability, 550 ° C
A glass fusing step is required, and it is required to exhibit excellent soft magnetic properties even after heat treatment at such a high temperature. However, from this viewpoint, the Fe-Si-
The thermal stability of the Al alloy is not always sufficient.

【0005】そこで本発明は、高飽和磁束密度を有し、
しかもアニール処理を施さなくとも十分な軟磁気特性を
発揮する軟磁性薄膜を提供することを目的とする。さら
に本発明は、熱安定性に優れ、高温でのガラス融着が可
能で、高信頼性の磁気ヘッドを実現することが可能な軟
磁性薄膜を提供することを目的とする。
Therefore, the present invention has a high saturation magnetic flux density,
Moreover, it is an object of the present invention to provide a soft magnetic thin film that exhibits sufficient soft magnetic characteristics without performing an annealing process. A further object of the present invention is to provide a soft magnetic thin film which has excellent thermal stability, enables glass fusion at a high temperature, and can realize a highly reliable magnetic head.

【0006】[0006]

【課題を解決するための手段】本発明者等は、前述の目
的を達成せんものと鋭意検討を重ねた結果、Fe−Si
−Al合金膜を成膜する際に、窒素、酸素及び炭素を導
入し、成膜されたFe−Si−Al合金膜の結晶粒を微
細化することで、高飽和磁束密度を示す組成において、
アニール処理を施さなくとも(いわゆるアズ・デポの状
態でも)保磁力が小さく、しかも高温での熱処理後にも
十分な軟磁気特性が発現されるものとの知見を得るに至
った。
Means for Solving the Problems The inventors of the present invention have made intensive studies on achieving the above-mentioned object and found that Fe-Si
-When forming an Al alloy film, nitrogen, oxygen and carbon are introduced, and the crystal grains of the formed Fe-Si-Al alloy film are refined, so that a composition having a high saturation magnetic flux density can be obtained.
It has been found that the coercive force is small without annealing treatment (even in the so-called as-deposited state) and that sufficient soft magnetic properties are exhibited even after heat treatment at a high temperature.

【0007】本発明に係る軟磁性薄膜は、このような知
見に基づいて完成されたものであって、(FeSi
Al[ただし、a,b,c,x,
y,z,wは各元素の割合(原子%)を表す。]なる組
成式で表され、その組成範囲が 60≦a≦90 0.1≦b≦25 0.1≦c≦25 80≦x≦98 0<y≦20 0<z≦20 0<w≦20 a+b+c=100 x+y+z+w=100 2≦y+z+w≦20 であるとともに、平均結晶粒径が600 以下であり、
アニール処理を施さない状態での保磁力が2Oe以下で
あることを特徴とするものである。
The soft magnetic thin film according to the present invention has been completed on the basis of such findings, and has been described as (Fe a Si b
Al c) x N y O z C w [ However, a, b, c, x ,
y, z, and w represent the ratio (atomic%) of each element. And a composition range of 60 ≦ a ≦ 90 0.1 ≦ b ≦ 25 0.1 ≦ c ≦ 25 80 ≦ x ≦ 98 0 <y ≦ 200 0 <z ≦ 200 <w ≦ 20 a + b + c = 100 x + y + z + w = 100 2 ≦ y + z + w ≦ 20, and the average crystal grain size is 600 or less;
It is characterized in that the coercive force in a state where no annealing treatment is performed is 2 Oe or less.

【0008】ここで、Fe、Si、Alの組成(a,
b,c)の範囲は、磁気特性の観点から設定されたもの
であり、この範囲を外れると飽和磁束密度や透磁率を高
い値とすることが難しい。一方、窒素や酸素、炭素の割
合(y,z,w)は、軟磁気特性の観点から決められた
もので、これらの割合があまり多くなりすぎると(20
原子%を越えると)、低保磁力、高透磁率を維持するこ
とが難しくなる。
Here, the composition of Fe, Si and Al (a,
The ranges b and c) are set from the viewpoint of magnetic properties. If the ranges are out of this range, it is difficult to increase the saturation magnetic flux density and the magnetic permeability to high values. On the other hand, the proportions (y, z, w) of nitrogen, oxygen and carbon are determined from the viewpoint of soft magnetic properties, and if these proportions become too large (20)
(Atomic%), it is difficult to maintain low coercive force and high magnetic permeability.

【0009】また、本発明に係る軟磁性薄膜は、スパッ
タリングや真空蒸着、イオンプレーティング等の手法に
より成膜されるが、窒素、酸素及び炭素を導入するとと
もに、成膜条件を適正なものとし、得られる軟磁性薄膜
の平均結晶粒径を600 以下とする必要がある。この
平均結晶粒径は、得られる軟磁性薄膜の軟磁気特性に大
きく影響し、平均結晶粒径が600 を超えると、低保
磁力化を図ることが難しい。
The soft magnetic thin film according to the present invention is formed by a technique such as sputtering, vacuum deposition, or ion plating. The nitrogen, oxygen and carbon are introduced, and the film forming conditions are adjusted appropriately. The average grain size of the obtained soft magnetic thin film must be 600 or less. The average crystal grain size greatly affects the soft magnetic properties of the obtained soft magnetic thin film. If the average crystal grain size exceeds 600, it is difficult to reduce the coercive force.

【0010】成膜時に窒素、酸素及び炭素を導入する手
法としては、例えば窒素及び酸素は、それぞれ窒素ガス
及び酸素ガスを成膜雰囲気中に導入すればよく、あるい
はそれぞれ窒化物及び酸化物をターゲットに用いればよ
い。同様に、炭素は、炭化水素や一酸化炭素、二酸化炭
素等のように炭素を構成元素とするガスを成膜雰囲気中
に導入すればよく、あるいはカーボンペレットや炭化物
をターゲットに用いてもよい。
As a method of introducing nitrogen, oxygen and carbon at the time of film formation, for example, nitrogen and oxygen can be introduced by introducing nitrogen gas and oxygen gas into the film formation atmosphere, respectively. May be used. Similarly, as for carbon, a gas containing carbon as a constituent element such as hydrocarbon, carbon monoxide, carbon dioxide, or the like may be introduced into a film formation atmosphere, or carbon pellets or carbide may be used as a target.

【0011】[0011]

【作用】Fe−Si−Al合金膜を成膜する際に、窒
素、酸素及び炭素を導入して結晶粒を微細化し、平均結
晶粒径を600 以下とすることにより、軟磁気特性が
大幅に改善され、アズ・デポの状態でも保磁力が十分に
小さなものとなる。しかも高飽和磁束密度が維持され、
耐熱性も向上する。
When the Fe-Si-Al alloy film is formed, nitrogen, oxygen and carbon are introduced to refine the crystal grains and to reduce the average crystal grain size to 600 or less, so that the soft magnetic properties are greatly improved. The coercive force is sufficiently small even in the as-deposited state. Moreover, high saturation magnetic flux density is maintained,
Heat resistance is also improved.

【0012】[0012]

【実施例】以下、本発明を適用した具体的な実施例につ
いて、実験結果にもとづいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments to which the present invention is applied will be described in detail based on experimental results.

【0013】実験例1 本実験例は、Fe−Si−Al合金膜に酸素を導入し、
平均結晶粒径や軟磁気特性への影響を調べたものであ
る。先ず、軟磁性薄膜の成膜はFe−Si−Al合金タ
ーゲット(直径100mm)を用いたDCスパッタによ
り行った。酸素の導入は、スパッタ雰囲気中にArと酸
素(O2 )の混合ガスを導入することにより行った。成
膜時のスパッタ条件は下記の通りである。 導入ガス : Ar+O2 スパッタガス圧 : 0.51Pa 投入電力 : 300W 膜厚 : 3μm
Experimental Example 1 In this experimental example, oxygen was introduced into the Fe—Si—Al alloy film,
It is an examination of the effect on the average crystal grain size and soft magnetic properties. First, the soft magnetic thin film was formed by DC sputtering using an Fe-Si-Al alloy target (100 mm in diameter). Oxygen was introduced by introducing a mixed gas of Ar and oxygen (O 2 ) into the sputtering atmosphere. The sputtering conditions during film formation are as follows. Introduced gas: Ar + O 2 sputtering gas pressure: 0.51 Pa Input power: 300 W Film thickness: 3 μm

【0014】以上のスパッタ条件に従い、酸素の導入量
を変えて各種軟磁性薄膜を成膜し、その平均結晶粒径並
びに保磁力Hc(アズ・デポ)を測定した。なお、前記
平均結晶粒径は、X線回折パターンを基に、主ピークの
半値幅からScherrerの式により求めた。この値
は、透過型電子顕微鏡による膜の観察から求められた値
とほぼ一致した。また、保磁力Hcは、B−Hループト
レーサーによって測定した。なお、飽和磁束密度Bsに
ついても振動試料型磁力計(VSM)により測定した
が、いずれもほぼ12kGであった。
Various soft magnetic thin films were formed according to the above sputtering conditions while changing the amount of oxygen introduced, and the average crystal grain size and coercive force Hc (as deposited) were measured. The average crystal grain size was determined from the half-width of the main peak by Scherrer's formula based on the X-ray diffraction pattern. This value almost coincided with the value obtained from observation of the film with a transmission electron microscope. Further, the coercive force Hc was measured by a BH loop tracer. The saturation magnetic flux density Bs was also measured by a vibrating sample magnetometer (VSM).

【0015】図1は、(Fe74.5Si17.4Al8.1
100-z z (0≦z≦20)なる組成を有する軟磁性薄
膜において、酸素量を変化させることによって平均結晶
粒径が変化し、これに伴って保磁力Hcが変化する様子
を図示したものである。保磁力Hcは、平均結晶粒径が
小さくなるにつれ急激に小さな値を示すようになってい
る。
FIG. 1 shows (Fe 74.5 Si 17.4 Al 8.1 )
In a soft magnetic thin film having a composition of 100-z O z (0 ≦ z ≦ 20), the manner in which the average crystal grain size changes by changing the amount of oxygen and the coercive force Hc changes accordingly is illustrated. Things. The coercive force Hc suddenly shows a smaller value as the average crystal grain size becomes smaller.

【0016】そこで次に、代表的なサンプルについて、
平均結晶粒径と保磁力Hc(アズ・デポ)の測定値を表
1に掲載する。これらサンプルは、いずれも先のスパッ
タ条件に従い酸素の導入量を変えることによって作製し
たものであるが、サンプル7については、スパッタガス
圧を高くして成膜した。(スパッタガス圧3Pa)
Then, next, for a representative sample,
Table 1 shows the measured values of the average crystal grain size and the coercive force Hc (as deposited). Each of these samples was prepared by changing the amount of oxygen introduced according to the above-mentioned sputtering conditions, but the sample 7 was formed by increasing the sputtering gas pressure. (Sputter gas pressure 3Pa)

【0017】[0017]

【表1】 [Table 1]

【0018】この表からも明らかなように、適量の酸素
を導入して平均結晶粒径を小さなものとしたサンプル1
〜4(実施例に相当)は、アズ・デポの状態での保磁力
Hcが2以下であり、アニール処理を行わなくとも良好
な軟磁気特性を発揮した。これに対して、酸素を導入せ
ず平均結晶粒径が大きな値となっているサンプル5は、
アズ・デポでの保磁力Hcが12と大きな値を示した。
同様に、酸素を導入しても条件が不適切なために平均結
晶粒径が大きな値となっているサンプル7についても、
保磁力Hcは高い値となっており、軟磁気特性の劣化が
見られる。また、酸素の導入量が多すぎるサンプル6
は、平均結晶粒径は小さな値となっているが、酸素過剰
により軟磁気特性が劣化しており、保磁力Hcはやはり
高い値となっている。
As is clear from this table, Sample 1 was prepared by introducing an appropriate amount of oxygen to reduce the average crystal grain size.
Nos. 4 to 4 (corresponding to Examples) had coercive force Hc in the as-deposited state of 2 or less, and exhibited good soft magnetic characteristics without annealing treatment. On the other hand, Sample 5 in which oxygen was not introduced and the average crystal grain size was a large value,
The coercive force Hc at As Depot showed a large value of 12.
Similarly, the sample 7 having a large average crystal grain size due to inappropriate conditions even when oxygen is introduced,
The coercive force Hc has a high value, and deterioration of the soft magnetic characteristics is observed. In addition, the sample 6 to which the amount of introduced oxygen was too
Has a small average crystal grain size, but the soft magnetic properties are degraded due to excess oxygen, and the coercive force Hc is still a high value.

【0019】実験例2 本実験例は、Fe−Si−Al合金膜に窒素を導入し、
平均結晶粒径や軟磁気特性への影響を調べたものであ
る。軟磁性薄膜の成膜条件は先の実験例1と同様である
が、スパッタ時の導入ガスをAr+N2 とした。窒素を
導入した場合にも、酸素の場合と同様に平均結晶粒径が
変化し、これに伴って保磁力Hcが変化した。表2に、
代表的なサンプルの平均結晶粒径と保磁力Hc(アズ・
デポ)の測定値を示す。なお、サンプル13について
は、先のサンプル7と同様、スパッタガス圧を3Paと
して成膜した。
Experimental Example 2 In this experimental example, nitrogen was introduced into the Fe—Si—Al alloy film,
It is an examination of the effect on the average crystal grain size and soft magnetic properties. The conditions for forming the soft magnetic thin film were the same as those in Experimental Example 1, but the gas introduced during sputtering was Ar + N 2 . Even when nitrogen was introduced, the average crystal grain size changed similarly to the case of oxygen, and the coercive force Hc changed accordingly. In Table 2,
Average crystal grain size and coercive force Hc (as
Depot) measured values are shown. Sample 13 was formed at a sputtering gas pressure of 3 Pa, similarly to Sample 7 described above.

【0020】[0020]

【表2】 [Table 2]

【0021】窒素を導入した場合にも酸素の場合と全く
同様な傾向が見られ、適量の窒素を導入して平均結晶粒
径を小さなものとしたサンプル8〜11は、アズ・デポ
の状態でも良好な軟磁気特性を発揮した。これに対し
て、窒素の導入量が多すぎるサンプル12や窒素を導入
しても平均結晶粒径が大きなものとなっているサンプル
13では、保磁力Hcは高い値であった。
When nitrogen is introduced, the same tendency as in the case of oxygen is observed. Samples 8 to 11 in which an appropriate amount of nitrogen is introduced to reduce the average crystal grain size are used even in an as-deposited state. Good soft magnetic properties were exhibited. On the other hand, the coercive force Hc was high in Sample 12 in which the amount of nitrogen introduced was too large and in Sample 13 in which the average crystal grain size was large even when nitrogen was introduced.

【0022】実験例3 本実験例は、Fe−Si−Al合金膜に炭素を導入し、
平均結晶粒径や軟磁気特性への影響を調べたものであ
る。軟磁性薄膜の成膜条件は先の実験例1と同様である
が、スパッタ時の導入ガスをArとし、Fe−Si−A
l合金ターゲット上にカーボンペレットを並べてスパッ
タを行った。炭素を導入した場合にも、酸素の場合と同
様に平均結晶粒径が変化し、これに伴って保磁力Hcが
変化した。表3に、代表的なサンプルの平均結晶粒径と
保磁力Hc(アズ・デポ)の測定値を示す。なお、サン
プル19については、先のサンプル7と同様、スパッタ
ガス圧を3Paとして成膜した。
Experimental Example 3 In this experimental example, carbon was introduced into an Fe—Si—Al alloy film,
It is an examination of the effect on the average crystal grain size and soft magnetic properties. The conditions for forming the soft magnetic thin film were the same as those in Experimental Example 1, except that the gas introduced during sputtering was Ar and Fe-Si-A
Sputtering was performed by arranging carbon pellets on a 1 alloy target. Even when carbon was introduced, the average crystal grain size changed similarly to the case of oxygen, and the coercive force Hc changed accordingly. Table 3 shows the measured values of the average crystal grain size and the coercive force Hc (as depot) of a representative sample. Sample 19 was formed at a sputtering gas pressure of 3 Pa, similarly to Sample 7 described above.

【0023】[0023]

【表3】 [Table 3]

【0024】炭素を導入して平均結晶粒径を小さなもの
とした場合にも酸素の場合と全く同様の効果が得られ、
平均結晶粒径が小さなものとされたサンプル14〜17
は、アズ・デポでの保磁力Hcが小さく、軟磁気特性に
優れたものであった。また、炭素の導入量が多すぎるサ
ンプル18や炭素を導入しても平均結晶粒径が大きいサ
ンプル19は、アズ・デポでは保磁力Hcが高く、軟磁
性薄膜としての性能に劣ることが確認された。
When carbon is introduced to reduce the average crystal grain size, the same effect as in the case of oxygen can be obtained.
Samples 14 to 17 having a small average crystal grain size
Had a small coercive force Hc at the as-deposit and excellent soft magnetic properties. In addition, it was confirmed that Sample 18 in which the amount of carbon introduced was too large and Sample 19 in which the average crystal grain size was large even if carbon was introduced had a high coercive force Hc in the as-deposit and poor performance as a soft magnetic thin film. Was.

【0025】[0025]

【発明の効果】以上の説明からも明らかなように、本発
明においては、Fe−Si−Al系合金膜に窒素、酸素
及び炭素を導入して結晶粒を微細化しているので、保磁
力を著しく改善することができ、アズ・デポの状態での
保磁力が小さく、しかも高飽和磁束密度を有する軟磁性
薄膜を提供することが可能である。また、結晶粒の微細
化により熱安定性を高めることができるので、信頼性の
高いガラス融着工程が可能となり、高保磁力磁気記録媒
体に対応可能で、しかも高信頼性を有する磁気ヘッドを
実現することが可能である。
As is clear from the above description, in the present invention, nitrogen, oxygen and carbon are introduced into the Fe-Si-Al alloy film to make the crystal grains fine, so that the coercive force is reduced. It is possible to provide a soft magnetic thin film which can be remarkably improved, has a small coercive force in an as-deposited state, and has a high saturation magnetic flux density. In addition, since the thermal stability can be increased by making the crystal grains finer, a highly reliable glass fusing process can be performed, and a magnetic head with high coercive force and high reliability can be realized. It is possible to

【図面の簡単な説明】[Brief description of the drawings]

【図1】平均結晶粒径と保磁力Hc(アズ・デポ)の関
係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between an average crystal grain size and a coercive force Hc (as deposited).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 和彦 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (72)発明者 阿蘇 興一 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特開 平3−109703(JP,A) 特開 平1−220813(JP,A) 特開 平3−1309(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/00 - 10/32 H01F 41/14 - 41/30 C22C 38/00 303 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Kazuhiko Hayashi 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Koichi Aso 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo No. Sony Corporation (56) References JP-A-3-109703 (JP, A) JP-A 1-220813 (JP, A) JP-A 3-1309 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 10/00-10/32 H01F 41/14-41/30 C22C 38/00 303

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (FeSiAl
[ただし、a,b,c,x,y,z,wは各元素の割合
(原子%)を表す。]なる組成式で表され、その組成範
囲が 60≦a≦90 0.1≦b≦25 0.1≦c≦25 80≦x≦980<y≦20 0<z≦20 0<w≦20 a+b+c=100 x+y+z+w=100 2≦y+z+w≦20 であるとともに、平均結晶粒径が600 以下であり、
アニール処理を施さない状態での保磁力が2Oe以下で
あることを特徴とする軟磁性薄膜。
[Claim 1] (Fe a Si b Al c) x N y O z C w
[However, a, b, c, x, y, z, and w represent the ratio (atomic%) of each element. And a composition range of 60 ≦ a ≦ 90 0.1 ≦ b ≦ 25 0.1 ≦ c ≦ 25 80 ≦ x ≦ 98 0 <y ≦ 200 0 <z ≦ 200 <w ≦ 20 a + b + c = 100 x + y + z + w = 100 2 ≦ y + z + w ≦ 20, and the average crystal grain size is 600 or less;
A soft magnetic thin film having a coercive force of not more than 2 Oe in a state not subjected to an annealing treatment.
JP20599691A 1991-08-16 1991-08-16 Soft magnetic thin film Expired - Fee Related JP3235127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20599691A JP3235127B2 (en) 1991-08-16 1991-08-16 Soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20599691A JP3235127B2 (en) 1991-08-16 1991-08-16 Soft magnetic thin film

Publications (2)

Publication Number Publication Date
JPH0547551A JPH0547551A (en) 1993-02-26
JP3235127B2 true JP3235127B2 (en) 2001-12-04

Family

ID=16516183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20599691A Expired - Fee Related JP3235127B2 (en) 1991-08-16 1991-08-16 Soft magnetic thin film

Country Status (1)

Country Link
JP (1) JP3235127B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960030108A (en) * 1995-01-16 1996-08-17 구자홍 Soft Magnetic Thin Film Materials for Magnetic Heads
JP3483999B2 (en) * 1995-09-14 2004-01-06 東レ・ダウコーニング・シリコーン株式会社 Prepreg and glass fiber reinforced resin molding
JP5284736B2 (en) * 2007-10-01 2013-09-11 アルプス電気株式会社 Magnetic sheet and manufacturing method thereof
WO2010113791A1 (en) * 2009-03-31 2010-10-07 アルプス電気株式会社 Magnetic sheet

Also Published As

Publication number Publication date
JPH0547551A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
JP2550996B2 (en) Soft magnetic thin film
JP2635402B2 (en) Soft magnetic alloy film
JP2950912B2 (en) Soft magnetic thin film
JPS63119209A (en) Soft magnetic thin-film
JPS60220914A (en) Magnetic thin film
JP3235127B2 (en) Soft magnetic thin film
JPH07302711A (en) Soft magnetic alloy thin film and its manufacture
JP2692088B2 (en) Soft magnetic laminated film
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP2508489B2 (en) Soft magnetic thin film
JP2950917B2 (en) Soft magnetic thin film
JP3495741B2 (en) Soft magnetic thin film
JP3167808B2 (en) Soft magnetic thin film
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2570337B2 (en) Soft magnetic laminated film
JPH0547552A (en) Soft magnetic thin film
US6303240B1 (en) Soft magnetic thin film
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JP2546275B2 (en) Soft magnetic thin film
JP3181723B2 (en) Soft magnetic alloy film
JP2635421B2 (en) Soft magnetic alloy film
JP2551008B2 (en) Soft magnetic thin film
JP2727274B2 (en) Soft magnetic thin film
JP2771664B2 (en) Soft magnetic alloy film
JPH04139805A (en) Soft magnetic alloy film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees