JP3392011B2 - Method for producing positive electrode material for lithium secondary battery and battery using the same - Google Patents

Method for producing positive electrode material for lithium secondary battery and battery using the same

Info

Publication number
JP3392011B2
JP3392011B2 JP17512897A JP17512897A JP3392011B2 JP 3392011 B2 JP3392011 B2 JP 3392011B2 JP 17512897 A JP17512897 A JP 17512897A JP 17512897 A JP17512897 A JP 17512897A JP 3392011 B2 JP3392011 B2 JP 3392011B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
battery
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17512897A
Other languages
Japanese (ja)
Other versions
JPH117957A (en
Inventor
幸一 沼田
慎也 蔭井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP17512897A priority Critical patent/JP3392011B2/en
Publication of JPH117957A publication Critical patent/JPH117957A/en
Application granted granted Critical
Publication of JP3392011B2 publication Critical patent/JP3392011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池で代
表される、非水電解液二次電池に用いられる正極材料と
してのLi−Mn複合酸化物の製造方法及び該製造方法
で得られたリチウム二次電池用正極材料、更には該リチ
ウム二次電池用正極材料を用いた電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Li-Mn composite oxide as a positive electrode material used in a non-aqueous electrolyte secondary battery represented by a lithium secondary battery, and the method for producing the same.
The positive electrode material for a lithium secondary battery obtained in 1.
The present invention relates to a battery using a positive electrode material for an aluminum secondary battery .

【0002】[0002]

【従来技術】近年、AV機器あるいはパソコン等の電子
機器のポータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
ー密度を有する二次電池への要求が高い。このような要
求に対し、非水系二次電池、特にリチウム二次電池は、
とりわけ高電圧、高エネルギー密度を有する電池として
の期待が大きい。これらの要求を満たすリチウム二次電
池用の正極材料としてリチウムをインターカレーショ
ン、デインターカレーションすることのできるLiCo
O2 、LiNiO2 あるいはこれらの酸化物に遷移金属
元素を一部置換した複合酸化物などの層状化合物の研究
開発が盛んに行われている。
2. Description of the Related Art In recent years, portable and cordless AV devices or electronic devices such as personal computers have been rapidly developed, and there is a strong demand for secondary batteries having a small size, a light weight and a high energy density as power sources for driving these devices. . In response to such requirements, non-aqueous secondary batteries, especially lithium secondary batteries,
In particular, there are great expectations as a battery having a high voltage and a high energy density. LiCo capable of intercalating and deintercalating lithium as a positive electrode material for a lithium secondary battery satisfying these requirements
Research and development of layered compounds such as O2, LiNiO2 or complex oxides in which a transition metal element is partially substituted in these oxides have been actively conducted.

【0003】また、層状構造を持たないが、LiCoO
2 等と同様の4V級の高電圧を有する安価な材料とし
て、Li−Mn複合酸化物であるLiMn2O4が、また
電圧は約3Vと若干低いLiMnO2 の開発も進められ
ている。しかし、これらLi−Mn複合酸化物をリチウ
ム二次電池用の正極材料として用いた場合、従来のLi
CoO2 やLiNiO2 を正極材料として用いた場合に
比較してサイクル特性に劣るという問題があった。この
対策として、Mnの一部をLiで置換したり、Alで置
換するという方法も試みたが、ある程度の改善は得られ
るものの充分ではない。また、電池容量も小さいという
問題があった。
Although it does not have a layered structure, LiCoO
LiMn2O4, which is a Li-Mn composite oxide, and LiMnO2, which has a slightly lower voltage of about 3V, are under development as an inexpensive material having a high voltage of 4V class similar to 2 and the like. However, when these Li-Mn composite oxides are used as a positive electrode material for a lithium secondary battery, conventional Li
There is a problem that the cycle characteristics are inferior to the case where CoO2 or LiNiO2 is used as the positive electrode material. As a countermeasure against this, a method of substituting a part of Mn with Li or Al has been tried, but although some improvement can be obtained, it is not sufficient. There is also a problem that the battery capacity is small.

【0004】[0004]

【発明が解決しようとする課題】本発明は、Li−Mn
複合酸化物の表面に存在する未反応リチウムを不活性化
し、もって、高温におけるサイクル特性に優れたリチウ
ム二次電池用正極材料の製造方法及び該製造方法で得ら
れたリチウム二次電池用正極材料、更には該リチウム二
次電池用正極材料を用いた電池提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention is directed to Li-Mn.
The unreacted lithium present on the surface of the composite oxide is inactivated, and thus a method for producing a positive electrode material for a lithium secondary battery having excellent cycle characteristics at high temperature and a method for producing the same are obtained.
Positive electrode material for lithium secondary batteries, and the lithium secondary battery
It is an object to provide a battery using a positive electrode material for a secondary battery .

【0005】[0005]

【課題を解決するための手段】よって、本発明は、炭酸
リチウムとマンガン酸化物を、LiとMnのモル比で
0.5:1.0〜0.55:1.0の割合で混合し、大
気中600〜900℃で焼成してリチウム二次電池用正
極材料を製造する方法において、焼成後の降温過程に焼
成炉にCO2ガスを流通させることを特徴とするリチウ
ム二次電池用正極材料の製造方法である。又本発明は、
前記記載の方法で得られたリチウム二次電池用正極材料
である。特に本発明はLi−Mn複合酸化物がLi>
0.5とLi量が多くなるほど効果が大きい。
Therefore, according to the present invention, lithium carbonate and manganese oxide are mixed in a molar ratio of Li and Mn.
In the method for producing a positive electrode material for a lithium secondary battery by mixing at a ratio of 0.5: 1.0 to 0.55: 1.0 and firing at 600 to 900 ° C. in the atmosphere, the temperature decreasing process after firing is performed. A method for producing a positive electrode material for a lithium secondary battery, which is characterized in that CO2 gas is circulated in a firing furnace. The present invention also provides
It is a positive electrode material for a lithium secondary battery obtained by the method described above. Particularly in the present invention, the Li-Mn composite oxide is Li>
The larger the amount of Li is 0.5, the greater the effect.

【0006】[0006]

【実施例】以下、実施例、比較例に基づいて本発明を具
体的に説明する。なお、本発明は以下に示す原料、電池
構成等に限定されるものではない。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples. Note that the present invention is not limited to the raw materials, battery configuration, etc. shown below.

【0007】実施例1 三酸化二マンガンと、炭酸リチウムをLi:Mn=0.
5:1.0となるように混合し、ボールミルで混合後、
電気炉中で大気雰囲気で800℃で20時間焼成した
後、降温過程で電気炉中にCO2 ガスを流通させた。冷
却後、解砕してLi−Mn複合酸化物を生成した。この
Li−Mn複合酸化物を大気中に放置して、含水量(L
i−Mn複合酸化物表面等に吸着した水分量)を測定
し、その結果を図1に示した。また、このLi−Mn複
合酸化物を正極材料としてコイン電池を作製し、高温に
おけるサイクル特性を測定し、その結果を表1に示す。
なお、コイン電池の正極合剤として、このLi−Mn複
合酸化物85重量部に対して、アセチレンブラック10
重量部およびフッ素樹脂系結着剤5重量部の割合で混合
したものを加重3tで加圧成型してペレットとしたもの
を用いた。電解液としてはプロピレンカーボネートと
1,2−ジメトキシエタンの1:1の混合溶媒中に1モ
ル/lになるようテトラフルオロホウ酸リチウム(Li
BF4 )を溶解したものを用い、セパレーターに含ませ
て使用した。負極材としては金属リチウムを用いた。
Example 1 Dimanganese trioxide and lithium carbonate were mixed with Li: Mn = 0.
Mix so as to be 5: 1.0, mix with a ball mill,
After firing at 800 ° C. for 20 hours in an electric furnace in an air atmosphere, CO 2 gas was passed through the electric furnace in the temperature decreasing process. After cooling, the mixture was crushed to produce a Li-Mn composite oxide. The water content (L
The amount of water adsorbed on the surface of the i-Mn composite oxide was measured, and the results are shown in FIG. A coin battery was prepared using this Li-Mn composite oxide as a positive electrode material, and cycle characteristics at high temperature were measured. The results are shown in Table 1.
As a positive electrode mixture for a coin battery, acetylene black 10 was added to 85 parts by weight of this Li-Mn composite oxide.
A mixture obtained by mixing 3 parts by weight and 5 parts by weight of a fluororesin-based binder with pressure was molded with a load of 3 t to form a pellet. As an electrolytic solution, lithium tetrafluoroborate (Li) was added to a 1: 1 mixed solvent of propylene carbonate and 1,2-dimethoxyethane so as to be 1 mol / l.
A solution obtained by dissolving BF4) was used and included in the separator before use. Metallic lithium was used as the negative electrode material.

【0008】[0008]

【表1】 [Table 1]

【0009】実施例2 三酸化二マンガンと、炭酸リチウムをLi:Mn=0.
55:1.0となるように混合し、ボールミルで混合
後、電気炉中で大気雰囲気で800℃で20時間焼成し
た後、降温過程で電気炉中にCO2 ガスを流通させた。
続いて、解砕してLi−Mn複合酸化物を生成した。こ
のLi−Mn複合酸化物を大気中に放置して、含水量を
測定し、その結果を図1に示した。また、このLi−M
n複合酸化物を正極材料として実施例1と同様にしてコ
イン電池を作製し、高温におけるサイクル特性を測定
し、その結果を表1に示す。
Example 2 Dimanganese trioxide and lithium carbonate were mixed with Li: Mn = 0.
After mixing so as to be 55: 1.0 and mixing in a ball mill, the mixture was baked in an electric furnace at 800 ° C. for 20 hours in an air atmosphere, and then CO 2 gas was passed through the electric furnace in the temperature decreasing process.
Then, it crushed and produced the Li-Mn compound oxide. This Li-Mn composite oxide was allowed to stand in the air to measure the water content, and the results are shown in FIG. In addition, this Li-M
A coin battery was prepared in the same manner as in Example 1 using the n-composite oxide as the positive electrode material, and the cycle characteristics at high temperature were measured. The results are shown in Table 1.

【0010】比較例1 三酸化二マンガンと、炭酸リチウムをLi:Mn=0.
50:1.0となるように混合し、ボールミルで混合
後、電気炉中で大気雰囲気で800℃で20時間焼成し
た後、冷却した。続いて、解砕してLi−Mn複合酸化
物を生成した。このLi−Mn複合酸化物を大気中に放
置して、含水量を測定し、その結果を図1に示した。ま
た、このLi−Mn複合酸化物を正極材料として実施例
1と同様にしてコイン電池を作製し、高温におけるサイ
クル特性を測定し、その結果を表1に示す。
Comparative Example 1 Dimanganese trioxide and lithium carbonate were mixed with Li: Mn = 0.
The mixture was mixed at a ratio of 50: 1.0, mixed with a ball mill, baked in an electric furnace at 800 ° C. for 20 hours in the air atmosphere, and then cooled. Then, it crushed and produced the Li-Mn compound oxide. This Li-Mn composite oxide was allowed to stand in the air to measure the water content, and the results are shown in FIG. Further, a coin battery was prepared in the same manner as in Example 1 using this Li-Mn composite oxide as a positive electrode material, and the cycle characteristics at high temperature were measured. The results are shown in Table 1.

【0011】比較例2 三酸化二マンガンと、炭酸リチウムをLi:Mn=0.
55:1.0となるように混合し、ボールミルで混合
後、電気炉中で大気雰囲気で800℃で20時間焼成し
た後、冷却した。続いて、解砕してLi−Mn複合酸化
物を生成した。このLi−Mn複合酸化物を大気中に放
置して、含水量を測定し、その結果を図1に示した。ま
た、このLi−Mn複合酸化物を正極材料として実施例
1と同様にしてコイン電池を作製し、高温におけるサイ
クル特性を測定し、その結果を表1に示す。
Comparative Example 2 Dimanganese trioxide and lithium carbonate were mixed with Li: Mn = 0.
The mixture was mixed so as to have a ratio of 55: 1.0, mixed with a ball mill, baked in an electric furnace at 800 ° C. for 20 hours in the air atmosphere, and then cooled. Then, it crushed and produced the Li-Mn compound oxide. This Li-Mn composite oxide was allowed to stand in the air to measure the water content, and the results are shown in FIG. Further, a coin battery was prepared in the same manner as in Example 1 using this Li-Mn composite oxide as a positive electrode material, and the cycle characteristics at high temperature were measured. The results are shown in Table 1.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
Li−Mn複合酸化物の表面に存在する未反応リチウム
を不活性化し、もって、高温におけるサイクル特性に優
れたリチウム二次電池用正極材料の製造法及びこれを用
いた電池を提供することができる。
As described above, according to the present invention,
It is possible to provide a method for producing a positive electrode material for a lithium secondary battery, which has excellent cycle characteristics at high temperature, and a battery using the same, by inactivating unreacted lithium existing on the surface of the Li-Mn composite oxide. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 Li−Mn複合酸化物の大気中における含水
量の変化を示すグラフ。
FIG. 1 is a graph showing changes in water content of Li-Mn composite oxide in the atmosphere.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭酸リチウムとマンガン酸化物を、Li
とMnのモル比で0.5:1.0〜0.55:1.0の
割合で混合し、大気中600〜900℃で焼成してリチ
ウム二次電池用正極材料を製造する方法において、焼成
後の降温過程に焼成炉にCO2ガスを流通させることを
特徴とするリチウム二次電池用正極材料の製造方法。
1. Lithium carbonate and manganese oxide are mixed with Li
And Mn in a molar ratio of 0.5: 1.0 to 0.55: 1.0
In a method for producing a positive electrode material for a lithium secondary battery by mixing in a ratio and firing at 600 to 900 ° C. in the atmosphere, CO 2 gas is circulated in a firing furnace in a temperature decreasing process after firing. Manufacturing method of positive electrode material for battery.
【請求項2】請求項1で得られたリチウム二次電池用正
極材料。
2. The positive electrode material for a lithium secondary battery obtained in claim 1.
【請求項3】請求項2記載のリチウム二次電池用正極材3. A positive electrode material for a lithium secondary battery according to claim 2.
料を用いた電池。Battery with charge.
JP17512897A 1997-06-17 1997-06-17 Method for producing positive electrode material for lithium secondary battery and battery using the same Expired - Fee Related JP3392011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17512897A JP3392011B2 (en) 1997-06-17 1997-06-17 Method for producing positive electrode material for lithium secondary battery and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17512897A JP3392011B2 (en) 1997-06-17 1997-06-17 Method for producing positive electrode material for lithium secondary battery and battery using the same

Publications (2)

Publication Number Publication Date
JPH117957A JPH117957A (en) 1999-01-12
JP3392011B2 true JP3392011B2 (en) 2003-03-31

Family

ID=15990787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17512897A Expired - Fee Related JP3392011B2 (en) 1997-06-17 1997-06-17 Method for producing positive electrode material for lithium secondary battery and battery using the same

Country Status (1)

Country Link
JP (1) JP3392011B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355837B (en) * 2015-10-16 2017-11-07 广东烛光新能源科技有限公司 Electrochemical cell and method of making same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786454B2 (en) * 1995-08-24 2006-06-14 シャープ株式会社 Lithium manganese composite oxide, method for producing the same, and use thereof
JP3769871B2 (en) * 1997-04-25 2006-04-26 ソニー株式会社 Method for producing positive electrode active material

Also Published As

Publication number Publication date
JPH117957A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3372204B2 (en) Method for producing Li-Mn composite oxide
JP2004103566A (en) Positive active substance for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JPH10188953A (en) Non-aqueous electrolyte secondary battery
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN108365220B (en) Lithium source material, preparation method thereof and application thereof in lithium ion battery
JP2000077072A (en) Nonaqueous electrolyte secondary battery
JP3007859B2 (en) Method for preparing high capacity LiMn2O4 secondary battery anode compound
JP2005044722A (en) Cathode active substance for nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery
JP3856015B2 (en) Positive electrode secondary active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2002270181A (en) Non-aqueous electrolyte battery
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP3392011B2 (en) Method for producing positive electrode material for lithium secondary battery and battery using the same
JP2001064020A (en) Production of lithium manganate
CN112490436B (en) Preparation method of nickel-doped spinel lithium manganate serving as lithium ion battery anode material
JP2004281255A (en) Cathode active material for nonaqueous electrolyte solution secondary battery
JP3856517B2 (en) Method for producing lithium manganese oxide
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
JP2002251995A (en) Spinel type positive electrode material for lithium secondary battery and manufacturing method
JPH11157841A (en) Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator
JP3856518B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees