WO2020226130A1 - Ni-BASED SPUTTERING TARGET AND MAGNETIC RECORDING MEDIUM - Google Patents

Ni-BASED SPUTTERING TARGET AND MAGNETIC RECORDING MEDIUM Download PDF

Info

Publication number
WO2020226130A1
WO2020226130A1 PCT/JP2020/018399 JP2020018399W WO2020226130A1 WO 2020226130 A1 WO2020226130 A1 WO 2020226130A1 JP 2020018399 W JP2020018399 W JP 2020018399W WO 2020226130 A1 WO2020226130 A1 WO 2020226130A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
region
content
alloy
sputtering target
Prior art date
Application number
PCT/JP2020/018399
Other languages
French (fr)
Japanese (ja)
Inventor
慶明 松原
未由紀 井本
相川 芳和
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to SG11202112079RA priority Critical patent/SG11202112079RA/en
Priority to CN202080033599.2A priority patent/CN113825856B/en
Publication of WO2020226130A1 publication Critical patent/WO2020226130A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Definitions

  • the present invention relates to a Ni-based sputtering target for a seed layer of a magnetic recording medium and a magnetic recording medium.
  • a perpendicular magnetic recording medium that stores information by a perpendicular magnetic recording method generally has a soft magnetic backing layer, a control base layer, a magnetic recording layer for recording magnetic information, and a carbon protective layer sequentially laminated on a substrate such as glass. It has a multi-layered structure.
  • the control base layer includes a seed layer that controls the orientation of the magnetic recording layer.
  • the seed layer has a face-centered cubic lattice structure (fcc structure) having a (111) plane parallel to the medium plane, and the easy axis of magnetization of the magnetic film of the magnetic recording layer is oriented perpendicular to the medium plane.
  • Patent Document 1 proposes a Fe—Ni—Co—M based alloy as a magnetic seed layer alloy.
  • the magnetron sputtering method is used to form the seed layer.
  • the magnetron sputtering method involves placing a magnet behind the sputtering target, converging the plasma in the leakage magnetic flux region on the surface of the sputtering target, and increasing the probability (sputtering rate) that the argon atom collides with the sputtering target. It is a sputtering method that increases the adhesion speed of.
  • the sputtering target for forming the seed layer having magnetism is required to have low magnetism (saturation magnetic flux density and magnetic permeability) necessary and sufficient for forming a leakage magnetic flux region on the surface of the target, while the above-mentioned High enough magnetism is required to improve the magnetic recording characteristics.
  • Patent Document 1 proposes a material having a magnetism sufficiently low as a sputtering target to obtain a leakage magnetic flux and having a magnetism sufficiently high as a seed layer as a sputtering film.
  • the Fe—Ni—Co—M alloy of Patent Document 1 is Fe-30at.
  • the saturation magnetic flux of the target itself is controlled by controlling the structure of the sputtering target by utilizing the characteristic that the saturation magnetic flux density Bs is minimized at a composition near% Ni (composition containing 25 to 35 at.% Of Ni with respect to Fe). The density is reduced.
  • the saturation magnetic flux density Bs of the% Ni alloy varies sensitively with respect to the amount of Ni. Therefore, Fe-30 at.
  • Fe-30 at. For sputtering targets with% Ni alloy regions, Fe-30 at. There is a slight variation in the amount of Ni in the% Ni alloy region, and Fe-30 at.
  • the magnetic distribution tends to be micro-biased depending on the diffusion state of Ni at the boundary between the% Ni alloy region and other regions. If the magnetic bias occurs in the sputtering target, the discharge property due to the target portion may be biased during sputtering, and a high sputtering rate may not be obtained.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a sufficiently strong leakage magnetic flux as a sputtering target, have magnetism as a seed layer of a magnetic recording medium, and inside the sputtering target. It is an object of the present invention to provide a Ni-based sputtering target for a seed layer of a magnetic recording medium having a small magnetic distribution bias and a high sputtering rate, and a magnetic recording medium having a seed layer formed by using the Ni-based sputtering target. ..
  • the Ni-based sputtering target according to one aspect of the present invention contains an additive element M and at least one element of Fe and Co, and the balance is Fe—Ni—Co—M composed of Ni and unavoidable impurities.
  • the microstructure of the Fe—Ni—Co—M alloy is composed of a plurality of regions having different Ni contents, and the additive element M is present in each region and the present form is such that the additive element M is solid-dissolved. Only a compound of at least one element of Fe, Ni and Co and the additive element M, or both the solid solution and the compound.
  • the magnetic recording medium according to one aspect of the present invention is an Fe—Ni—Co—M system containing an additive element M and at least one element of Fe and Co, and the balance is Ni and unavoidable impurities.
  • the microstructure of the Fe—Ni—Co—M alloy is composed of a plurality of regions having different Ni contents, and the additive element M is present in each region and the present form is such that the additive element M is present. It is characterized in that it is only a solid solution, only a compound of at least one element of Fe, Ni and Co and the additive element M, or both the solid solution and the compound.
  • the plurality of regions include a first region, a second region, and a third region, and the contents of Fe, Ni, and Co in each region [at. %],
  • the Ni content of the first region is 0 or more and 20 or less
  • the Ni content of the second region is 80 or more and 100 or less
  • the third region The Ni content of is more than 20 and less than 80.
  • the Fe—Ni—Co—M-based alloy contains Fe, Ni, and Co [at. %]
  • the Fe content is 0 or more and 50 or less
  • the Ni content is 20 or more and 98 or less
  • the Co content is 0 or more and 40 or less.
  • the total content of the elements is 2 at. % Or more 20 at. It may be less than or equal to%.
  • the additive element M is a second element composed of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, Re and Ru. It may further contain one or more M2 elements selected from the group of.
  • the total content of the M2 element is 0 at. More than 10 at. It may be less than or equal to%.
  • magnetic recording capable of obtaining a sufficiently strong leakage magnetic flux as a sputtering target, having magnetism as a seed layer of a magnetic recording medium, and having a small bias in the magnetic distribution inside the sputtering target to enable stable sputtering. It is possible to provide a sputtering target for a seed layer of a medium, and a magnetic recording medium having a seed layer formed by using the sputtering target.
  • Ni-based sputtering target and a magnetic recording medium consists of Fe x -Ni y -Co z -M alloy.
  • the Ni-based sputtering target is suitable for use in magnetron sputtering.
  • Fe, Ni and Co will be referred to as base elements of Fe—Ni—Co—M based alloys for convenience.
  • x is the total amount of the base element in the alloy [at.
  • X is more preferably 2 or more and 45 or less, and even more preferably 5 or more and 40 or less.
  • y is more preferably 40 or more and 98 or less, and even more preferably 45 or more and 75 or less.
  • z is more preferably 0 or more and 30 or less.
  • Additive element M contains M1 element.
  • the additive element M may further contain the M2 element.
  • the M1 element is one or more elements selected from the first group consisting of W, Mo, Ta, Cr, V and Nb.
  • the M1 element is a bcc-based metal having a high melting point.
  • the total content of M1 elements in the Fe—Ni—Co—M alloy is preferably 2 at. % Or more 20 at. % Or less, more preferably 2 at. % Or more 15 at. % Or less, even more preferably 3 at. % Or more 12 at. % Or less.
  • the Fe—Ni—Co—M alloy preferably contains at least one of W and Mo as an essential component.
  • the Fe—Ni—Co—M alloy may contain at least one of Cr, Ta, V and Nb in addition to at least one of W and Mo.
  • the high melting point bcc metals (W, Mo, Ta, Cr, V and Nb) to be combined with Ni, Mo and W have a higher melting point than Cr and are advantageous.
  • W and Mo does not act in the direction of increasing the amorphous property as compared with the addition of Ta, V and Nb, which is advantageous for the fcc phase formation required for the seed layer.
  • Cr is preferably 5 at. Added in excess of 5 at. When added in excess of%, it is advantageous in terms of orientation.
  • the M2 element is one or more selected from the second group consisting of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, Re and Ru. It is an element.
  • the M2 element is an element that orients the (111) plane of the cubic lattice and is an element that refines the crystal grains. Therefore, although the M2 element is an optional component, the Fe—Ni—Co—M alloy preferably contains at least one M2 element.
  • the total content of M2 elements in the Fe—Ni—Co—M alloy is 10 at. If it exceeds%, it may become amorphous. From this point of view, the total content of M2 elements in the Fe—Ni—Co—M alloy is preferably 0 at. More than 10 at. % Or less, more preferably 0 at. More than% 5 at. % Or less.
  • the Fe—Ni—Co—M based alloy has a microstructure containing the Fe ⁇ — Ni ⁇ —Co ⁇ phase.
  • the microstructure consists of a plurality of regions having different Ni contents.
  • the plurality of regions include a first region, a second region, and a third region.
  • An additive element M is present in each region.
  • is the total content of the base elements in the Fe ⁇ - Ni ⁇ - Co ⁇ phase [at. %] Of Fe content [at. %], Where ⁇ is the total content of base elements in the Fe ⁇ - Ni ⁇ - Co ⁇ phase [at. %] Of Ni content [at. %], Where ⁇ is the total content of base elements in the Fe ⁇ - Ni ⁇ - Co ⁇ phase [at. %] Of Co content [at. %] Represents the ratio.
  • the microstructure can be identified by using X-ray diffraction, an optical microscope, or the like.
  • the saturation magnetic flux density Bs is high in the first region where the proportion ( ⁇ ) of Ni is 0 or more and 20 or less, and the saturation magnetic flux density Bs is low in the second region where the proportion ( ⁇ ) of Ni is 80 or more and 100 or less.
  • the third region is a diffusion layer of the first region and the second region.
  • the present form of the additive element M in each region is that the additive element M is only a solid solution, only a compound of at least one element of Fe, Ni and Co and the additive element M, or a solid solution and a compound. Both.
  • the microstructure formed a compound with the M1 element solid-solved in the Fe ⁇ — Ni ⁇ — Co ⁇ phase and / or the base element. Contains M1 element.
  • the magnetism of the Fe—Ni—Co—M based alloy can be reduced.
  • the Fe—Ni—Co—M alloy contains the M1 element within the scope of the present invention, the M1 element can be dissolved in the Fe ⁇ — Ni ⁇ — Co ⁇ phase and / or with the base element. A compound with the M1 element can be formed.
  • the total content of M1 elements is 2 at.
  • the total content of M1 element is 20 at. If it is less than%, the effect of solid solution or the effect as a compound-forming element is not sufficient, and the total content of M1 element is 20 at. If it exceeds%, the compound increases and becomes brittle. From this point of view, the total content of M1 elements is preferably 2 at. % Or more 20 at. % Or less, more preferably 2 at. % Or more 15 at. % Or less, even more preferably 3 at. % Or more 12 at. % Or less.
  • the microstructure contains the M2 element solidly dissolved in the Fe ⁇ — Ni ⁇ — Co ⁇ phase and / or the base element and the compound. Contains the formed M2 element. As a result, the magnetism of the Fe—Ni—Co—M based alloy can be reduced.
  • the Fe—Ni—Co—M alloy contains the M2 element within the scope of the present invention, the M2 element can be dissolved in the Fe ⁇ — Ni ⁇ — Co ⁇ phase and / or with the base element. A compound with the M2 element can be formed. In the Fe—Ni—Co—M alloy, the total content of M2 elements is 1 at.
  • the total content of M2 element is 10 at. If it is less than%, the effect of solid solution or the effect as a compound-forming element is not sufficient, and the total content of M2 element is 10 at. If it exceeds%, the compound increases and becomes brittle. From this point of view, the total content of M2 elements is preferably 0 at. More than 10 at. % Or less, more preferably 0 at. More than% 5 at. % Or less.
  • Fe-Ni-Co-M alloys include Fe ⁇ 1 -Co ⁇ 1- Ni ⁇ 1- M alloy powder (raw material powder A), Ni ⁇ 2- Co ⁇ 2- Fe ⁇ 2- M alloy powder (raw material powder B), and It can be produced by mixing other raw material powders in a predetermined ratio and pressure sintering the mixed powders.
  • a pure metal powder supplementing an element lacking in the target composition and / or an alloy powder can be used.
  • For the pressure sintering of the mixed powder for example, hot pressing, hot hydrostatic pressure pressing (HIP), current pressure sintering, hot extrusion and the like can be applied.
  • a Ni-based sputtering target can be manufactured by forming the final shape of this Fe—Ni—Co—M-based alloy by machining.
  • ⁇ 1 is the total content of the base elements in the alloy of the raw material powder A [at. %] Of Fe content [at. %], Where ⁇ 1 is the total content of the base elements in the alloy of the raw material powder A [at. %] Of Ni content [at. %], Where ⁇ 1 is the total content of the base elements in the alloy of the raw material powder A [at. %] Of Co content [at. %] Represents the ratio. Since the microstructure of the Fe ⁇ - Ni ⁇ - Co ⁇ phase includes a first region in which ⁇ is 0 or more and 20 or less, ⁇ 1 is set to 0 or more and 20 or less. That is, the first region of the Fe ⁇ - Ni ⁇ - Co ⁇ phase is derived from the Fe ⁇ 1- Co ⁇ 1- Ni ⁇ 1- M based alloy powder of the raw material powder A.
  • ⁇ 2 is the total content of the base elements in the alloy of the raw material powder B [at. %] Of Fe content [at. %], Where ⁇ 2 is the total content of the base elements in the alloy of the raw material powder B [at. %] Of Ni content [at. %], Where ⁇ 2 is the total content of the base elements in the alloy of the raw material powder B [at. %] Of Co content [at. %] Represents the ratio.
  • ⁇ 2 is set to 80 or more and 100 or less. That is, the second region of the Fe ⁇ - Ni ⁇ - Co ⁇ phase is derived from the Ni ⁇ 2- Co ⁇ 2- Fe ⁇ 2- M based alloy powder of the raw material powder B.
  • the Ni-based sputtering target manufactured as described above is used for forming a seed layer of a perpendicular magnetic recording medium.
  • the seed layer in the perpendicular magnetic recording medium can be formed by forming the above-mentioned Fe—Ni—Co—M based alloy by a magnetron sputtering method using a Ni based sputtering target.
  • the seed layer of the perpendicular magnetic recording medium formed in this way is made of the above-mentioned Fe—Ni—Co—M based alloy.
  • Fe—Co—Ni—M based alloy powder (raw material powder A), Ni—Co—Fe—M based alloy powder (raw material powder B), and other raw material powders were produced by the gas atomization method.
  • the gas atomizing method was carried out under the conditions that the gas type was argon gas, the nozzle diameter was 6 mm, and the gas pressure was 5 MPa.
  • powders classified to 500 ⁇ m or less were used.
  • the powder of a pure substance, which is another raw material powder may be produced by a manufacturing method other than the atomizing method. Further, the powder may be produced by using not only the gas atomizing method but also a water atomizing method, a rotary disc atomizing method and the like.
  • Fe—Co—Ni—M alloy powder (raw material powder A), Ni—Co—Fe— produced by the above-mentioned method so as to satisfy the Fe—Ni—Co—M alloy composition shown in Tables 1 to 3.
  • M-based alloy powder (raw material powder B) and other raw material powders are mixed, filled in a sealed can made of SC material, evacuated and vacuum-sealed at an ultimate vacuum degree of 10 -1 Pa or more, and then pressure sintered.
  • a molded product was prepared under the conditions of a temperature of 800 to 1200 ° C., a pressure of 100 MPa or more, and a holding time of 5 hours, and then a target sample having an outer diameter of 165 to 180 mm and a thickness of 3 to 10 mm was obtained as a final shape by machining. ..
  • a V-type mixer was used to mix the raw material powder, and the mixing time was 1 hour.
  • a pressure sintering method for the mixed powder a hot press, a hot hydrostatic press, an energization pressure sintering, a hot extrusion, or the like may be used.
  • component composition represents the component composition of the Fe—Ni—Co—M alloy.
  • “Fe”, “Ni” and “Co” of the “component composition” are selected from the third group consisting of the base elements (that is, Fe, Ni and Co) in the Fe—Ni—Co—M based alloy, respectively.
  • Total content of one or more elements) [at. %] Of Fe content [at. %], Ni content [at. %] Percentage, Co content [at. %] Represents the ratio.
  • “Fe” + “Ni” + “Co” is 100.
  • “Fe”, “Ni” and “Co” in the “raw material powder A” are the total contents of the base elements in the raw material powder A [at.
  • G1 Gar 1
  • G2 Gar 2
  • G3 Gar 3
  • G1 is particularly suitable as the Ni-based sputtering target of the present invention
  • G2 is suitable as the Ni-based sputtering target of the present invention
  • G3 is unsuitable as the Ni-based sputtering target of the present invention. Is.
  • PTF 100 ⁇ (Magnetic flux strength with target sample placed) ⁇ (Magnetic flux strength without target sample placed) (%)
  • G1 Magnetic flux strength with target sample placed
  • G2 Magnetic flux strength without target sample placed
  • G1 a PTF of 10% or more
  • G2 a PTF of less than 10%
  • G1 is suitable as the Ni-based sputtering target of the present invention
  • G2 is unsuitable as the Ni-based sputtering target of the present invention.
  • a sputtering film was formed on the substrate by a magnetron sputtering method.
  • This sputtering film simulates the seed layer of a perpendicular magnetic recording medium.
  • the existence form of M element in the microstructure of the sputtering film and the crystal structure of the sputtering film are analyzed. did.
  • the presence or absence of cracks in the sputtering film was observed by observing the sputtering film formed on each target sample under a microscope.
  • the crystal grain size of the sputtering film was calculated from the tissue photograph taken by a transmission electron microscope (TEM) based on the image analysis.
  • TEM transmission electron microscope
  • the major axis and the minor axis of the elliptical image of the crystal included in the image are measured, the average diameter thereof is taken as the particle size, and the average value of the particle size of a plurality of crystals included in a predetermined range of the structure image is "crystal”.
  • Particle size Those having a crystal grain size of 20 nm or less were designated as "G1 (Grade1)", and those having a crystal grain size larger than 20 nm were designated as "G2 (Grade2)".
  • Tables 4 to 6 show various observation results and evaluation results for the target samples and sputtering films of Examples 1 to 64 and Comparative Examples 1 to 8.
  • the target samples of Examples 1 to 64 have the total content of the base elements in the raw material powder A [at. %] Of Ni content [at. %] Is 0 or more and 20 or less, and the total content of the base elements in the raw material powder B [at. %] Of Ni content [at. %] Is 80 or more and 100 or less. That is, in the target samples of Examples 1 to 64, the microstructure of the Fe ⁇ - Ni ⁇ - Co ⁇ phase is the first region in which ⁇ (ratio of Ni) is 0 or more and 20 or less, and ⁇ is 80 or more and 100 or less. It has a second region which is. Further, the additive element M is present in both the first region and the second region. In each region, the additive element M exists only as a solid solution dissolved in the Fe ⁇ - Ni ⁇ - Co ⁇ phase, only as a compound with the base element, or as both a solid solution and a compound.
  • the maximum magnetic permeability is 1000 emu or less
  • the PTF is 10% or more
  • the magnetism in the target sample is high. Variations are suppressed.
  • the sputtering film formed from the target samples of Examples 1 to 64 has a crystal structure of fcc structure and a crystal grain size of 20 nm or less, it is suitable as a seed layer of a magnetic recording layer.
  • the sputtering film formed from the target samples of Examples 1 to 63 the total content of the element M2 in Fe x -Ni y -Co z -M alloy is 0 atomic. % Or more 10 at.
  • the sputtering film formed from a target sample of Example 64 the sum of M2 elements in Fe x -Ni y -Co z -M alloy The content is 0 at. % Or more 10 at. Since it was out of the% range, cracks occurred during film formation.
  • a sufficiently strong leakage magnetic flux can be obtained as a target for magnetron sputtering, magneticity as a seed layer of a magnetic recording medium, and stable sputtering with a small bias in the magnetic distribution inside the target. It has been clarified that a Ni-based sputtering target for a seed layer of a magnetic recording medium capable of forming a magnetic recording medium and a magnetic recording medium having a seed layer formed by using the Ni-based sputtering target can be provided.
  • the target sample of Comparative Example 1 had the total content of the base elements in the raw material powder A [at. %] Of Ni content [at. %] Is 21. That is, the target sample of Comparative Example 1 does not have a first region in which the microstructure of the Fe ⁇ - Ni ⁇ - Co ⁇ phase has ⁇ (ratio of Ni) of 0 or more and 20 or less.
  • the target sample of Comparative Example 1 has a large variation in magnetism and is not suitable as a sputtering target for forming a seed layer.
  • Target sample of Comparative Example 2 the total content of the base element in Fe x -Ni y -Co z -M alloy [at. %] Of Fe content [at. %] Is out of the range of 0 or more and 50 or less.
  • Target samples of Comparative Examples 3 and 4 the total content of the base element in Fe x -Ni y -Co z -M alloy [at. %] Of Ni content [at. %] Is out of the range of 20 or more and 98 or less.
  • the sputtering film had a bcc structure (body-centered cubic lattice structure).
  • Target sample of Comparative Example 5 the total content of the base element in Fe x -Ni y -Co z -M alloy [at. %] Of Co content [at. %] Is out of the range of 0 or more and 40 or less.
  • the sputtering film had an hcp structure (hexagonal close-packed structure).
  • the sputtering film formed from the target samples of Comparative Examples 2 to 5 is not suitable as a seed layer for the magnetic recording layer.
  • Target samples of Comparative Examples 6 and 7 the total content of the M1 element at Fe x -Ni y -Co z -M based alloy 2at. % Or more 20 at. It is out of the range of% or less.
  • the crystal grain size of the sputtering film exceeded 20 nm.
  • the sputtering film had an amorphous structure.
  • the sputtering film formed from the target samples of Comparative Examples 6 and 7 is not suitable as a seed layer for the magnetic recording layer.
  • the target sample of Comparative Example 8 had the total content of the base elements in the raw material powder B [at. %] Of Ni content [at. %] Is out of the range of 80 or more and 100 or less. That is, the target sample of Comparative Example 8 does not have a second region in which the microstructure of the Fe ⁇ - Ni ⁇ - Co ⁇ phase has ⁇ (ratio of Ni) of 80 or more and 100 or less.
  • the target sample of Comparative Example 8 has insufficient magnetic permeability and PTF, and is not suitable as a sputtering target for forming a seed layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

The present invention addresses the problem of providing a Ni-based sputtering target having little bias in magnetic distribution within the target, and a magnetic recording medium having a seed layer formed using the Ni-based sputtering target. In order to solve this problem, the present invention provides a Ni-based sputtering target comprising an Fe-Ni-Co-M-based alloy which contains an additional element M and at least one element from among Fe and Co, the remainder comprising Ni and unavoidable impurities, wherein the microstructure of the Fe-Ni-Co-M-based alloy comprises a plurality of regions having different Ni content, the additional element M is present in each region, and the form in which the additional element M is present in each region is only as a solid solution of the additional element M, only as a compound of the additional element M and at least one element from among Fe, Ni, and Co, or as both a solid solution and a compound.

Description

Ni系スパッタリングターゲット及び磁気記録媒体Ni-based sputtering target and magnetic recording medium
 本発明は、磁気記録媒体のシード層用Ni系スパッタリングターゲット及び磁気記録媒体に関する。 The present invention relates to a Ni-based sputtering target for a seed layer of a magnetic recording medium and a magnetic recording medium.
 従来、ハードディスクドライブの磁気記録の高密度化を実現する技術として、垂直磁気記録方式が採用されている。垂直磁気記録方式で情報を記憶する垂直磁気記録媒体は、一般に、ガラスなどの基板上に、軟磁性裏打ち層、制御下地層、磁気情報を記録する磁気記録層、及び、カーボン保護層が順次積層された多層構造を有する。制御下地層は、磁気記録層の配向性を制御するシード層を含む。シード層は、媒体面と平行な(111)面を持つ面心立方格子構造(fcc構造)を有し、磁気記録層の磁性膜の磁化容易軸を媒体面に対して垂直に配向させる。 Conventionally, the perpendicular magnetic recording method has been adopted as a technology for realizing a high density of magnetic recording of a hard disk drive. A perpendicular magnetic recording medium that stores information by a perpendicular magnetic recording method generally has a soft magnetic backing layer, a control base layer, a magnetic recording layer for recording magnetic information, and a carbon protective layer sequentially laminated on a substrate such as glass. It has a multi-layered structure. The control base layer includes a seed layer that controls the orientation of the magnetic recording layer. The seed layer has a face-centered cubic lattice structure (fcc structure) having a (111) plane parallel to the medium plane, and the easy axis of magnetization of the magnetic film of the magnetic recording layer is oriented perpendicular to the medium plane.
 近年、ハードディスクドライブの磁気記録特性を改善するために、シード層に磁性を持たせることが検討されている。特許文献1では、磁性を有するシード層用合金として、Fe-Ni-Co-M系合金が提案されている。 In recent years, in order to improve the magnetic recording characteristics of hard disk drives, it has been studied to give magnetism to the seed layer. Patent Document 1 proposes a Fe—Ni—Co—M based alloy as a magnetic seed layer alloy.
 一般的に、シード層の成膜にはマグネトロンスパッタリング法が用いられる。マグネトロンスパッタリング法とは、スパッタリングターゲットの背後に磁石を配置し、スパッタリングターゲットの表面の漏洩磁束領域にプラズマを収束させ、アルゴン原子がスパッタリングターゲットに衝突する確率(スパッタ率)を高めることにより、基板への付着スピードを高めたスパッタリング法である。磁性を有するシード層を形成するためのスパッタリングターゲットには、当該ターゲットの表面に漏洩磁束領域を形成するために必要十分な低い磁性(飽和磁束密度及び透磁率)が要求される一方で、前述の磁気記録特性を改善するために十分に高い磁性が要求される。 Generally, the magnetron sputtering method is used to form the seed layer. The magnetron sputtering method involves placing a magnet behind the sputtering target, converging the plasma in the leakage magnetic flux region on the surface of the sputtering target, and increasing the probability (sputtering rate) that the argon atom collides with the sputtering target. It is a sputtering method that increases the adhesion speed of. The sputtering target for forming the seed layer having magnetism is required to have low magnetism (saturation magnetic flux density and magnetic permeability) necessary and sufficient for forming a leakage magnetic flux region on the surface of the target, while the above-mentioned High enough magnetism is required to improve the magnetic recording characteristics.
 このような要求に対して、特許文献1では、スパッタリングターゲットとしては漏洩磁束が得られる程度に十分に低い磁性を有し、且つ、スパッタリング膜としてはシード層として十分に高い磁性を有する材料が提案されている。特許文献1のFe-Ni-Co-M系合金は、Fe-Ni系合金ではFe-30at.%Ni近傍の組成(Feに対してNiを25~35at.%含有する組成)で飽和磁束密度Bsが極小となる特性を利用して、スパッタリングターゲットの組織制御を行うことでターゲット自身の飽和磁束密度を低減している。 In response to such a requirement, Patent Document 1 proposes a material having a magnetism sufficiently low as a sputtering target to obtain a leakage magnetic flux and having a magnetism sufficiently high as a seed layer as a sputtering film. Has been done. The Fe—Ni—Co—M alloy of Patent Document 1 is Fe-30at. For Fe—Ni alloy. The saturation magnetic flux of the target itself is controlled by controlling the structure of the sputtering target by utilizing the characteristic that the saturation magnetic flux density Bs is minimized at a composition near% Ni (composition containing 25 to 35 at.% Of Ni with respect to Fe). The density is reduced.
特許第6254295号公報Japanese Patent No. 6254295
 Fe-30at.%Ni合金の飽和磁束密度Bsは、Ni量に対して敏感に変動する。そのため、Fe-30at.%Ni合金領域を有するスパッタリングターゲットでは、Fe-30at.%Ni合金領域内におけるNi量の微量なばらつきや、Fe-30at.%Ni合金領域と他の領域との境界部におけるNiの拡散状況によって、磁性分布にミクロ的な偏りが生じ易い。スパッタリングターゲットにおいて磁性の偏りが生じると、スパッタ時にターゲット部位による放電性に偏りが生じ、高いスパッタ率が得られないおそれがある。 Fe-30 at. The saturation magnetic flux density Bs of the% Ni alloy varies sensitively with respect to the amount of Ni. Therefore, Fe-30 at. For sputtering targets with% Ni alloy regions, Fe-30 at. There is a slight variation in the amount of Ni in the% Ni alloy region, and Fe-30 at. The magnetic distribution tends to be micro-biased depending on the diffusion state of Ni at the boundary between the% Ni alloy region and other regions. If the magnetic bias occurs in the sputtering target, the discharge property due to the target portion may be biased during sputtering, and a high sputtering rate may not be obtained.
 本発明は以上の事情に鑑みてされたものであり、その目的は、スパッタリングターゲットとして十分に強い漏洩磁束が得られ、磁気記録媒体のシード層としての磁性を有し、且つ、スパッタリングターゲット内部の磁性分布の偏りが小さく高いスパッタ率が得られる磁気記録媒体のシード層用Ni系スパッタリングターゲット、及び、このNi系スパッタリングターゲットを用いて形成されたシード層を有する磁気記録媒体を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a sufficiently strong leakage magnetic flux as a sputtering target, have magnetism as a seed layer of a magnetic recording medium, and inside the sputtering target. It is an object of the present invention to provide a Ni-based sputtering target for a seed layer of a magnetic recording medium having a small magnetic distribution bias and a high sputtering rate, and a magnetic recording medium having a seed layer formed by using the Ni-based sputtering target. ..
 本発明の一態様に係るNi系スパッタリングターゲットは、添加元素Mと、Fe及びCoのうちの少なくとも1種の元素とを含有し、残部がNi及び不可避的不純物からなるFe-Ni-Co-M系合金からなるNi系スパッタリングターゲットであって、前記添加元素Mは、W,Mo,Ta,Cr,V及びNbからなる第1の群より選択される1種又は2種以上のM1元素を含み、前記Fe-Ni-Co-M系合金のミクロ組織はNiの含有量が異なる複数の領域からなり、各領域に前記添加元素Mが存在し且つその存在形態が、前記添加元素Mが固溶のみ、Fe、Ni及びCoのうちの少なくとも1種の元素と前記添加元素Mとの化合物のみ、又は前記固溶と前記化合物の両方であることを特徴としている。 The Ni-based sputtering target according to one aspect of the present invention contains an additive element M and at least one element of Fe and Co, and the balance is Fe—Ni—Co—M composed of Ni and unavoidable impurities. A Ni-based sputtering target made of a based alloy, wherein the additive element M contains one or more M1 elements selected from the first group consisting of W, Mo, Ta, Cr, V and Nb. The microstructure of the Fe—Ni—Co—M alloy is composed of a plurality of regions having different Ni contents, and the additive element M is present in each region and the present form is such that the additive element M is solid-dissolved. Only a compound of at least one element of Fe, Ni and Co and the additive element M, or both the solid solution and the compound.
 本発明の一態様に係る磁気記録媒体は、添加元素Mと、Fe及びCoのうちの少なくとも1種の元素とを含有し、残部がNi及び不可避的不純物からなるFe-Ni-Co-M系合金からなるシード層を有する磁気記録媒体であって、前記添加元素Mは、W,Mo,Ta,Cr,V及びNbからなる第1の群より選択される1種又は2種以上のM1元素を含み、前記Fe-Ni-Co-M系合金のミクロ組織はNiの含有量が異なる複数の領域からなり、各領域に前記添加元素Mが存在し且つその存在形態が、前記添加元素Mが固溶のみ、Fe、Ni及びCoのうちの少なくとも1種の元素と前記添加元素Mとの化合物のみ、又は前記固溶と前記化合物の両方であることを特徴としている。 The magnetic recording medium according to one aspect of the present invention is an Fe—Ni—Co—M system containing an additive element M and at least one element of Fe and Co, and the balance is Ni and unavoidable impurities. A magnetic recording medium having a seed layer made of an alloy, wherein the additive element M is one or more M1 elements selected from the first group consisting of W, Mo, Ta, Cr, V and Nb. The microstructure of the Fe—Ni—Co—M alloy is composed of a plurality of regions having different Ni contents, and the additive element M is present in each region and the present form is such that the additive element M is present. It is characterized in that it is only a solid solution, only a compound of at least one element of Fe, Ni and Co and the additive element M, or both the solid solution and the compound.
 上記Ni系スパッタリングターゲット及び磁気記録媒体において、前記複数の領域は第1領域、第2領域及び第3領域を含み、各領域内のFe、Ni及びCoの含有量[at.%]の合計量を100としたときに、前記第1領域のNiの含有量は0以上20以下であり、前記第2領域のNiの含有量は80以上100以下であり、前記第3領域のNiの含有量は20より多く80未満であってよい。 In the Ni-based sputtering target and the magnetic recording medium, the plurality of regions include a first region, a second region, and a third region, and the contents of Fe, Ni, and Co in each region [at. %], When the total amount of the first region is 100, the Ni content of the first region is 0 or more and 20 or less, the Ni content of the second region is 80 or more and 100 or less, and the third region The Ni content of is more than 20 and less than 80.
 上記Ni系スパッタリングターゲット及び磁気記録媒体において、前記Fe-Ni-Co-M系合金は、Fe、Ni及びCoの含有量[at.%]の合計量を100としたときに、Feの含有量は0以上50以下であり、Niの含有量は20以上98以下であり、Coの含有量は0以上40以下であり、前記M1元素の合計含有量は2at.%以上20at.%以下であってよい。 In the Ni-based sputtering target and the magnetic recording medium, the Fe—Ni—Co—M-based alloy contains Fe, Ni, and Co [at. %] When the total amount is 100, the Fe content is 0 or more and 50 or less, the Ni content is 20 or more and 98 or less, and the Co content is 0 or more and 40 or less. The total content of the elements is 2 at. % Or more 20 at. It may be less than or equal to%.
 上記Ni系スパッタリングターゲット及び磁気記録媒体において、前記添加元素Mは、Al,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Re及びRuからなる第2の群より選択される1種又は2種以上のM2元素をさらに含んでもよい。 In the Ni-based sputtering target and the magnetic recording medium, the additive element M is a second element composed of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, Re and Ru. It may further contain one or more M2 elements selected from the group of.
 上記Ni系スパッタリングターゲット及び磁気記録媒体において、前記M2元素の合計含有量は0at.%より多く10at.%以下であってよい。 In the Ni-based sputtering target and the magnetic recording medium, the total content of the M2 element is 0 at. More than 10 at. It may be less than or equal to%.
 本発明によれば、スパッタリングターゲットとして十分に強い漏洩磁束が得られ、磁気記録媒体のシード層としての磁性を有し、且つ、スパッタリングターゲット内部の磁性分布の偏りが小さく安定したスパッタリングができる磁気記録媒体のシード層用スパッタリングターゲット、及び、このスパッタリングターゲットを用いて形成されたシード層を有する磁気記録媒体を提供することができる。 According to the present invention, magnetic recording capable of obtaining a sufficiently strong leakage magnetic flux as a sputtering target, having magnetism as a seed layer of a magnetic recording medium, and having a small bias in the magnetic distribution inside the sputtering target to enable stable sputtering. It is possible to provide a sputtering target for a seed layer of a medium, and a magnetic recording medium having a seed layer formed by using the sputtering target.
 本発明に係るNi系スパッタリングターゲット及び磁気記録媒体のシード層は、Fe-Ni-Co-M系合金からなる。Ni系スパッタリングターゲットは、マグネトロンスパッタリングでの使用に適する。Fe-Ni-Co-M系合金は、添加元素Mと、Fe及びCoのうちの少なくとも1種の元素とを含有し、残部がNi及び不可避的不純物からなる。以下、Fe、Ni及びCoを、便宜的に、Fe-Ni-Co-M系合金のベース元素と称する。組成式Fe-Ni-Co-Mにおいて、xは合金におけるベース元素の合計含有量[at.%]に対するFeの含有量[at.%]の割合を表し、yは合金におけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合を表し、zは合金におけるベース元素の合計含有量[at.%]に対するCoの含有量[at.%]の割合を表す。なお、本明細書において、Fe-Ni-Co-M系合金を「Fe-Ni-Co-M系合金」と表す場合がある。 Seed layer Ni-based sputtering target and a magnetic recording medium according to the present invention consists of Fe x -Ni y -Co z -M alloy. The Ni-based sputtering target is suitable for use in magnetron sputtering. Fe x -Ni y -Co z -M-based alloy, the additive element M, containing at least one element of Fe and Co, the balance being Ni and unavoidable impurities. Hereinafter, Fe, Ni and Co will be referred to as base elements of Fe—Ni—Co—M based alloys for convenience. In the composition formula Fe x -Ni y -Co z -M, x is the total amount of the base element in the alloy [at. %] Of Fe content [at. %], Where y is the total content of the base elements in the alloy [at. %] Of Ni content [at. %], Where z is the total content of base elements in the alloy [at. %] Of Co content [at. %] Represents the ratio. In the present specification, there is a case where the Fe x -Ni y -Co z -M alloy expressed as "Fe-Ni-Co-M alloy".
 Fe-Ni-Co-M系合金において、x+y+z=100としたとき、x(Feの割合)は0以上50以下、y(Niの割合)は20以上98以下、かつ、z(Coの割合)は0以上40以下であることが好ましい。Fe-Ni-Co-M系合金において、Fe:Ni:Co=0~50:98~20:0~40とすることにより、当該合金から成るスパッタリングターゲットを用いて成膜されたスパッタリング膜の結晶構造はfcc構造となる。 In the Fe x- Ni y- Co z- M alloy, when x + y + z = 100, x (percentage of Fe) is 0 or more and 50 or less, y (ratio of Ni) is 20 or more and 98 or less, and z (Co). The ratio of) is preferably 0 or more and 40 or less. In Fe x -Ni y -Co z -M alloy, Fe: Ni: Co = 0 ~ 50: 98 ~ 20: 0 With ~ 40, sputtering is deposited using a sputtering target consisting of the alloy The crystal structure of the film is an fcc structure.
 xは、さらに好ましくは2以上45以下、さらに一層好ましくは5以上40以下である。yは、さらに好ましくは40以上98以下、さらに一層好ましくは45以上75以下である。zは、さらに好ましくは0以上30以下である。 X is more preferably 2 or more and 45 or less, and even more preferably 5 or more and 40 or less. y is more preferably 40 or more and 98 or less, and even more preferably 45 or more and 75 or less. z is more preferably 0 or more and 30 or less.
 添加元素Mは、M1元素を含む。添加元素Mは、M2元素をさらに含んでもよい。 Additive element M contains M1 element. The additive element M may further contain the M2 element.
 M1元素は、W,Mo,Ta,Cr,V及びNbからなる第1の群より選択される1種又は2種以上の元素である。M1元素は、高融点を持つbcc系金属である。M1元素を本発明で規定する成分範囲でFe-Ni-Co-M系合金に添加することにより、そのメカニズムは明確ではないが、シード層に求められる立方格子の(111)面への配向性を改善させることができるとともに、結晶粒を微細化させることができる。M1元素の合計含有量が2at.%未満ではその効果が十分でない。シード層用合金としてはfcc単相であることが求められるが、M1元素の合計含有量が20at.%を超えると、アモルファス化する。このような観点から、Fe-Ni-Co-M系合金中のM1元素の合計含有量は、好ましくは2at.%以上20at.%以下、さらに好ましくは2at.%以上15at.%以下、さらに一層好ましくは3at.%以上12at.%以下である。 The M1 element is one or more elements selected from the first group consisting of W, Mo, Ta, Cr, V and Nb. The M1 element is a bcc-based metal having a high melting point. By adding the M1 element to the Fe—Ni—Co—M alloy in the component range specified in the present invention, the mechanism is not clear, but the orientation of the cubic lattice required for the seed layer toward the (111) plane. Can be improved and the crystal grains can be made finer. The total content of M1 elements is 2 at. If it is less than%, the effect is not sufficient. The alloy for the seed layer is required to have an fcc single phase, but the total content of M1 elements is 20 at. If it exceeds%, it becomes amorphous. From this point of view, the total content of M1 elements in the Fe—Ni—Co—M alloy is preferably 2 at. % Or more 20 at. % Or less, more preferably 2 at. % Or more 15 at. % Or less, even more preferably 3 at. % Or more 12 at. % Or less.
 M1元素のうち、(111)面の配向に効果が高い元素は、W及びMoである。したがって、Fe-Ni-Co-M系合金は、W及びMoのうちの少なくとも1種を必須成分として含有することが好ましい。この場合、Fe-Ni-Co-M系合金は、W及びMoのうちの少なくとも1種に加えて、Cr,Ta,V及びNbのうちの少なくとも1種を含有してもよい。Niと組み合わせる高融点bcc金属(W,Mo,Ta,Cr,V及びNb)のうち、Mo及びWはCrに比べ融点が高く有利である。また、W及びMoの添加は、Ta,V及びNbの添加と比較して、アモルファス性を高める方向に作用しないため、シード層に求められるfcc相形成に有利である。Crは、望ましくは5at.%を超えて添加され、5at.%を超えて添加される場合には配向性の点で有利となる。 Among the M1 elements, the elements that are highly effective in the orientation of the (111) plane are W and Mo. Therefore, the Fe—Ni—Co—M alloy preferably contains at least one of W and Mo as an essential component. In this case, the Fe—Ni—Co—M alloy may contain at least one of Cr, Ta, V and Nb in addition to at least one of W and Mo. Among the high melting point bcc metals (W, Mo, Ta, Cr, V and Nb) to be combined with Ni, Mo and W have a higher melting point than Cr and are advantageous. Further, the addition of W and Mo does not act in the direction of increasing the amorphous property as compared with the addition of Ta, V and Nb, which is advantageous for the fcc phase formation required for the seed layer. Cr is preferably 5 at. Added in excess of 5 at. When added in excess of%, it is advantageous in terms of orientation.
 M2元素は、Al,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Re及びRuからなる第2の群より選択される1種又は2種以上の元素である。M2元素は、立方格子の(111)面を配向させる元素であり、また、結晶粒を微細化する元素である。そのため、M2元素は、任意成分であるが、Fe-Ni-Co-M系合金は少なくとも1種のM2元素を含有することが好ましい。Fe-Ni-Co-M系合金中のM2元素の合計含有量が10at.%を超えると、アモルファス化するおそれがある。このような観点から、Fe-Ni-Co-M系合金中のM2元素の合計含有量は、好ましくは0at.%より多く10at.%以下、さらに好ましくは0at.%より多く5at.%以下である。 The M2 element is one or more selected from the second group consisting of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, Re and Ru. It is an element. The M2 element is an element that orients the (111) plane of the cubic lattice and is an element that refines the crystal grains. Therefore, although the M2 element is an optional component, the Fe—Ni—Co—M alloy preferably contains at least one M2 element. The total content of M2 elements in the Fe—Ni—Co—M alloy is 10 at. If it exceeds%, it may become amorphous. From this point of view, the total content of M2 elements in the Fe—Ni—Co—M alloy is preferably 0 at. More than 10 at. % Or less, more preferably 0 at. More than% 5 at. % Or less.
 Fe-Ni-Co-M系合金は、Feα-Niβ-Coγ相を含むミクロ組織を有する。ミクロ組織は、Niの含有量が異なる複数の領域からなる。複数の領域は、第1領域、第2領域及び第3領域を含む。各領域には、添加元素Mが存在する。 The Fe—Ni—Co—M based alloy has a microstructure containing the Fe α— Ni β —Co γ phase. The microstructure consists of a plurality of regions having different Ni contents. The plurality of regions include a first region, a second region, and a third region. An additive element M is present in each region.
 組成式Feα-Niβ-Coγにおいて、αはFeα-Niβ-Coγ相におけるベース元素の合計含有量[at.%]に対するFeの含有量[at.%]の割合を表し、βはFeα-Niβ-Coγ相におけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合を表し、γはFeα-Niβ-Coγ相におけるベース元素の合計含有量[at.%]に対するCoの含有量[at.%]の割合を表す。ミクロ組織の同定は、X線回折、光学顕微鏡等を使用して行うことができる。 In the composition formula Fe α- Ni β- Co γ , α is the total content of the base elements in the Fe α- Ni β- Co γ phase [at. %] Of Fe content [at. %], Where β is the total content of base elements in the Fe α- Ni β- Co γ phase [at. %] Of Ni content [at. %], Where γ is the total content of base elements in the Fe α- Ni β- Co γ phase [at. %] Of Co content [at. %] Represents the ratio. The microstructure can be identified by using X-ray diffraction, an optical microscope, or the like.
 第1領域、第2領域及び第3領域の各領域内のFe、Ni及びCoの含有量[at.%]の合計量を100(α+β+γ=100)としたとき、第1領域のNiの含有量は0以上20以下(βが0以上20以下)であり、第2領域のNiの含有量は80以上100以下(βが80以上100以下)であり、第3領域のNiの含有量は20より多く80未満(βが20より多く80未満)であることが好ましい。Niの割合(β)が0以上20以下である第1領域では飽和磁束密度Bsが高く、Niの割合(β)が80以上100以下である第2領域では飽和磁束密度Bsが低い。第3領域は、第1領域及び第2領域の拡散層である。 Content of Fe, Ni and Co in each region of the first region, the second region and the third region [at. %] Is 100 (α + β + γ = 100), the Ni content in the first region is 0 or more and 20 or less (β is 0 or more and 20 or less), and the Ni content in the second region is 80. It is preferable that the content is 100 or more (β is 80 or more and 100 or less), and the Ni content in the third region is more than 20 and less than 80 (β is more than 20 and less than 80). The saturation magnetic flux density Bs is high in the first region where the proportion (β) of Ni is 0 or more and 20 or less, and the saturation magnetic flux density Bs is low in the second region where the proportion (β) of Ni is 80 or more and 100 or less. The third region is a diffusion layer of the first region and the second region.
 ミクロ組織において、各領域における添加元素Mの存在形態は、添加元素Mが固溶のみ、Fe、Ni及びCoのうちの少なくとも1種の元素と添加元素Mとの化合物のみ、又は固溶と化合物の両方である。 In the microstructure, the present form of the additive element M in each region is that the additive element M is only a solid solution, only a compound of at least one element of Fe, Ni and Co and the additive element M, or a solid solution and a compound. Both.
 M1元素はFe-Ni-Co-M系合金の必須成分であるから、ミクロ組織は、Feα-Niβ-Coγ相に固溶したM1元素、及び/又は、ベース元素と化合物を形成したM1元素を含む。これにより、Fe-Ni-Co-M系合金の磁性を低減させることができる。Fe-Ni-Co-M系合金が本発明の範囲でM1元素を含有することにより、Feα-Niβ-Coγ相にM1元素を固溶させることができる、及び/又は、ベース元素とM1元素との化合物を形成させることができる。Fe-Ni-Co-M系合金において、M1元素の合計含有量が2at.%未満であると、固溶の効果あるいは化合物形成元素としての効果が十分ではなく、M1元素の合計含有量が20at.%を超えると、化合物が増加して脆くなる。このような観点から、M1元素の合計含有量は、好ましくは2at.%以上20at.%以下、さらに好ましくは2at.%以上15at.%以下、さらに一層好ましくは3at.%以上12at.%以下である。 Since the M1 element is an essential component of the Fe—Ni—Co—M alloy, the microstructure formed a compound with the M1 element solid-solved in the Fe α— Ni β— Co γ phase and / or the base element. Contains M1 element. As a result, the magnetism of the Fe—Ni—Co—M based alloy can be reduced. When the Fe—Ni—Co—M alloy contains the M1 element within the scope of the present invention, the M1 element can be dissolved in the Fe α— Ni β— Co γ phase and / or with the base element. A compound with the M1 element can be formed. In the Fe—Ni—Co—M alloy, the total content of M1 elements is 2 at. If it is less than%, the effect of solid solution or the effect as a compound-forming element is not sufficient, and the total content of M1 element is 20 at. If it exceeds%, the compound increases and becomes brittle. From this point of view, the total content of M1 elements is preferably 2 at. % Or more 20 at. % Or less, more preferably 2 at. % Or more 15 at. % Or less, even more preferably 3 at. % Or more 12 at. % Or less.
 Fe-Ni-Co-M系合金が添加元素MとしてM2元素を含有する場合、ミクロ組織は、Feα-Niβ-Coγ相に固溶したM2元素、及び/又は、ベース元素と化合物を形成したM2元素を含む。これにより、Fe-Ni-Co-M系合金の磁性を低減させることができる。Fe-Ni-Co-M系合金が本発明の範囲でM2元素を含有することにより、Feα-Niβ-Coγ相にM2元素を固溶させることができる、及び/又は、ベース元素とM2元素との化合物を形成させることができる。Fe-Ni-Co-M系合金において、M2元素の合計含有量が1at.%未満であると、固溶の効果あるいは化合物形成元素としての効果が十分ではなく、M2元素の合計含有量が10at.%を超えると、化合物が増加して脆くなる。このような観点から、M2元素の合計含有量は、好ましくは0at.%より多く10at.%以下、さらに好ましくは0at.%より多く5at.%以下である。 When the Fe—Ni—Co—M alloy contains the M2 element as the additive element M, the microstructure contains the M2 element solidly dissolved in the Fe α— Ni β— Co γ phase and / or the base element and the compound. Contains the formed M2 element. As a result, the magnetism of the Fe—Ni—Co—M based alloy can be reduced. When the Fe—Ni—Co—M alloy contains the M2 element within the scope of the present invention, the M2 element can be dissolved in the Fe α— Ni β— Co γ phase and / or with the base element. A compound with the M2 element can be formed. In the Fe—Ni—Co—M alloy, the total content of M2 elements is 1 at. If it is less than%, the effect of solid solution or the effect as a compound-forming element is not sufficient, and the total content of M2 element is 10 at. If it exceeds%, the compound increases and becomes brittle. From this point of view, the total content of M2 elements is preferably 0 at. More than 10 at. % Or less, more preferably 0 at. More than% 5 at. % Or less.
 Fe-Ni-Co-M系合金は、Feα1-Coγ1-Niβ1-M系合金粉末(原料粉末A)、Niβ2-Coγ2-Feα2-M系合金粉末(原料粉末B)、及びその他の原料粉末を所定の比率で混合し、混合粉末を加圧焼結することにより製造することができる。その他の原料粉末としては、目的組成に足りない元素を補う純金属粉末、及び/又は、合金粉末を使用することができる。混合粉末の加圧焼結には、例えば、ホットプレス、熱間静水圧プレス(HIP)、通電加圧焼結、熱間押し出しなどを適用することができる。このFe-Ni-Co-M系合金を、機械加工により最終形状とすることにより、Ni系スパッタリングターゲットを製造することができる。 Fe-Ni-Co-M alloys include Fe α1 -Co γ1- Ni β1- M alloy powder (raw material powder A), Ni β2- Co γ2- Fe α2- M alloy powder (raw material powder B), and It can be produced by mixing other raw material powders in a predetermined ratio and pressure sintering the mixed powders. As the other raw material powder, a pure metal powder supplementing an element lacking in the target composition and / or an alloy powder can be used. For the pressure sintering of the mixed powder, for example, hot pressing, hot hydrostatic pressure pressing (HIP), current pressure sintering, hot extrusion and the like can be applied. A Ni-based sputtering target can be manufactured by forming the final shape of this Fe—Ni—Co—M-based alloy by machining.
 組成式Feα1-Coγ1-Niβ1-Mにおいて、α1は原料粉末Aの合金におけるベース元素の合計含有量[at.%]に対するFeの含有量[at.%]の割合を表し、β1は原料粉末Aの合金におけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合を表し、γ1は原料粉末Aの合金におけるベース元素の合計含有量[at.%]に対するCoの含有量[at.%]の割合を表す。Feα-Niβ-Coγ相のミクロ組織が、βが0以上20以下である第1領域を備えるために、β1は0以上20以下とする。つまり、Feα-Niβ-Coγ相の第1領域は原料粉末AのFeα1-Coγ1-Niβ1-M系合金粉末に由来する。 In the composition formula Fe α1- Co γ1- Ni β1- M, α1 is the total content of the base elements in the alloy of the raw material powder A [at. %] Of Fe content [at. %], Where β1 is the total content of the base elements in the alloy of the raw material powder A [at. %] Of Ni content [at. %], Where γ1 is the total content of the base elements in the alloy of the raw material powder A [at. %] Of Co content [at. %] Represents the ratio. Since the microstructure of the Fe α- Ni β- Co γ phase includes a first region in which β is 0 or more and 20 or less, β1 is set to 0 or more and 20 or less. That is, the first region of the Fe α- Ni β- Co γ phase is derived from the Fe α1- Co γ1- Ni β1- M based alloy powder of the raw material powder A.
 組成式Niβ2-Coγ2-Feα2-Mにおいて、α2は原料粉末Bの合金におけるベース元素の合計含有量[at.%]に対するFeの含有量[at.%]の割合を表し、β2は原料粉末Bの合金におけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合を表し、γ2は原料粉末Bの合金におけるベース元素の合計含有量[at.%]に対するCoの含有量[at.%]の割合を表す。Feα-Niβ-Coγ相のミクロ組織が、βが80以上100以下である第2領域を備えるために、β2は80以上100以下とする。つまり、Feα-Niβ-Coγ相の第2領域は原料粉末BのNiβ2-Coγ2-Feα2-M系合金粉末に由来する。 In the composition formula Ni β2- Co γ2- Fe α2- M, α2 is the total content of the base elements in the alloy of the raw material powder B [at. %] Of Fe content [at. %], Where β2 is the total content of the base elements in the alloy of the raw material powder B [at. %] Of Ni content [at. %], Where γ2 is the total content of the base elements in the alloy of the raw material powder B [at. %] Of Co content [at. %] Represents the ratio. In order for the microstructure of the Fe α- Ni β- Co γ phase to include a second region in which β is 80 or more and 100 or less, β2 is set to 80 or more and 100 or less. That is, the second region of the Fe α- Ni β- Co γ phase is derived from the Ni β2- Co γ2- Fe α2- M based alloy powder of the raw material powder B.
 上記のように製造されたNi系スパッタリングターゲットは、垂直磁気記録媒体のシード層の成膜に利用される。垂直磁気記録媒体におけるシード層は、Ni系スパッタリングターゲットを用いたマグネトロンスパッタリング法で、上述したFe-Ni-Co-M系合金を成膜することによって形成できる。このように形成された垂直磁気記録媒体のシード層は、上述したFe-Ni-Co-M系合金からなる。 The Ni-based sputtering target manufactured as described above is used for forming a seed layer of a perpendicular magnetic recording medium. The seed layer in the perpendicular magnetic recording medium can be formed by forming the above-mentioned Fe—Ni—Co—M based alloy by a magnetron sputtering method using a Ni based sputtering target. The seed layer of the perpendicular magnetic recording medium formed in this way is made of the above-mentioned Fe—Ni—Co—M based alloy.
 以下、実施例によって本発明の効果が明らかにされる。但し、これらの実施例の記載に基づいて本発明が限定的に解釈されるべきではない。 Hereinafter, the effects of the present invention will be clarified by Examples. However, the present invention should not be construed in a limited manner based on the description of these examples.
〔ターゲット試料の作成方法〕
 原料粉末として、Fe-Co-Ni-M系合金粉末(原料粉末A)、Ni-Co-Fe-M系合金粉末(原料粉末B)、及びその他の原料粉末をガスアトマイズ法によって作製した。ガスアトマイズ法は、ガス種類がアルゴンガス、ノズル径が6mm、ガス圧が5MPaの条件で行った。作製した合金粉末のうち、500μm以下に分級した粉末を使用した。なお、その他の原料粉末である純物質の粉末はアトマイズ法以外の製法によるものでもかまわない。また、粉末の作製は、ガスアトマイズ法だけでなく、水アトマイズ法、回転ディスク式アトマイズ法などを用いてもよい。
[How to prepare a target sample]
As raw material powders, Fe—Co—Ni—M based alloy powder (raw material powder A), Ni—Co—Fe—M based alloy powder (raw material powder B), and other raw material powders were produced by the gas atomization method. The gas atomizing method was carried out under the conditions that the gas type was argon gas, the nozzle diameter was 6 mm, and the gas pressure was 5 MPa. Among the produced alloy powders, powders classified to 500 μm or less were used. The powder of a pure substance, which is another raw material powder, may be produced by a manufacturing method other than the atomizing method. Further, the powder may be produced by using not only the gas atomizing method but also a water atomizing method, a rotary disc atomizing method and the like.
 表1~3に示すFe-Ni-Co-M系合金組成を満たすように、上述した方法で作製した、Fe-Co-Ni-M系合金粉末(原料粉末A)、Ni-Co-Fe-M系合金粉末(原料粉末B)、及びその他の原料粉末を混合し、SC材質からなる封入缶に充填して、到達真空度10-1Pa以上で脱気真空封入した後、加圧焼結方法にて、温度800~1200℃、圧力100MPa以上、保持時間5時間の条件で成形体を作製し、次いで機械加工により最終形状として外径165~180mm、厚み3~10mmのターゲット試料を得た。原料粉末の混合はV型混合機を用い、混合時間は1時間とした。なお、混合粉末の加圧焼結方法としては、ホットプレス、熱間静水圧プレス、通電加圧焼結、熱間押し出しなどを用いてよい。 Fe—Co—Ni—M alloy powder (raw material powder A), Ni—Co—Fe— produced by the above-mentioned method so as to satisfy the Fe—Ni—Co—M alloy composition shown in Tables 1 to 3. M-based alloy powder (raw material powder B) and other raw material powders are mixed, filled in a sealed can made of SC material, evacuated and vacuum-sealed at an ultimate vacuum degree of 10 -1 Pa or more, and then pressure sintered. By the method, a molded product was prepared under the conditions of a temperature of 800 to 1200 ° C., a pressure of 100 MPa or more, and a holding time of 5 hours, and then a target sample having an outer diameter of 165 to 180 mm and a thickness of 3 to 10 mm was obtained as a final shape by machining. .. A V-type mixer was used to mix the raw material powder, and the mixing time was 1 hour. As a pressure sintering method for the mixed powder, a hot press, a hot hydrostatic press, an energization pressure sintering, a hot extrusion, or the like may be used.
 表1~3において、「成分組成」はFe-Ni-Co-M系合金の成分組成を表す。「成分組成」の「Fe」、「Ni」及び「Co」は、それぞれ、Fe-Ni-Co-M系合金におけるベース元素(即ち、Fe、Ni及びCoからなる第3の群より選択される1種又は2種以上元素)の合計含有量[at.%]に対するFeの含有量[at.%]の割合、Niの含有量[at.%]の割合、Coの含有量[at.%]の割合を表す。「Fe」+「Ni」+「Co」は100である。「原料粉末A」中の「Fe」、「Ni」及び「Co」は、それぞれ、原料粉末Aにおけるベース元素の合計含有量[at.%]に対するFeの含有量[at.%]の割合、Niの含有量[at.%]の割合、Coの含有量[at.%]の割合を表す。「原料粉末A」中の「Fe」+「Ni」+「Co」は100である。「原料粉末B」中の「Fe」、「Ni」及び「Co」は、それぞれ、原料粉末Bにおけるベース元素の合計含有量[at.%]に対するFeの含有量[at.%]の割合、Niの含有量[at.%]の割合、Coの含有量[at.%]の割合を表す。「原料粉末B」中の「Fe」+「Ni」+「Co」は100である。Fe-Ni-Co-M系合金におけるベース元素の合計含有量[at.%]は、100at.%からFe-Ni-Co-M系合金におけるM1元素の合計含有量[at.%]を差し引くことにより求められる。原料粉末A及び原料粉末Bもこれと同様である。 In Tables 1 to 3, "component composition" represents the component composition of the Fe—Ni—Co—M alloy. "Fe", "Ni" and "Co" of the "component composition" are selected from the third group consisting of the base elements (that is, Fe, Ni and Co) in the Fe—Ni—Co—M based alloy, respectively. Total content of one or more elements) [at. %] Of Fe content [at. %], Ni content [at. %] Percentage, Co content [at. %] Represents the ratio. "Fe" + "Ni" + "Co" is 100. “Fe”, “Ni” and “Co” in the “raw material powder A” are the total contents of the base elements in the raw material powder A [at. %] Of Fe content [at. %], Ni content [at. %] Percentage, Co content [at. %] Represents the ratio. "Fe" + "Ni" + "Co" in "raw material powder A" is 100. “Fe”, “Ni” and “Co” in the “raw material powder B” are the total contents of the base elements in the raw material powder B [at. %] Of Fe content [at. %], Ni content [at. %] Percentage, Co content [at. %] Represents the ratio. "Fe" + "Ni" + "Co" in "raw material powder B" is 100. Total content of base elements in Fe—Ni—Co—M alloys [at. %] Is 100 at. % To the total content of M1 elements in Fe—Ni—Co—M alloys [at. %] Is subtracted. The same applies to the raw material powder A and the raw material powder B.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〔ターゲット試料の透磁率の測定及び評価方法〕
 作製したターゲット試料の透磁率の測定に当たって、外径15mm、内径10mm、高さ5mmのリング試験片を製作し、BHトレーサーを用いて、8kA/mの印加磁場にて最大透磁率(emu)を測定した。表4~6において、最大透磁率が500emu以下を「G1(Grade1)」、500emu超~1000emuを「G2(Grade2)」、1000emuを超えるものを「G3(Grade3)」とした。なお、最大透磁率に関し、G1は、本発明のNi系スパッタリングターゲットとして特に好適であり、G2は、本発明のNi系スパッタリングターゲットとして好適であり、G3は、本発明のNi系スパッタリングターゲットとして不適である。
[Measurement and evaluation method of magnetic permeability of target sample]
In measuring the magnetic permeability of the prepared target sample, a ring test piece having an outer diameter of 15 mm, an inner diameter of 10 mm, and a height of 5 mm was manufactured, and the maximum magnetic permeability (emu) was measured at an applied magnetic field of 8 kA / m using a BH tracer. It was measured. In Tables 4 to 6, those having a maximum magnetic permeability of 500 emu or less were designated as "G1 (Grade 1)", those having a maximum magnetic permeability of more than 500 emu to 1000 emu were designated as "G2 (Grade 2)", and those having a maximum magnetic permeability exceeding 1000 emu were designated as "G3 (Grade 3)". Regarding the maximum magnetic permeability, G1 is particularly suitable as the Ni-based sputtering target of the present invention, G2 is suitable as the Ni-based sputtering target of the present invention, and G3 is unsuitable as the Ni-based sputtering target of the present invention. Is.
〔ターゲット試料の漏洩磁束の測定及び評価方法〕
 作製したターゲット試料の漏洩磁束(Pass-Through-Flux、以下「PTF」と記す。)の測定に当たっては、ターゲット試料の裏面に永久磁石を配置し、ターゲット試料の表面に漏洩する磁束を測定した。この方法は、マグネトロンスパッタ装置に近い状態の漏洩磁束を定量的に測定することができる。実際の測定は、ASTM F2806-01(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets Method2)に基づいて行い、次式よりPTFを求めた。
(PTF)=100×(ターゲット試料を置いた状態での磁束の強さ)÷(ターゲット試料を置かない状態での磁束の強さ)(%)
 表4~6において、PTFが10%以上を「G1(Grade1)」、10%未満を「G2(Grade2)」とした。なお、PTFに関し、G1は、本発明のNi系スパッタリングターゲットとして好適であり、G2は、本発明のNi系スパッタリングターゲットとして不適である。
[Measurement and evaluation method of leakage magnetic flux of target sample]
In measuring the leakage magnetic flux (Pass-Through-Flux, hereinafter referred to as "PTF") of the prepared target sample, a permanent magnet was placed on the back surface of the target sample, and the magnetic flux leaking to the surface of the target sample was measured. This method can quantitatively measure the leakage magnetic flux in a state close to that of a magnetron sputtering apparatus. The actual measurement was performed based on ASTM F2806-01 (Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets Method 2), and PTF was obtained from the following formula.
(PTF) = 100 × (Magnetic flux strength with target sample placed) ÷ (Magnetic flux strength without target sample placed) (%)
In Tables 4 to 6, a PTF of 10% or more was designated as “G1 (Grade1)” and a PTF of less than 10% was designated as “G2 (Grade2)”. Regarding PTF, G1 is suitable as the Ni-based sputtering target of the present invention, and G2 is unsuitable as the Ni-based sputtering target of the present invention.
〔ターゲット試料内の磁性のばらつきの測定及び評価方法〕
 上記PTFの測定を同一円周上で30度間隔で12点行い、その最大値と最小値の差分を計算し、その差分値でターゲット試料内の磁性のばらつきを評価した。差分値が3%以下を「G1(Grade1)」、10%以下を「G2(Grade2)」、10%以上を「G3(Grade3)」とした。G1は、本発明のNi系スパッタリングターゲットとして特に好適であり、G2は、本発明のNi系スパッタリングターゲットとして好適であり、G3は、本発明のNi系スパッタリングターゲットとして不適である。
[Measurement and evaluation method of magnetic variation in target sample]
The PTF was measured at 12 points on the same circumference at intervals of 30 degrees, the difference between the maximum value and the minimum value was calculated, and the variation in magnetism in the target sample was evaluated by the difference value. A difference value of 3% or less was defined as "G1 (Grade1)", a difference value of 10% or less was defined as "G2 (Grade2)", and a difference value of 10% or more was defined as "G3 (Grade3)". G1 is particularly suitable as the Ni-based sputtering target of the present invention, G2 is suitable as the Ni-based sputtering target of the present invention, and G3 is unsuitable as the Ni-based sputtering target of the present invention.
〔スパッタ膜の観察〕
 作製したターゲット試料をスパッタリングターゲットとして、マグネトロンスパッタリング法で基板上にスパッタリング膜を成膜した。このスパッタリング膜は、垂直磁気記録媒体のシード層を模擬したものである。各ターゲット試料で成膜したスパッタリング膜に対し、X線回折分析装置を用いてX線回折分析を行うことにより、スパッタリング膜のミクロ組織におけるM元素の存在形態、及び、スパッタリング膜の結晶構造を解析した。また、各ターゲット試料で成膜したスパッタリング膜に対し、顕微鏡観察を行うことにより、スパッタリング膜の割れの有無を観察した。また、透過電子顕微鏡(TEM)で撮像した組織写真から、画像解析を基にスパッタリング膜の結晶粒径を算出した。ここで、画像に含まれる結晶の楕円形の像の長径と短径を測定し、その平均径を粒径とし、組織画像の所定範囲に含まれる複数の結晶の粒径の平均値を「結晶粒径」とした。結晶粒径が20nm以下のものを「G1(Grade1)」、20nmより大きいものを「G2(Grade2)」とした。
[Observation of sputtered film]
Using the prepared target sample as a sputtering target, a sputtering film was formed on the substrate by a magnetron sputtering method. This sputtering film simulates the seed layer of a perpendicular magnetic recording medium. By performing X-ray diffraction analysis on the sputtering film formed on each target sample using an X-ray diffraction analyzer, the existence form of M element in the microstructure of the sputtering film and the crystal structure of the sputtering film are analyzed. did. In addition, the presence or absence of cracks in the sputtering film was observed by observing the sputtering film formed on each target sample under a microscope. Further, the crystal grain size of the sputtering film was calculated from the tissue photograph taken by a transmission electron microscope (TEM) based on the image analysis. Here, the major axis and the minor axis of the elliptical image of the crystal included in the image are measured, the average diameter thereof is taken as the particle size, and the average value of the particle size of a plurality of crystals included in a predetermined range of the structure image is "crystal". Particle size ”. Those having a crystal grain size of 20 nm or less were designated as "G1 (Grade1)", and those having a crystal grain size larger than 20 nm were designated as "G2 (Grade2)".
 表4~6に、実施例1~64及び比較例1~8のターゲット試料及びスパッタリング膜について、各種の観察結果及び評価結果を示す。 Tables 4 to 6 show various observation results and evaluation results for the target samples and sputtering films of Examples 1 to 64 and Comparative Examples 1 to 8.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~64のターゲット試料は、原料粉末Aにおけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合が0以上20以下であり、原料粉末Bにおけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合が80以上100以下である。つまり、実施例1~64のターゲット試料は、Feα-Niβ-Coγ相のミクロ組織が、β(Niの割合)が0以上20以下である第1領域と、βが80以上100以下である第2領域とを有する。また、第1領域と第2領域の双方に添加元素Mが存在する。各領域において、添加元素Mは、Feα-Niβ-Coγ相に固溶した固溶体のみ、ベース元素との化合物のみ、又は、固溶体と化合物の両方として存在している。 The target samples of Examples 1 to 64 have the total content of the base elements in the raw material powder A [at. %] Of Ni content [at. %] Is 0 or more and 20 or less, and the total content of the base elements in the raw material powder B [at. %] Of Ni content [at. %] Is 80 or more and 100 or less. That is, in the target samples of Examples 1 to 64, the microstructure of the Fe α- Ni β- Co γ phase is the first region in which β (ratio of Ni) is 0 or more and 20 or less, and β is 80 or more and 100 or less. It has a second region which is. Further, the additive element M is present in both the first region and the second region. In each region, the additive element M exists only as a solid solution dissolved in the Fe α- Ni β- Co γ phase, only as a compound with the base element, or as both a solid solution and a compound.
 上記のように、実施例1~64のターゲット試料は、いずれも本発明の条件を満足していることから、最大透磁率は1000emu以下、PTFは10%以上であり、ターゲット試料内の磁性のばらつきが抑えられている。その上、実施例1~64のターゲット試料から成膜したスパッタリング膜は、結晶構造がfcc構造となり、結晶粒径が20nm以下であることから、磁気記録層のシード層として好適である。なお、実施例1~63のターゲット試料から成膜したスパッタリング膜は、Fe-Ni-Co-M系合金におけるM2元素の合計含有量が0at.%以上10at.%の範囲内であることから、成膜時に割れが生じなかったが、実施例64のターゲット試料から成膜したスパッタリング膜は、Fe-Ni-Co-M系合金におけるM2元素の合計含有量が0at.%以上10at.%の範囲から外れていることから、成膜時に割れが生じた。 As described above, since the target samples of Examples 1 to 64 all satisfy the conditions of the present invention, the maximum magnetic permeability is 1000 emu or less, the PTF is 10% or more, and the magnetism in the target sample is high. Variations are suppressed. Moreover, since the sputtering film formed from the target samples of Examples 1 to 64 has a crystal structure of fcc structure and a crystal grain size of 20 nm or less, it is suitable as a seed layer of a magnetic recording layer. Incidentally, the sputtering film formed from the target samples of Examples 1 to 63, the total content of the element M2 in Fe x -Ni y -Co z -M alloy is 0 atomic. % Or more 10 at. Since percent in the range, but cracking during film formation did not occur, the sputtering film formed from a target sample of Example 64, the sum of M2 elements in Fe x -Ni y -Co z -M alloy The content is 0 at. % Or more 10 at. Since it was out of the% range, cracks occurred during film formation.
 以上から、本発明によれば、マグネトロンスパッタリングのターゲットとして十分に強い漏洩磁束が得られ、磁気記録媒体のシード層としての磁性を有し、且つ、ターゲット内部の磁性分布の偏りが小さく安定したスパッタリングができる磁気記録媒体のシード層用Ni系スパッタリングターゲット、及び、このNi系スパッタリングターゲットを用いて形成されたシード層を有する磁気記録媒体を提供できることが明らかとなった。 From the above, according to the present invention, a sufficiently strong leakage magnetic flux can be obtained as a target for magnetron sputtering, magneticity as a seed layer of a magnetic recording medium, and stable sputtering with a small bias in the magnetic distribution inside the target. It has been clarified that a Ni-based sputtering target for a seed layer of a magnetic recording medium capable of forming a magnetic recording medium and a magnetic recording medium having a seed layer formed by using the Ni-based sputtering target can be provided.
 比較例1のターゲット試料は、原料粉末Aにおけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合が21である。つまり、比較例1のターゲット試料は、Feα-Niβ-Coγ相のミクロ組織が、β(Niの割合)が0以上20以下である第1領域を有しない。比較例1のターゲット試料は、磁性のばらつきが大きく、シード層を形成するためのスパッタリングターゲットとして不適である。 The target sample of Comparative Example 1 had the total content of the base elements in the raw material powder A [at. %] Of Ni content [at. %] Is 21. That is, the target sample of Comparative Example 1 does not have a first region in which the microstructure of the Fe α- Ni β- Co γ phase has β (ratio of Ni) of 0 or more and 20 or less. The target sample of Comparative Example 1 has a large variation in magnetism and is not suitable as a sputtering target for forming a seed layer.
 比較例2のターゲット試料は、Fe-Ni-Co-M系合金におけるベース元素の合計含有量[at.%]に対するFeの含有量[at.%]の割合が0以上50以下の範囲から外れている。比較例3,4のターゲット試料は、Fe-Ni-Co-M系合金におけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合が20以上98以下の範囲から外れている。比較例2~4のターゲット試料は、スパッタリング膜がbcc構造(体心立方格子構造)となった。比較例5のターゲット試料は、Fe-Ni-Co-M系合金におけるベース元素の合計含有量[at.%]に対するCoの含有量[at.%]の割合が0以上40以下の範囲から外れている。比較例5のターゲット試料は、スパッタリング膜がhcp構造(六方最密充填構造)となった。比較例2~5のターゲット試料から成膜したスパッタリング膜は、磁気記録層のシード層としては不適である。 Target sample of Comparative Example 2, the total content of the base element in Fe x -Ni y -Co z -M alloy [at. %] Of Fe content [at. %] Is out of the range of 0 or more and 50 or less. Target samples of Comparative Examples 3 and 4, the total content of the base element in Fe x -Ni y -Co z -M alloy [at. %] Of Ni content [at. %] Is out of the range of 20 or more and 98 or less. In the target samples of Comparative Examples 2 to 4, the sputtering film had a bcc structure (body-centered cubic lattice structure). Target sample of Comparative Example 5, the total content of the base element in Fe x -Ni y -Co z -M alloy [at. %] Of Co content [at. %] Is out of the range of 0 or more and 40 or less. In the target sample of Comparative Example 5, the sputtering film had an hcp structure (hexagonal close-packed structure). The sputtering film formed from the target samples of Comparative Examples 2 to 5 is not suitable as a seed layer for the magnetic recording layer.
 比較例6,7のターゲット試料は、Fe-Ni-Co-M系合金におけるM1元素の合計含有量が2at.%以上20at.%以下の範囲から外れている。比較例6のターゲット試料では、スパッタリング膜の結晶粒径が20nmを超えていた。比較例7のターゲット試料では、スパッタリング膜がアモルファス構造となった。比較例6,7のターゲット試料から成膜したスパッタリング膜は、磁気記録層のシード層としては不適である。 Target samples of Comparative Examples 6 and 7, the total content of the M1 element at Fe x -Ni y -Co z -M based alloy 2at. % Or more 20 at. It is out of the range of% or less. In the target sample of Comparative Example 6, the crystal grain size of the sputtering film exceeded 20 nm. In the target sample of Comparative Example 7, the sputtering film had an amorphous structure. The sputtering film formed from the target samples of Comparative Examples 6 and 7 is not suitable as a seed layer for the magnetic recording layer.
 比較例8のターゲット試料は、原料粉末Bにおけるベース元素の合計含有量[at.%]に対するNiの含有量[at.%]の割合が80以上100以下の範囲から外れている。つまり、比較例8のターゲット試料は、Feα-Niβ-Coγ相のミクロ組織が、β(Niの割合)が80以上100以下である第2領域を有しない。比較例8のターゲット試料は、透磁率、PTFともに不十分であり、シード層を形成するためのスパッタリングターゲットとして不適である。 The target sample of Comparative Example 8 had the total content of the base elements in the raw material powder B [at. %] Of Ni content [at. %] Is out of the range of 80 or more and 100 or less. That is, the target sample of Comparative Example 8 does not have a second region in which the microstructure of the Fe α- Ni β- Co γ phase has β (ratio of Ni) of 80 or more and 100 or less. The target sample of Comparative Example 8 has insufficient magnetic permeability and PTF, and is not suitable as a sputtering target for forming a seed layer.

Claims (10)

  1.  添加元素Mと、Fe及びCoのうちの少なくとも1種の元素とを含有し、残部がNi及び不可避的不純物からなるFe-Ni-Co-M系合金からなるNi系スパッタリングターゲットであって、
     前記添加元素Mは、W,Mo,Ta,Cr,V及びNbからなる第1の群より選択される1種又は2種以上のM1元素を含み、
     前記Fe-Ni-Co-M系合金のミクロ組織はNiの含有量が異なる複数の領域からなり、各領域に前記添加元素Mが存在し且つその存在形態が、前記添加元素Mが固溶体のみ、Fe、Ni及びCoのうちの少なくとも1種の元素と前記添加元素Mとの化合物のみ、又は前記固溶体と前記化合物の両方であることを特徴とする、Ni系スパッタリングターゲット。
    A Ni-based sputtering target containing an additive element M and at least one element of Fe and Co, and the balance of which is a Fe—Ni—Co—M-based alloy composed of Ni and unavoidable impurities.
    The additive element M contains one or more M1 elements selected from the first group consisting of W, Mo, Ta, Cr, V and Nb.
    The microstructure of the Fe—Ni—Co—M alloy is composed of a plurality of regions having different Ni contents, and the additive element M is present in each region and the present form is such that the additive element M is only a solid solution. A Ni-based sputtering target, characterized in that it is only a compound of at least one element of Fe, Ni and Co and the additive element M, or both the solid solution and the compound.
  2.  前記複数の領域は第1領域、第2領域及び第3領域を含み、各領域内のFe、Ni及びCoの含有量[at.%]の合計量を100としたときに、前記第1領域のNiの含有量は0以上20以下であり、前記第2領域のNiの含有量は80以上100以下であり、前記第3領域のNiの含有量は20より多く80未満である、請求項1に記載のNi系スパッタリングターゲット。 The plurality of regions include a first region, a second region, and a third region, and the contents of Fe, Ni, and Co in each region [at. %] Is 100, the Ni content of the first region is 0 or more and 20 or less, the Ni content of the second region is 80 or more and 100 or less, and the third region The Ni-based sputtering target according to claim 1, wherein the Ni content of the above is more than 20 and less than 80.
  3.  前記Fe-Ni-Co-M系合金は、Fe、Ni及びCoの含有量[at.%]の合計量を100としたときに、Feの含有量は0以上50以下であり、Niの含有量は20以上98以下であり、Coの含有量は0以上40以下であり、前記M1元素の合計含有量は2at.%以上20at.%以下である、請求項1又は2に記載のNi系スパッタリングターゲット。 The Fe—Ni—Co—M alloy contains Fe, Ni and Co [at. %] When the total amount is 100, the Fe content is 0 or more and 50 or less, the Ni content is 20 or more and 98 or less, and the Co content is 0 or more and 40 or less. The total content of the elements is 2 at. % Or more 20 at. % Or less, the Ni-based sputtering target according to claim 1 or 2.
  4.  前記添加元素Mは、Al,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Re及びRuからなる第2の群より選択される1種又は2種以上のM2元素をさらに含む、請求項1~3のいずれか一項に記載のNi系スパッタリングターゲット。 The additive element M is one or two selected from the second group consisting of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, Re and Ru. The Ni-based sputtering target according to any one of claims 1 to 3, further comprising the above M2 element.
  5.  前記M2元素の合計含有量は0at.%より多く10at.%以下である、請求項4に記載のNi系スパッタリングターゲット。 The total content of the M2 element is 0 at. More than 10 at. The Ni-based sputtering target according to claim 4, which is less than or equal to%.
  6.  添加元素Mと、Fe及びCoのうちの少なくとも1種の元素とを含有し、残部がNi及び不可避的不純物からなるFe-Ni-Co-M系合金からなるシード層を有する磁気記録媒体であって、
     前記添加元素Mは、W,Mo,Ta,Cr,V及びNbからなる第1の群より選択される1種又は2種以上のM1元素を含み、
     前記Fe-Ni-Co-M系合金のミクロ組織はNiの含有量が異なる複数の領域からなり、各領域に前記添加元素Mが存在し且つその存在形態が、前記添加元素Mが固溶体のみ、Fe、Ni及びCoのうちの少なくとも1種の元素と前記添加元素Mとの化合物のみ、又は前記固溶体と前記化合物の両方であることを特徴とする、磁気記録媒体。
    A magnetic recording medium containing an additive element M and at least one element of Fe and Co, and having a seed layer made of a Fe—Ni—Co—M alloy in which the balance is composed of Ni and unavoidable impurities. hand,
    The additive element M contains one or more M1 elements selected from the first group consisting of W, Mo, Ta, Cr, V and Nb.
    The microstructure of the Fe—Ni—Co—M alloy is composed of a plurality of regions having different Ni contents, and the additive element M is present in each region and the present form is such that the additive element M is only a solid solution. A magnetic recording medium, which comprises only a compound of at least one element of Fe, Ni and Co and the additive element M, or both the solid solution and the compound.
  7.  前記複数の領域は第1領域、第2領域及び第3領域を含み、各領域内のFe、Ni及びCoの含有量[at.%]の合計量を100としたときに、前記第1領域のNiの含有量は0以上20以下であり、前記第2領域のNiの含有量は80以上100以下であり、前記第3領域のNiの含有量は20より多く80未満である、請求項6に記載の磁気記録媒体。 The plurality of regions include a first region, a second region, and a third region, and the contents of Fe, Ni, and Co in each region [at. %], The Ni content of the first region is 0 or more and 20 or less, the Ni content of the second region is 80 or more and 100 or less, and the third region is 100 or less. The magnetic recording medium according to claim 6, wherein the content of Ni is more than 20 and less than 80.
  8.  前記Fe-Ni-Co-M系合金は、Fe、Ni及びCoの含有量[at.%]の合計量を100としたときに、Feの含有量は0以上50以下であり、Niの含有量は20以上98以下であり、Coの含有量は0以上40以下であり、前記M1元素の合計含有量は2at.%以上20at.%以下である、請求項6又は7に記載の磁気記録媒体。 The Fe—Ni—Co—M alloy contains Fe, Ni and Co [at. %] When the total amount is 100, the Fe content is 0 or more and 50 or less, the Ni content is 20 or more and 98 or less, and the Co content is 0 or more and 40 or less. The total content of the elements is 2 at. % Or more 20 at. % Or less, the magnetic recording medium according to claim 6 or 7.
  9.  前記添加元素Mは、Al,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Re及びRuからなる第2の群より選択される1種又は2種以上のM2元素をさらに含む、請求項6~8のいずれか一項に記載の磁気記録媒体。 The additive element M is one or two selected from the second group consisting of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, Re and Ru. The magnetic recording medium according to any one of claims 6 to 8, further comprising the above M2 element.
  10.  前記M2元素の合計含有量は0at.%より多く10at.%以下である、請求項9に記載の磁気記録媒体。 The total content of the M2 element is 0 at. More than 10 at. % Or less, the magnetic recording medium according to claim 9.
PCT/JP2020/018399 2019-05-07 2020-05-01 Ni-BASED SPUTTERING TARGET AND MAGNETIC RECORDING MEDIUM WO2020226130A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202112079RA SG11202112079RA (en) 2019-05-07 2020-05-01 Ni-BASED SPUTTERING TARGET AND MAGNETIC RECORDING MEDIUM
CN202080033599.2A CN113825856B (en) 2019-05-07 2020-05-01 Ni-based sputtering target and magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-087667 2019-05-07
JP2019087667A JP7385370B2 (en) 2019-05-07 2019-05-07 Ni-based sputtering target and magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2020226130A1 true WO2020226130A1 (en) 2020-11-12

Family

ID=73044284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018399 WO2020226130A1 (en) 2019-05-07 2020-05-01 Ni-BASED SPUTTERING TARGET AND MAGNETIC RECORDING MEDIUM

Country Status (5)

Country Link
JP (1) JP7385370B2 (en)
CN (1) CN113825856B (en)
SG (1) SG11202112079RA (en)
TW (1) TW202108798A (en)
WO (1) WO2020226130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769081B (en) * 2021-09-17 2022-06-21 光洋應用材料科技股份有限公司 Cr-ni-ti alloy target and method of preparing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054136A1 (en) * 2019-09-19 2021-03-25 日立金属株式会社 Target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026702A (en) * 2009-07-01 2011-02-10 Hitachi Metals Ltd SPUTTERING TARGET MATERIAL OF Fe-Co-Ni-BASED ALLOY
JP2016157925A (en) * 2015-02-25 2016-09-01 日立金属株式会社 Multilayer wiring film for electronic component, and sputtering target material for coating layer formation
WO2016143858A1 (en) * 2015-03-12 2016-09-15 山陽特殊製鋼株式会社 Ni-BASED SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131735A1 (en) * 2006-12-05 2008-06-05 Heraeus Incorporated Ni-X, Ni-Y, and Ni-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording
JP5370917B2 (en) * 2009-04-20 2013-12-18 日立金属株式会社 Method for producing Fe-Co-Ni alloy sputtering target material
JP5958822B2 (en) * 2011-12-22 2016-08-02 日立金属株式会社 Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material
JP5812217B1 (en) * 2014-04-17 2015-11-11 三菱マテリアル株式会社 Sputtering target and manufacturing method of sputtering target
JP6581780B2 (en) * 2015-02-09 2019-09-25 山陽特殊製鋼株式会社 Ni-based target material with excellent sputtering properties
JP6431496B2 (en) * 2016-04-13 2018-11-28 山陽特殊製鋼株式会社 Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
SG11201800871SA (en) * 2016-09-12 2018-05-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026702A (en) * 2009-07-01 2011-02-10 Hitachi Metals Ltd SPUTTERING TARGET MATERIAL OF Fe-Co-Ni-BASED ALLOY
JP2016157925A (en) * 2015-02-25 2016-09-01 日立金属株式会社 Multilayer wiring film for electronic component, and sputtering target material for coating layer formation
WO2016143858A1 (en) * 2015-03-12 2016-09-15 山陽特殊製鋼株式会社 Ni-BASED SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769081B (en) * 2021-09-17 2022-06-21 光洋應用材料科技股份有限公司 Cr-ni-ti alloy target and method of preparing the same

Also Published As

Publication number Publication date
TW202108798A (en) 2021-03-01
SG11202112079RA (en) 2021-11-29
JP7385370B2 (en) 2023-11-22
JP2020183557A (en) 2020-11-12
CN113825856B (en) 2024-04-02
CN113825856A (en) 2021-12-21

Similar Documents

Publication Publication Date Title
JP6526837B2 (en) Ferromagnetic sputtering target
EP1746173A2 (en) Enhanced sputter target manufacturing method
US6406600B1 (en) CoPt-base sputtering target, method of making same, magnetic recording film and Co-Pt-base magnetic recording medium
TWI405862B (en) Alloy and sputtering target material for soft-magnetic film layer in perpendicular magnetic recording medium, and method for producing the same
US7494617B2 (en) Enhanced formulation of cobalt alloy matrix compositions
TWI512113B (en) An alloy for a seed layer of a magnetic recording medium, and a sputtering target
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
WO2020226130A1 (en) Ni-BASED SPUTTERING TARGET AND MAGNETIC RECORDING MEDIUM
JP4953082B2 (en) Co-Fe-Zr alloy sputtering target material and method for producing the same
JP6254295B2 (en) Ni-based sputtering target material and magnetic recording medium
WO2017179466A1 (en) Alloy for seed layers of magnetic recording media, sputtering target material and magnetic recording medium
CN109072419B (en) Sputtering target material
JP6581780B2 (en) Ni-based target material with excellent sputtering properties
TWI593810B (en) Sputtering target
JPH07292463A (en) Sputtering target member for forming non-magnetic primary film of metal thin film type magnetic recording medium
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
CN108699677A (en) Magnetic recording media sputtering target and thin magnetic film
WO2024128075A1 (en) Sputtering target and production method therefor
EP1923481A2 (en) Enhanced sputter target manufacturing method
JP2018172762A (en) Sputtering target, magnetic film, and production method of magnetic film
JPH1096077A (en) Functionally gradient thin coating and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802857

Country of ref document: EP

Kind code of ref document: A1