JPH117957A - Manufacture of positive electrode material for lithium secondary battery, and battery using the material - Google Patents

Manufacture of positive electrode material for lithium secondary battery, and battery using the material

Info

Publication number
JPH117957A
JPH117957A JP9175128A JP17512897A JPH117957A JP H117957 A JPH117957 A JP H117957A JP 9175128 A JP9175128 A JP 9175128A JP 17512897 A JP17512897 A JP 17512897A JP H117957 A JPH117957 A JP H117957A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
electrode material
lithium
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9175128A
Other languages
Japanese (ja)
Other versions
JP3392011B2 (en
Inventor
Koichi Numata
幸一 沼田
Shinya Kagei
慎也 蔭井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP17512897A priority Critical patent/JP3392011B2/en
Publication of JPH117957A publication Critical patent/JPH117957A/en
Application granted granted Critical
Publication of JP3392011B2 publication Critical patent/JP3392011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To inactivate the unreacted lithium, which exists in a surface of the Li-Mn compound oxide, and improve the cycle characteristic at high temperatures by burning the mixture of lithium salt and manganese oxide in the atmosphere at a specified temperature, and making the CO2 gas flow into a burning furnace in a temperature lowering process. SOLUTION: Manganese oxide and lithium salt are mixed in a ratio of Li:Mn = about 0.5:1.0, and the mixture is burned at 600-900 deg.C in the atmospheric air for about 20 hours. CO2 gas is made to flow into a burning furnace in a temperature lowering process. After the cooling, the mixture is pulverized so as to generate the Li-Mn compound oxide. Acetylene black and fluororesin binder are mixed in this Li-Mn compound oxide, and pressed for foaming so as to obtain a pellet, and this pellet is used as a positive electrode mix. As a negative electrode material, metal lithium is used. Effect of the Li-Mn compound oxide becomes larger in the condition that Li/Mn>0.5, as the quantity of Li is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池で代
表される、非水電解液二次電池に用いられる正極材料と
してのLi−Mn複合酸化物の製造方法及びこれを用い
た電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Li-Mn composite oxide as a positive electrode material used for a non-aqueous electrolyte secondary battery, represented by a lithium secondary battery, and a battery using the same. Things.

【0002】[0002]

【従来技術】近年、AV機器あるいはパソコン等の電子
機器のポータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
ー密度を有する二次電池への要求が高い。このような要
求に対し、非水系二次電池、特にリチウム二次電池は、
とりわけ高電圧、高エネルギー密度を有する電池として
の期待が大きい。これらの要求を満たすリチウム二次電
池用の正極材料としてリチウムをインターカレーショ
ン、デインターカレーションすることのできるLiCo
O2 、LiNiO2 あるいはこれらの酸化物に遷移金属
元素を一部置換した複合酸化物などの層状化合物の研究
開発が盛んに行われている。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly developed, and there is a high demand for small, lightweight, and high energy density secondary batteries as power sources for driving these devices. . In response to such demands, non-aqueous secondary batteries, especially lithium secondary batteries,
In particular, expectations are high for batteries having high voltage and high energy density. LiCo capable of intercalating and de-intercalating lithium as a cathode material for lithium secondary batteries meeting these requirements
Research and development of layered compounds such as O2, LiNiO2 or composite oxides in which a transition metal element is partially substituted for these oxides have been actively conducted.

【0003】また、層状構造を持たないが、LiCoO
2 等と同様の4V級の高電圧を有する安価な材料とし
て、Li−Mn複合酸化物であるLiMn2O4が、また
電圧は約3Vと若干低いLiMnO2 の開発も進められ
ている。しかし、これらLi−Mn複合酸化物をリチウ
ム二次電池用の正極材料として用いた場合、従来のLi
CoO2 やLiNiO2 を正極材料として用いた場合に
比較してサイクル特性に劣るという問題があった。この
対策として、Mnの一部をLiで置換したり、Alで置
換するという方法も試みたが、ある程度の改善は得られ
るものの充分ではない。また、電池容量も小さいという
問題があった。
[0003] Further, although having no layered structure, LiCoO
As an inexpensive material having a high voltage of 4V class similar to 2 and the like, LiMn2O4, which is a Li-Mn composite oxide, and LiMnO2 having a slightly lower voltage of about 3V are also being developed. However, when these Li—Mn composite oxides are used as a positive electrode material for a lithium secondary battery, the conventional Li
There has been a problem that the cycle characteristics are inferior to the case where CoO2 or LiNiO2 is used as the cathode material. As a countermeasure, a method of replacing a part of Mn with Li or replacing it with Al has been tried, but some improvement is obtained but not enough. There is also a problem that the battery capacity is small.

【0004】[0004]

【発明が解決しようとする課題】本発明は、Li−Mn
複合酸化物の表面に存在する未反応リチウムを不活性化
し、もって、高温におけるサイクル特性に優れたリチウ
ム二次電池用正極材料の製造法及びこれを用いた電池を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to Li-Mn
An object of the present invention is to provide a method for producing a positive electrode material for a lithium secondary battery having excellent cycle characteristics at a high temperature by inactivating unreacted lithium existing on the surface of a composite oxide, and a battery using the same.

【0005】[0005]

【課題を解決するための手段】よって、本発明は、リチ
ウム塩とマンガン酸化物を混合し、大気中600℃〜9
00℃で焼成してリチウム二次電池用正極材料を製造す
る方法において、焼成後の降温過程に焼成炉にCO2 ガ
スを流通させることを特徴とするリチウム二次電池用正
極材料の製造方法である。また、本発明は上記で得られ
たリチウム二次電池用正極材料を用いた電池である。特
に、本発明はLi−Mn複合酸化物がLi/Mn〉0.
5とLi量が多くなるほど効果が大きい。
Accordingly, the present invention provides a method of mixing a lithium salt and a manganese oxide, which is carried out at 600 ° C. to 9 ° C. in the atmosphere.
A method for producing a positive electrode material for a lithium secondary battery by firing at 00 ° C., wherein CO2 gas is passed through a firing furnace during a temperature lowering process after firing. . Further, the present invention is a battery using the positive electrode material for a lithium secondary battery obtained above. In particular, in the present invention, the Li-Mn composite oxide has Li / Mn> 0.1.
The effect increases as the amount of 5 and Li increases.

【0006】[0006]

【実施例】以下、実施例、比較例に基づいて本発明を具
体的に説明する。なお、本発明は以下に示す原料、電池
構成等に限定されるものではない。
The present invention will be specifically described below based on examples and comparative examples. Note that the present invention is not limited to the following raw materials, battery configurations, and the like.

【0007】実施例1 三酸化二マンガンと、炭酸リチウムをLi:Mn=0.
5:1.0となるように混合し、ボールミルで混合後、
電気炉中で大気雰囲気で800℃で20時間焼成した
後、降温過程で電気炉中にCO2 ガスを流通させた。冷
却後、解砕してLi−Mn複合酸化物を生成した。この
Li−Mn複合酸化物を大気中に放置して、含水量(L
i−Mn複合酸化物表面等に吸着した水分量)を測定
し、その結果を図1に示した。また、このLi−Mn複
合酸化物を正極材料としてコイン電池を作製し、高温に
おけるサイクル特性を測定し、その結果を表1に示す。
なお、コイン電池の正極合剤として、このLi−Mn複
合酸化物85重量部に対して、アセチレンブラック10
重量部およびフッ素樹脂系結着剤5重量部の割合で混合
したものを加重3tで加圧成型してペレットとしたもの
を用いた。電解液としてはプロピレンカーボネートと
1,2−ジメトキシエタンの1:1の混合溶媒中に1モ
ル/lになるようテトラフルオロホウ酸リチウム(Li
BF4 )を溶解したものを用い、セパレーターに含ませ
て使用した。負極材としては金属リチウムを用いた。
Example 1 Dimanganese trioxide and lithium carbonate were prepared using Li: Mn = 0.
5: 1.0 and mixed with a ball mill.
After firing at 800 ° C. for 20 hours in an air atmosphere in an electric furnace, CO 2 gas was passed through the electric furnace in the course of cooling. After cooling, the mixture was crushed to produce a Li-Mn composite oxide. The Li-Mn composite oxide was left in the air to obtain a water content (L
The amount of water adsorbed on the surface of the i-Mn composite oxide or the like was measured, and the results are shown in FIG. Further, a coin battery was manufactured using this Li-Mn composite oxide as a positive electrode material, and the cycle characteristics at high temperatures were measured. The results are shown in Table 1.
As a positive electrode mixture of a coin battery, acetylene black 10
A mixture obtained by mixing at a ratio of 5 parts by weight of the fluororesin binder and 5 parts by weight of the fluororesin-based binder was subjected to pressure molding under a load of 3 t to form a pellet. As an electrolytic solution, lithium tetrafluoroborate (Li) was adjusted to 1 mol / l in a 1: 1 mixed solvent of propylene carbonate and 1,2-dimethoxyethane.
BF4) was used as dissolved in a separator. Metallic lithium was used as the negative electrode material.

【0008】[0008]

【表1】 [Table 1]

【0009】実施例2 三酸化二マンガンと、炭酸リチウムをLi:Mn=0.
55:1.0となるように混合し、ボールミルで混合
後、電気炉中で大気雰囲気で800℃で20時間焼成し
た後、降温過程で電気炉中にCO2 ガスを流通させた。
続いて、解砕してLi−Mn複合酸化物を生成した。こ
のLi−Mn複合酸化物を大気中に放置して、含水量を
測定し、その結果を図1に示した。また、このLi−M
n複合酸化物を正極材料として実施例1と同様にしてコ
イン電池を作製し、高温におけるサイクル特性を測定
し、その結果を表1に示す。
Example 2 Dimanganese trioxide and lithium carbonate were prepared using Li: Mn = 0.
After mixing at a ratio of 55: 1.0, the mixture was mixed in a ball mill, and calcined in an electric furnace at 800 ° C. for 20 hours in an air atmosphere. Then, CO2 gas was passed through the electric furnace in the course of cooling.
Subsequently, the resultant was crushed to produce a Li-Mn composite oxide. The Li-Mn composite oxide was left in the air to measure the water content, and the results are shown in FIG. In addition, this Li-M
A coin battery was produced in the same manner as in Example 1 using the n composite oxide as the positive electrode material, and the cycle characteristics at high temperatures were measured. The results are shown in Table 1.

【0010】比較例1 三酸化二マンガンと、炭酸リチウムをLi:Mn=0.
50:1.0となるように混合し、ボールミルで混合
後、電気炉中で大気雰囲気で800℃で20時間焼成し
た後、冷却した。続いて、解砕してLi−Mn複合酸化
物を生成した。このLi−Mn複合酸化物を大気中に放
置して、含水量を測定し、その結果を図1に示した。ま
た、このLi−Mn複合酸化物を正極材料として実施例
1と同様にしてコイン電池を作製し、高温におけるサイ
クル特性を測定し、その結果を表1に示す。
Comparative Example 1 Dimanganese trioxide and lithium carbonate were prepared by mixing Li: Mn = 0.
The mixture was mixed at 50: 1.0, mixed by a ball mill, fired in an electric furnace at 800 ° C. in the air atmosphere for 20 hours, and then cooled. Subsequently, the resultant was crushed to produce a Li-Mn composite oxide. The Li-Mn composite oxide was left in the air to measure the water content, and the results are shown in FIG. Further, a coin battery was manufactured in the same manner as in Example 1 using this Li-Mn composite oxide as a positive electrode material, and the cycle characteristics at high temperatures were measured. The results are shown in Table 1.

【0011】比較例2 三酸化二マンガンと、炭酸リチウムをLi:Mn=0.
55:1.0となるように混合し、ボールミルで混合
後、電気炉中で大気雰囲気で800℃で20時間焼成し
た後、冷却した。続いて、解砕してLi−Mn複合酸化
物を生成した。このLi−Mn複合酸化物を大気中に放
置して、含水量を測定し、その結果を図1に示した。ま
た、このLi−Mn複合酸化物を正極材料として実施例
1と同様にしてコイン電池を作製し、高温におけるサイ
クル特性を測定し、その結果を表1に示す。
Comparative Example 2 Dimanganese trioxide and lithium carbonate were prepared by mixing Li: Mn = 0.
The mixture was mixed at a ratio of 55: 1.0, mixed in a ball mill, fired in an electric furnace at 800 ° C. in the air atmosphere for 20 hours, and then cooled. Subsequently, the resultant was crushed to produce a Li-Mn composite oxide. The Li-Mn composite oxide was left in the air to measure the water content, and the results are shown in FIG. Further, a coin battery was manufactured in the same manner as in Example 1 using this Li-Mn composite oxide as a positive electrode material, and the cycle characteristics at high temperatures were measured. The results are shown in Table 1.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
Li−Mn複合酸化物の表面に存在する未反応リチウム
を不活性化し、もって、高温におけるサイクル特性に優
れたリチウム二次電池用正極材料の製造法及びこれを用
いた電池を提供することができる。
As described above, according to the present invention,
It is possible to provide a method for producing a positive electrode material for a lithium secondary battery having excellent cycle characteristics at a high temperature by inactivating unreacted lithium existing on the surface of a Li-Mn composite oxide, and a battery using the same. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Li−Mn複合酸化物の大気中における含水
量の変化を示すグラフ。
FIG. 1 is a graph showing a change in water content of a Li—Mn composite oxide in the atmosphere.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム塩とマンガン酸化物を混合し、
大気中600℃〜900℃で焼成してリチウム二次電池
用正極材料を製造する方法において、焼成後の降温過程
に焼成炉にCO2 ガスを流通させることを特徴とするリ
チウム二次電池用正極材料の製造方法。
1. A method of mixing a lithium salt and a manganese oxide,
A method for producing a positive electrode material for a lithium secondary battery by firing at 600 ° C. to 900 ° C. in the air, characterized in that a CO 2 gas is passed through a firing furnace during a cooling process after firing. Manufacturing method.
【請求項2】 請求項1で得られたリチウム二次電池用
正極材料を用いた電池。
2. A battery using the positive electrode material for a lithium secondary battery obtained in claim 1.
JP17512897A 1997-06-17 1997-06-17 Method for producing positive electrode material for lithium secondary battery and battery using the same Expired - Fee Related JP3392011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17512897A JP3392011B2 (en) 1997-06-17 1997-06-17 Method for producing positive electrode material for lithium secondary battery and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17512897A JP3392011B2 (en) 1997-06-17 1997-06-17 Method for producing positive electrode material for lithium secondary battery and battery using the same

Publications (2)

Publication Number Publication Date
JPH117957A true JPH117957A (en) 1999-01-12
JP3392011B2 JP3392011B2 (en) 2003-03-31

Family

ID=15990787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17512897A Expired - Fee Related JP3392011B2 (en) 1997-06-17 1997-06-17 Method for producing positive electrode material for lithium secondary battery and battery using the same

Country Status (1)

Country Link
JP (1) JP3392011B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355837A (en) * 2015-10-16 2016-02-24 广东烛光新能源科技有限公司 Electrochemical cell and method of making same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959023A (en) * 1995-08-24 1997-03-04 Sharp Corp Lithium-manganese multiple oxide, its production and use thereof
JPH10302779A (en) * 1997-04-25 1998-11-13 Sony Corp Production of positive electrode active material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959023A (en) * 1995-08-24 1997-03-04 Sharp Corp Lithium-manganese multiple oxide, its production and use thereof
JPH10302779A (en) * 1997-04-25 1998-11-13 Sony Corp Production of positive electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355837A (en) * 2015-10-16 2016-02-24 广东烛光新能源科技有限公司 Electrochemical cell and method of making same

Also Published As

Publication number Publication date
JP3392011B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
CN102341941B (en) Positive electrode active material for lithium ion battery
US8865018B2 (en) Anode active material for a rechargeable lithium battery
JP5135764B2 (en) Nonaqueous electrolyte secondary battery
JP3372204B2 (en) Method for producing Li-Mn composite oxide
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN108365220B (en) Lithium source material, preparation method thereof and application thereof in lithium ion battery
JP2000077072A (en) Nonaqueous electrolyte secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JPH11339802A (en) Manufacture of positive active material for lithium secondary battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP2001064020A (en) Production of lithium manganate
JP3392011B2 (en) Method for producing positive electrode material for lithium secondary battery and battery using the same
JP2002251995A (en) Spinel type positive electrode material for lithium secondary battery and manufacturing method
JP2002187722A (en) Non-aqueous electrolyte secondary cell, positive electrode active material thereof and manufacturing method thereof
JP2000294237A (en) Positive electrode material for lithium secondary battery and its manufacture
JPH11157841A (en) Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
JP3495639B2 (en) Lithium-manganese composite oxide, method for producing the same, and lithium secondary battery using the composite oxide
JPH117956A (en) Positive electrode material for nonaqueous electrolyte secondary battery, its manufacture and battery using the material
JPH10326619A (en) Manufacture of positive electrode active material for nonacqueous electrolyte battery and battery equipped with positive electrode active material
JPH10241687A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees