JP3495741B2 - Soft magnetic thin film - Google Patents
Soft magnetic thin filmInfo
- Publication number
- JP3495741B2 JP3495741B2 JP22976191A JP22976191A JP3495741B2 JP 3495741 B2 JP3495741 B2 JP 3495741B2 JP 22976191 A JP22976191 A JP 22976191A JP 22976191 A JP22976191 A JP 22976191A JP 3495741 B2 JP3495741 B2 JP 3495741B2
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- grain size
- crystal grain
- average crystal
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/13—Amorphous metallic alloys, e.g. glassy metals
- H01F10/131—Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Thin Magnetic Films (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、磁気ヘッド材料等に利
用される軟磁性薄膜に関するものであり、特にFe,R
u,Ga,Siを主成分とする軟磁性薄膜の軟磁気特性
の改善に関するものである。
【0002】
【従来の技術】Fe,Ga,Siを主成分とする軟磁性
薄膜は、本願出願人により特開昭61−234509号
公報において提案されたものであり、Fe−Al−Si
合金(いわゆるセンダスト)と同程度の透磁率や保磁力
を有し、しかもFe−Al−Si合金に比べて飛躍的に
高い飽和磁束密度を有する材料である。そして、これに
Ruを添加したFe−Ru−Ga−Si合金は、前記特
徴の他、耐蝕性や耐摩耗性を併せ持つ材料であり、高画
質VTR用の磁気ヘッド材料としての研究が進められて
いる。
【0003】
【発明が解決しようとする課題】ところで、一般に結晶
質軟磁性材料は非晶質軟磁性材料に比べて熱安定性に優
れると言われており、前述のFe−Ru−Ga−Si合
金も例外ではない。しかしながら、例えばバルク型磁気
ヘッドの場合、優れた信頼性を得るためにはその製造に
際して550℃程度のガラス融着工程が必要であり、こ
のような高温での熱処理後にも優れた軟磁気特性を発揮
することが要求されるが、かかる観点から見た場合、前
記Fe−Ru−Ga−Si合金の熱安定性は必ずしも十
分なものとは言えない。
【0004】そこで本発明は、高飽和磁束密度を有し、
しかも熱処理後にも優れた軟磁気特性を発揮する軟磁性
薄膜を提供することを目的とする。さらに本発明は、高
温でのガラス融着が可能で、高信頼性の磁気ヘッドを実
現することが可能な軟磁性薄膜を提供することを目的と
する。
【0005】
【課題を解決するための手段】本発明者等は、前述の目
的を達成せんものと鋭意検討を重ねた結果、Fe−Ru
−Ga−Si合金膜を成膜する際に、窒素、酸素及び炭
素を導入し、成膜されたFe−Ru−Ga−Si合金膜
の結晶粒を微細化することで、高飽和磁束密度を示す組
成において、熱処理後にも十分な軟磁気特性が発現され
るとの知見を得るに至った。
【0006】本発明に係る軟磁性薄膜は、このような知
見に基づいて完成されたものであって、(FeaRub
GacSid)xNyOzCw[ただし、a,b,c,
d,x,y,z,wは各元素の割合(原子%)を表
す。]なる組成式で表され、その組成範囲が
68≦a≦90
0.1≦b≦10
0.1≦c≦15
10≦d≦25
80≦x≦98
0<y≦20
0<z≦20
0<w≦20
a+b+c+d=100
x+y+z+w=100
2≦y+z+w≦20
であるとともに、平均結晶粒径が600Å以下であるこ
とを特徴とするものである。
【0007】
【課題を解決するための手段】本発明は、このような知
見に基づいて完成されたものであって、(FeaRub
GacSid)xNyOzCw[ただし、a,b,c,
d,x,y,z,wは各元素の割合(原子%)を表
す。]なる組成式で表され、その組成範囲が
68≦a≦90
0.1≦b≦10
0.1≦c≦15
10≦d≦25
80≦x≦98
0≦y≦20
0≦z≦20
0≦w≦20
a+b+c+d=100
x+y+z+w=100
2≦y+z+w≦20
であるとともに、平均結晶粒径が600Å以下であるこ
とを特徴とするものである。
【0008】また、本発明に係る軟磁性薄膜は、スパッ
タリングや真空蒸着、イオンプレーティング等の手法に
より成膜されるが、窒素、酸素及び炭素を導入するとと
もに、成膜条件を適正なものとし、得られる軟磁性薄膜
の平均結晶粒径を600Å以下とする必要がある。この
平均結晶粒径は、得られる軟磁性薄膜の軟磁気特性に大
きく影響し、平均結晶粒径が600Åを超えると、低保
磁力化を図ることが難しい。
【0009】成膜時に窒素、酸素及び炭素を導入する手
法としては、例えば窒素及び酸素の場合には、それぞれ
窒素ガス及び酸素ガスを成膜雰囲気中に導入すればよ
く、あるいはターゲットにそれぞれ窒化物及び酸化物を
用いればよい。同様に、炭素を導入する場合には、炭化
水素や一酸化炭素、二酸化炭素等のように炭素を構成元
素とするガスを成膜雰囲気中に導入すればよく、さらに
はカーボンペレットや炭化物をターゲットに用いてもよ
い。
【0010】
【作用】Fe−Ru−Ga−Si合金膜を成膜する際
に、窒素、酸素及び炭素を導入して結晶粒を微細化し、
平均結晶粒径を600Å以下とすることにより、熱処理
後の軟磁気特性が大幅に改善され、しかも高飽和磁束密
度が維持される。
【0011】
【実施例】以下、本発明を適用した具体的な実施例につ
いて、実験結果にもとづいて詳細に説明する。
【0012】実験例1
本実験例は、Fe−Ru−Ga−Si合金膜に酸素を導
入し、平均結晶粒径や軟磁気特性への影響を調べたもの
である。先ず、軟磁性薄膜の成膜はFe−Ru−Ga−
Si合金ターゲット(直径100mm)を用いたDCス
パッタにより行った。酸素の導入は、スパッタ雰囲気中
にArと酸素(O2 )の混合ガスを導入することにより
行った。成膜時のスパッタ条件は下記の通りである。
導入ガス : Ar+O2
スパッタガス圧 : 0.51Pa
投入電力 : 300W
膜厚 : 3μm
【0013】以上のスパッタ条件に従い、酸素の導入量
を変えて各種軟磁性薄膜を成膜し、その平均結晶粒径並
びに保磁力Hcを測定した。なお、前記平均結晶粒径
は、X線回折パターンを基に、主ピークの半値幅からS
cherrerの式により求めた。この値は、透過型電
子顕微鏡による膜の観察から求められた値とほぼ一致し
た。また、保磁力Hcは、B−Hループトレーサーによ
って測定した。
【0014】図1は、(Fe76.7Ru4 Ga5.5 Si
13.8)100-z Oz (0≦z≦20)なる組成を有する軟
磁性薄膜において、酸素量を変化させることによって平
均結晶粒径が変化し、これに伴って保磁力Hcが変化す
る様子を図示したものである。保磁力Hcは、平均結晶
粒径600Å近傍を境として急激に小さな値を示すよう
になっている。
【0015】そこで次に、代表的なサンプルについて、
平均結晶粒径と保磁力Hcの測定値を表1に掲載する。
これらサンプルは、いずれも先のスパッタ条件に従い酸
素の導入量を変えることによって作製したものである
が、サンプル7については、スパッタガス圧を高くして
成膜した。(スパッタガス圧3Pa)
【0016】
【表1】
【0017】この表からも明らかなように、適量の酸素
を導入して平均結晶粒径を小さなものとしたサンプル1
〜4(実施例に相当)は、550℃でのアニール後の保
磁力Hcが1以下であり、熱処理後にも良好な軟磁気特
性を発揮している。これに対して、酸素を導入せず平均
結晶粒径が大きな値となっているサンプル5は、熱処理
後の保磁力Hcが2.0と大きな値を示した。同様に、
酸素を導入しても条件が不適切なために平均結晶粒径が
大きな値となっているサンプル7についても、保磁力H
cは高い値となっており、軟磁気特性の劣化が見られ
る。また、酸素の導入量が多すぎるサンプル6は、平均
結晶粒径は小さな値となっているが、酸素過剰により軟
磁気特性が劣化しており、保磁力Hcはやはり高い値と
なっている。
【0018】実験例2
本実験例は、Fe−Ru−Ga−Si合金膜に窒素を導
入し、平均結晶粒径や軟磁気特性への影響を調べたもの
である。軟磁性薄膜の成膜条件は先の実験例1と同様で
あるが、スパッタ時の導入ガスをAr+N2 とした。窒
素を導入した場合にも、酸素の場合と同様に平均結晶粒
径が変化し、これに伴って保磁力Hcが変化した。表2
に、代表的なサンプルの平均結晶粒径と保磁力Hcの測
定値を示す。なお、サンプル13については、先のサン
プル7と同様、スパッタガス圧を3Paとして成膜し
た。
【0019】
【表2】【0020】窒素を導入した場合にも酸素の場合と全く
同様な傾向が見られ、適量の窒素を導入して平均結晶粒
径を小さなものとしたサンプル8〜11は、熱処理後に
も良好な軟磁気特性を発揮した。これに対して、窒素の
導入量が多すぎるサンプル12や窒素を導入しても平均
結晶粒径が大きなものとなっているサンプル13では、
保磁力Hcは高い値であった。
【0021】実験例3
本実験例は、Fe−Ru−Ga−Si合金膜に炭素を導
入し、平均結晶粒径や軟磁気特性への影響を調べたもの
である。軟磁性薄膜の成膜条件は先の実験例1と同様で
あるが、スパッタ時の導入ガスをArとし、Fe−Ru
−Ga−Si合金ターゲット上にカーボンペレットを並
べてスパッタを行った。炭素を導入した場合にも、酸素
の場合と同様に平均結晶粒径が変化し、これに伴って保
磁力Hcが変化した。表3に、代表的なサンプルの平均
結晶粒径と保磁力Hcの測定値を示す。なお、サンプル
19については、先のサンプル7と同様、スパッタガス
圧を3Paとして成膜した。
【0022】
【表3】
【0023】炭素を導入して平均結晶粒径を小さなもの
とした場合にも酸素の場合と全く同様の効果が得られ、
平均結晶粒径が小さなものとされたサンプル14〜17
は、熱処理後の保磁力Hcが小さく、軟磁気特性に優れ
たものであった。また、炭素の導入量が多すぎるサンプ
ル18や炭素を導入しても平均結晶粒径が大きいサンプ
ル19は、熱処理後の保磁力Hcが高く、軟磁性薄膜と
しての性能に劣ることが確認された。
【0024】
【発明の効果】以上の説明からも明らかなように、本発
明においては、Fe−Ru−Ga−Si系合金膜に窒
素、酸素及び炭素を導入して結晶粒を微細化しているの
で、保磁力を著しく改善することができ、優れた耐熱性
を有し、しかも高飽和磁束密度を有する軟磁性薄膜を提
供することが可能である。したがって、信頼性の高いガ
ラス融着工程が可能となり、高保磁力磁気記録媒体に対
応可能で、しかも高信頼性を有する磁気ヘッドを実現す
ることが可能である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic thin film used for a magnetic head material and the like, and particularly to Fe, R
The present invention relates to improvement of soft magnetic characteristics of a soft magnetic thin film mainly containing u, Ga, and Si. 2. Description of the Related Art A soft magnetic thin film mainly composed of Fe, Ga and Si has been proposed by the present applicant in Japanese Patent Application Laid-Open No. 61-234509,
It is a material having the same magnetic permeability and coercive force as an alloy (so-called sendust) and having a significantly higher saturation magnetic flux density than an Fe-Al-Si alloy. The Fe-Ru-Ga-Si alloy to which Ru is added is a material having both corrosion resistance and abrasion resistance in addition to the above-mentioned characteristics, and is being studied as a magnetic head material for a high-quality VTR. I have. [0003] By the way, it is generally said that crystalline soft magnetic materials are superior in thermal stability to amorphous soft magnetic materials, and the above-mentioned Fe-Ru-Ga-Si Alloys are no exception. However, for example, in the case of a bulk-type magnetic head, a glass fusing step of about 550 ° C. is required for its production in order to obtain excellent reliability, and even after such a high-temperature heat treatment, excellent soft magnetic characteristics are obtained. Although it is required to exhibit, from such a viewpoint, the thermal stability of the Fe-Ru-Ga-Si alloy is not necessarily sufficient. Therefore, the present invention has a high saturation magnetic flux density,
Moreover, an object of the present invention is to provide a soft magnetic thin film that exhibits excellent soft magnetic properties even after heat treatment. It is a further object of the present invention to provide a soft magnetic thin film capable of fusing glass at a high temperature and realizing a highly reliable magnetic head. The inventors of the present invention have made intensive studies to achieve the above-mentioned object and found that Fe-Ru
-When forming a Ga-Si alloy film, nitrogen, oxygen and carbon are introduced to refine the crystal grains of the formed Fe-Ru-Ga-Si alloy film, thereby increasing the high saturation magnetic flux density. With the composition shown, it has been found that sufficient soft magnetic properties are exhibited even after heat treatment. [0006] The soft magnetic thin film according to the present invention, which has been completed based on these findings, (Fe a Ru b
Ga c Si d) x N y O z C w [ However, a, b, c,
d, x, y, z, and w represent the ratio (atomic%) of each element. Whose composition range is 68 ≦ a ≦ 90 0.1 ≦ b ≦ 10 0.1 ≦ c ≦ 15 10 ≦ d ≦ 25 80 ≦ x ≦ 98 0 <y ≦ 200 0 <z ≦ 200 <w ≦ 20 a + b + c + d = 100 x + y + z + w = 100 2 ≦ y + z + w ≦ 20, and the average crystal grain size is 600 ° or less. [0007] According to an aspect of the present invention, which has been completed based on these findings, (Fe a Ru b
Ga c Si d) x N y O z C w [ However, a, b, c,
d, x, y, z, and w represent the ratio (atomic%) of each element. Whose composition range is 68 ≦ a ≦ 90 0.1 ≦ b ≦ 10 0.1 ≦ c ≦ 15 10 ≦ d ≦ 25 80 ≦ x ≦ 98 0 ≦ y ≦ 200 0 ≦ z ≦ 200 ≦ w ≦ 20 a + b + c + d = 100 x + y + z + w = 100 2 ≦ y + z + w ≦ 20 and the average crystal grain size is not more than 600 °. Further, the soft magnetic thin film according to the present invention is formed by a technique such as sputtering, vacuum deposition, or ion plating, but nitrogen, oxygen and carbon are introduced, and the film forming conditions are adjusted appropriately. The average crystal grain size of the obtained soft magnetic thin film must be 600 ° or less. The average crystal grain size greatly affects the soft magnetic properties of the obtained soft magnetic thin film. If the average crystal grain size exceeds 600 °, it is difficult to reduce the coercive force. As a method of introducing nitrogen, oxygen and carbon at the time of film formation, for example, in the case of nitrogen and oxygen, nitrogen gas and oxygen gas may be introduced into the film formation atmosphere, respectively, or the target may be nitrided. And an oxide may be used. Similarly, when carbon is introduced, a gas containing carbon as a constituent element such as hydrocarbon, carbon monoxide, carbon dioxide, or the like may be introduced into the film formation atmosphere, and further, carbon pellets or carbides may be targeted. May be used. When a Fe—Ru—Ga—Si alloy film is formed, nitrogen, oxygen and carbon are introduced to refine crystal grains,
By setting the average crystal grain size to 600 ° or less, the soft magnetic properties after the heat treatment are significantly improved, and the high saturation magnetic flux density is maintained. Hereinafter, specific examples to which the present invention is applied will be described in detail based on experimental results. EXPERIMENTAL EXAMPLE 1 In this experimental example, oxygen was introduced into an Fe-Ru-Ga-Si alloy film, and the influence on the average crystal grain size and soft magnetic characteristics was examined. First, the soft magnetic thin film was formed by Fe-Ru-Ga-
This was performed by DC sputtering using a Si alloy target (diameter 100 mm). Oxygen was introduced by introducing a mixed gas of Ar and oxygen (O 2 ) into the sputtering atmosphere. The sputtering conditions at the time of film formation are as follows. Introduced gas: Ar + O 2 Sputter gas pressure: 0.51 Pa Input power: 300 W Film thickness: 3 μm Various soft magnetic thin films were formed by changing the amount of oxygen introduced under the above sputtering conditions, and the average crystal grain size thereof In addition, the coercive force Hc was measured. The average crystal grain size is calculated based on the X-ray diffraction pattern from the half width of the main peak to S
It was determined by the equation of Charrer. This value almost coincided with the value obtained from observation of the film with a transmission electron microscope. Further, the coercive force Hc was measured by a BH loop tracer. FIG. 1 shows (Fe 76.7 Ru 4 Ga 5.5 Si).
13.8 ) In a soft magnetic thin film having a composition of 100-z O z (0 ≦ z ≦ 20), it is shown that the average crystal grain size changes by changing the amount of oxygen, and the coercive force Hc changes accordingly. This is illustrated. The coercive force Hc shows a sharply small value near the average crystal grain size of about 600 °. Then, next, for a representative sample,
Table 1 shows the measured values of the average crystal grain size and the coercive force Hc.
All of these samples were prepared by changing the amount of oxygen introduced according to the above-mentioned sputtering conditions, but the sample 7 was formed by increasing the sputtering gas pressure. (Sputter gas pressure: 3 Pa) As is clear from this table, Sample 1 was prepared by introducing an appropriate amount of oxygen to reduce the average crystal grain size.
4 to 4 (corresponding to the examples) have a coercive force Hc of 1 or less after annealing at 550 ° C., and exhibit good soft magnetic properties even after heat treatment. On the other hand, Sample 5, in which oxygen was not introduced and the average crystal grain size was large, showed a large coercive force Hc of 2.0 after heat treatment. Similarly,
Even for sample 7, the coercive force H was high for sample 7 in which the average crystal grain size was large due to inappropriate conditions even if oxygen was introduced.
c is a high value, and deterioration of the soft magnetic characteristics is observed. Further, in Sample 6, in which the amount of introduced oxygen is too large, the average crystal grain size has a small value, but the soft magnetic properties are deteriorated due to excess oxygen, and the coercive force Hc is also a high value. Experimental Example 2 In this experimental example, nitrogen was introduced into the Fe-Ru-Ga-Si alloy film, and the influence on the average crystal grain size and soft magnetic characteristics was examined. The conditions for forming the soft magnetic thin film were the same as those in Experimental Example 1, but the gas introduced during sputtering was Ar + N 2 . Even when nitrogen was introduced, the average crystal grain size changed similarly to the case of oxygen, and the coercive force Hc changed accordingly. Table 2
The measured values of the average crystal grain size and the coercive force Hc of a representative sample are shown below. Sample 13 was formed at a sputtering gas pressure of 3 Pa, similarly to Sample 7 described above. [Table 2] The same tendency as in the case of oxygen is observed when nitrogen is introduced. Samples 8 to 11 in which an appropriate amount of nitrogen is introduced to reduce the average crystal grain size have good softness even after heat treatment. Demonstrated magnetic properties. On the other hand, in Sample 12 in which the amount of nitrogen introduced is too large and in Sample 13 in which the average crystal grain size is large even when nitrogen is introduced,
The coercive force Hc was a high value. EXPERIMENTAL EXAMPLE 3 In this experimental example, carbon was introduced into the Fe-Ru-Ga-Si alloy film, and the influence on the average crystal grain size and soft magnetic characteristics was examined. The conditions for forming the soft magnetic thin film were the same as those in Experimental Example 1 except that the gas introduced during sputtering was Ar and Fe-Ru was used.
-Sputtering was performed by arranging carbon pellets on a -Ga-Si alloy target. Even when carbon was introduced, the average crystal grain size changed similarly to the case of oxygen, and the coercive force Hc changed accordingly. Table 3 shows the measured values of the average crystal grain size and the coercive force Hc of a representative sample. Sample 19 was formed at a sputtering gas pressure of 3 Pa, similarly to Sample 7 described above. [Table 3] When carbon is introduced to reduce the average crystal grain size, the same effect as in the case of oxygen can be obtained.
Samples 14 to 17 having a small average crystal grain size
Had a small coercive force Hc after heat treatment and were excellent in soft magnetic properties. In addition, it was confirmed that Sample 18 in which the amount of carbon introduced was too large and Sample 19 in which the average crystal grain size was large even when carbon was introduced had a high coercive force Hc after heat treatment and were inferior in performance as a soft magnetic thin film. . As is apparent from the above description, in the present invention, nitrogen, oxygen and carbon are introduced into the Fe-Ru-Ga-Si alloy film to make crystal grains fine. Therefore, the coercive force can be remarkably improved, and a soft magnetic thin film having excellent heat resistance and high saturation magnetic flux density can be provided. Therefore, a highly reliable glass fusing step becomes possible, and it is possible to realize a magnetic head which can cope with a high coercive force magnetic recording medium and has high reliability.
【図面の簡単な説明】
【図1】平均結晶粒径と保磁力Hcの関係を示す特性図
である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a characteristic diagram showing a relationship between an average crystal grain size and a coercive force Hc.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 広之 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (72)発明者 林 和彦 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (72)発明者 阿蘇 興一 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroyuki Omori 6-7-35 Kita Shinagawa, Shinagawa-ku, Tokyo Knee Co., Ltd. (72) Inventor Kazuhiko Hayashi 6-7-35 Kita Shinagawa, Shinagawa-ku, Tokyo Knee Co., Ltd. (72) Inventor Koichi Aso 6-7-35 Kita Shinagawa, Shinagawa-ku, Tokyo Knee Co., Ltd.
Claims (1)
zCw[ただし、a,b,c,d,x,y,z,wは各
元素の割合(原子%)を表す。]なる組成式で表され、
その組成範囲が 68≦a≦90 0.1≦b≦10 0.1≦c≦15 10≦d≦25 80≦x≦980<y≦20 0<z≦20 0<w≦20 a+b+c+d=100 x+y+z+w=100 2≦y+z+w≦20 であるとともに、平均結晶粒径が600Å以下であるこ
とを特徴とする軟磁性薄膜。(57) [Claims] [Claim 1] (Fe a Ru b Ga c Si d) x N y O
z C w [where a, b, c, d, x, y, z, and w represent the ratio (atomic%) of each element. ] Is represented by a composition formula
The composition range is 68 ≦ a ≦ 90 0.1 ≦ b ≦ 10 0.1 ≦ c ≦ 15 10 ≦ d ≦ 25 80 ≦ x ≦ 98 0 <y ≦ 200 0 <z ≦ 200 0 <w ≦ 20 a + b + c + d = 100 x + y + z + w = 100 2 ≦ y + z + w ≦ 20, and the average crystal grain size is 600 ° or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22976191A JP3495741B2 (en) | 1991-08-16 | 1991-08-16 | Soft magnetic thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22976191A JP3495741B2 (en) | 1991-08-16 | 1991-08-16 | Soft magnetic thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0547554A JPH0547554A (en) | 1993-02-26 |
JP3495741B2 true JP3495741B2 (en) | 2004-02-09 |
Family
ID=16897263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22976191A Expired - Fee Related JP3495741B2 (en) | 1991-08-16 | 1991-08-16 | Soft magnetic thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3495741B2 (en) |
-
1991
- 1991-08-16 JP JP22976191A patent/JP3495741B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0547554A (en) | 1993-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2550996B2 (en) | Soft magnetic thin film | |
JPH02229406A (en) | Soft magnetic alloy film | |
JP2963003B2 (en) | Soft magnetic alloy thin film and method of manufacturing the same | |
JP3495741B2 (en) | Soft magnetic thin film | |
JP2692088B2 (en) | Soft magnetic laminated film | |
JP3235127B2 (en) | Soft magnetic thin film | |
JPH07116563B2 (en) | Fe-based soft magnetic alloy | |
JP2508489B2 (en) | Soft magnetic thin film | |
JPH0785452B2 (en) | Magnetic film and method for manufacturing the same | |
JPH03263306A (en) | Magnetic film and magnetic head | |
US5534080A (en) | Method for producing Mn-Al thin films | |
JPH0547552A (en) | Soft magnetic thin film | |
JP3167808B2 (en) | Soft magnetic thin film | |
JP2570337B2 (en) | Soft magnetic laminated film | |
JP2757586B2 (en) | Soft magnetic thin film | |
JP2554445B2 (en) | Magnetic thin film and method of manufacturing the same | |
JP2771674B2 (en) | Soft magnetic alloy film | |
JP3127070B2 (en) | Method for producing soft magnetic thin film | |
JP2771664B2 (en) | Soft magnetic alloy film | |
JPH08306529A (en) | Soft magnetic film, and magnetic head using it, and magnetic recording device | |
JP2546275B2 (en) | Soft magnetic thin film | |
JP2761267B2 (en) | Soft magnetic alloy film | |
JP3279591B2 (en) | Ferromagnetic thin film and manufacturing method thereof | |
JPS63146417A (en) | Soft magnetic thin film | |
JP2657710B2 (en) | Method for manufacturing soft magnetic thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010220 |
|
LAPS | Cancellation because of no payment of annual fees |