JPH1161358A - Electric steel sheet excellent in blanking and magnetic property in rolling direction and manufacture thereof - Google Patents

Electric steel sheet excellent in blanking and magnetic property in rolling direction and manufacture thereof

Info

Publication number
JPH1161358A
JPH1161358A JP9222731A JP22273197A JPH1161358A JP H1161358 A JPH1161358 A JP H1161358A JP 9222731 A JP9222731 A JP 9222731A JP 22273197 A JP22273197 A JP 22273197A JP H1161358 A JPH1161358 A JP H1161358A
Authority
JP
Japan
Prior art keywords
rolling
hot
steel sheet
annealing
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9222731A
Other languages
Japanese (ja)
Other versions
JP4320793B2 (en
Inventor
Osamu Kondo
修 近藤
Shigeaki Takagi
重彰 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22273197A priority Critical patent/JP4320793B2/en
Publication of JPH1161358A publication Critical patent/JPH1161358A/en
Application granted granted Critical
Publication of JP4320793B2 publication Critical patent/JP4320793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electric steel sheet excellent in blanking and magnetic properties in the rolling direction by forming texture accumulated in the Goss azimuth without utilizing secondary recrystallization. SOLUTION: This electric steel sheet has the composition consisting of <=0.003 wt.% C, 0.1-4.5 wt.% Si and the balance Fe essentially and the normal grain whose average crystal grain size is 0.1-5.0 mm and in which the deviation of the <001> axis of the 110} <001> azimuth to the parallel axial line in the rolling direction is within ±15 deg. by a rotational angle is >=80% of the entire crystal grain. The manufacturing method is that, after executing hot rough- rolling of a steel slab containing <=0.003 wt.% C and 0.1-4.5 wt.% Si, hot finish- rolling is executed under the conditions that draft (one pass) is >=30%, rolling completed temp. is 600-800 deg.C and to the thickness of the hot rolled sheet of <=1.5 mm, as necessary, after annealing the hot rolled sheet, executing two or more times of cold rolling or the like including annealing after pickling and making the sheet into the final thickness, finish annealing is executed and, next, an insulated film is imparted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、交流磁心に用い
られる、打ち抜き性及び圧延方向への磁気特性に優れた
電磁鋼板及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic steel sheet used for an AC magnetic core and having excellent punching properties and magnetic properties in a rolling direction, and a method for producing the same.

【0002】[0002]

【従来の技術】電磁鋼板は使用時の磁化方向の電磁特性
が優れることが望ましく、その特性は集合組織に大きく
左右される。好適な集合組織は使用形態によって、即
ち、鋼板のいずれの方向を磁化方向として使用するかに
よって異なり、一部のトランスのように主として圧延と
平行な1方向のみが磁化方向となる場合、圧延方向の結
晶方位が<001>であるような集合組織が最適であ
る。このような結晶方位を優先的に成長させ、圧延方向
に電磁特性を良好にした電磁鋼板は、いわゆる方向性電
磁鋼板として広く製造市販されている。
2. Description of the Related Art It is desirable for an electromagnetic steel sheet to have excellent electromagnetic characteristics in the direction of magnetization during use, and the characteristics greatly depend on the texture. The preferred texture differs depending on the type of use, that is, which direction of the steel sheet is used as the magnetization direction. When only one direction parallel to the rolling is the magnetization direction, as in some transformers, the rolling direction Is optimal, such that the crystal orientation of <001> is <001>. Electromagnetic steel sheets in which such crystal orientations are preferentially grown to improve the electromagnetic properties in the rolling direction are widely manufactured and sold as so-called grain-oriented electromagnetic steel sheets.

【0003】集合組織は圧延方向の結晶方位とともに、
圧延面に垂直な軸の方向の結晶方位によって規定され
る。現在の方向性電磁鋼板は、圧延面に平行な面が{1
10}であり,{110}<001>方位、ないしはゴ
ス(Goss)方位と称される。
[0003] The texture along with the crystal orientation in the rolling direction,
It is defined by the crystal orientation in the direction of the axis perpendicular to the rolling plane. The current grain-oriented electrical steel sheet has a surface parallel to the rolling surface of $ 1.
10}, which is called a {110} <001> direction or a Goss direction.

【0004】ゴス方位をもつ方向性電磁鋼板は、Fe-Si
の基本成分系にCを0.03〜0.10%程度、さらにインヒビ
タ成分としてMnS やAlN 等を0.01〜0.05%程度添加した
素材に複数回の圧延と焼鈍を繰り返し施し、ゴス方位を
もつ結晶粒を優先的に異常成長、即ち二次再結晶させる
ことによって製造する方法が一般的である。
A grain-oriented electrical steel sheet having a Goss orientation is made of Fe-Si.
Rolling and annealing are repeated several times on a material containing about 0.03-0.10% of C in the basic component system and about 0.01-0.05% of MnS or AlN as an inhibitor component. In general, a method of manufacturing by abnormal growth, that is, secondary recrystallization is used.

【0005】そして、この方法では、Cは最終的にゴス
方位が発達するためには必須とされているため鋼中に含
有させるが、鉄損特性向上のため、通常は二次再結晶さ
せる前に脱炭除去する工程が必要となる。
In this method, C is contained in steel because it is indispensable for the ultimate development of Goss orientation. However, in order to improve iron loss characteristics, C is usually added before secondary recrystallization. Requires a process of decarburization.

【0006】また、インヒビタは、二次再結晶の際にゴ
ス方位をもつ結晶粒を優先的に異常成長させるため、そ
の前段階での正常粒の成長を抑制することを目的として
添加されるが、製品鋼板中に残存すると電磁特性に悪影
響があるので、最終的には焼鈍によって除去しなければ
ならない。
Inhibitors are added for the purpose of suppressing the growth of normal grains prior to the secondary recrystallization in order to preferentially abnormally grow crystal grains having a Goss orientation during secondary recrystallization. However, if remaining in the product steel sheet, it has an adverse effect on the electromagnetic characteristics, so that it must be finally removed by annealing.

【0007】このように従来の製造方法は、電磁特性を
確保するために極めて複雑かつコストのかかる工程を採
用しており、工業上の生産性の観点からは大きな問題を
抱えている。
[0007] As described above, the conventional manufacturing method employs an extremely complicated and costly process in order to secure electromagnetic characteristics, and has a serious problem from the viewpoint of industrial productivity.

【0008】中でも生産性を悪化させている最大の原因
は、上記インヒビタを除去するため、二次再結晶後に高
温長時間の純化焼鈍を要するところにある。このため、
インヒビタを添加することなくゴス方位に強く集積した
集合組織が得られれば、産業上の意義は絶大であるが、
そのような技術は知られていない。
[0008] Above all, the biggest cause of deterioration in productivity is that high-temperature and long-time purification annealing is required after secondary recrystallization in order to remove the inhibitor. For this reason,
If a texture that is strongly integrated in the Goss orientation can be obtained without adding an inhibitor, the industrial significance is enormous,
No such technique is known.

【0009】また、生産性を悪化させている別の原因は
Cの添加である。Cも通常の製造工程ではゴス方位の集
積のために必須の添加成分であるため、二次再結晶前に
脱炭焼鈍することが必要になるが、これは、製造時間と
コストの点で不利である。しかし、Cを省略する技術に
ついては知られていない。
[0009] Another cause of the deterioration of productivity is the addition of C. C is also an essential component for accumulating the Goss orientation in the normal manufacturing process, so it is necessary to perform decarburizing annealing before secondary recrystallization, which is disadvantageous in terms of manufacturing time and cost. It is. However, a technique for omitting C is not known.

【0010】ところで、電磁鋼板を小型のトランスコア
に用いる場合には、打ち抜き性が要求される。電磁鋼板
は、大別して「無方向性」と「方向性」に分類され、一
般には、無方向性電磁鋼板は、結晶粒径が細かく打ち抜
き性が良好なのに対して、方向性電磁鋼板は、圧延方向
の電磁特性については優れているものの、打ち抜き性の
点で問題があった。
When an electromagnetic steel sheet is used for a small transformer core, punchability is required. Electrical steel sheets are broadly classified into `` non-oriented '' and `` oriented ''. Generally, non-oriented electrical steel sheets have a fine grain size and good punching properties, while grain-oriented electrical steel sheets are rolled. Although the electromagnetic characteristics in the direction are excellent, there is a problem in terms of punchability.

【0011】即ち、方向性電磁鋼板において優れた電磁
特性を得るには、二次再結晶によってゴス方位に揃った
結晶粒を異常成長させて、巨大結晶粒( 平均結晶粒径で
10mm以上) を生成させることが必要であるが、この巨大
結晶粒は打ち抜き性を悪化させることになる。
That is, in order to obtain excellent electromagnetic characteristics in a grain-oriented electrical steel sheet, crystal grains aligned in the Goss orientation are abnormally grown by secondary recrystallization to form giant crystal grains (average crystal grain size).
(10 mm or more) must be formed, but these giant crystal grains deteriorate the punchability.

【0012】二次再結晶による巨大粒を発生させずにゴ
ス方位を得るとの観点から従来技術を評価してみると、
実際、上記方向性電磁鋼板の製造過程において、熱間圧
延後の鋼板の表層近傍には{110}〈001〉方位の
結晶粒がある程度存在し、その後の冷間圧延や脱炭焼鈍
等の工程でその方位の相対的な存在割合は増加するが、
そのままで良好な電磁特性が得られるには到底至らな
い。
When the prior art is evaluated from the viewpoint of obtaining a Goss orientation without generating giant grains due to secondary recrystallization,
Actually, in the manufacturing process of the grain-oriented electrical steel sheet, crystal grains having a {110} <001> orientation exist to some extent near the surface layer of the hot-rolled steel sheet, and the subsequent steps such as cold rolling and decarburizing annealing are performed. Will increase the relative abundance of that orientation,
It is hardly possible to obtain good electromagnetic characteristics as it is.

【0013】即ち、かかる二次再結晶前の段階での{1
10}〈001〉方位への集積強度は、集合組織の方位
分布関数から求めたランダム方位の場合との比で、高々
5倍程度であり、しかも板厚全体にわたってではない。
That is, {1 at the stage before such secondary recrystallization
The integrated strength in the 10 ° <001> orientation is at most about 5 times the ratio with the random orientation obtained from the orientation distribution function of the texture, and is not over the entire thickness.

【0014】一方、無方向性電磁鋼板の範疇でも、集合
組織の制御により圧延方向の電磁特性を向上させる試み
がなされてきた。
On the other hand, even in the category of non-oriented electrical steel sheets, attempts have been made to improve the electromagnetic properties in the rolling direction by controlling the texture.

【0015】即ち、特開昭54−110121号公報には、冷延
鋼板を急速昇温してα→γ変態させ、つぎに緩慢に冷却
してγ→α変態させることにより、圧延面内に{11
0}面の集積度が上昇する旨が記載されている。しか
し、その集積度はランダム方位にくらべて高々5倍程度
であった。
That is, Japanese Patent Application Laid-Open No. 54-110121 discloses that a cold-rolled steel sheet is rapidly heated to transform α → γ, and then slowly cooled to transform γ → α, thereby reducing $ 11
It is described that the degree of integration of the 0 ° plane increases. However, the degree of integration was at most about five times that of the random orientation.

【0016】また、文献(高島稔ら:「材料とプロセ
ス」第5巻(1992年)p.1921)には、Sbを微量添加するこ
とにより、冷間圧延後の{110}〈001〉方位が増
加する旨が記載されている。ただし、これはもともと僅
少であったこの方位を高々ランダム方位の場合の存在割
合程度に回復したにすぎず、本来のゴス方位に集積した
集合組織には遠く及ばない。
[0016] Also, in the literature (Min. Takashima et al .: "Materials and Processes", Vol. 5 (1992), p. 1921), by adding a small amount of Sb, the {110} <001> Is described as increasing. However, this has only recovered from the originally small orientation at most to the existing ratio in the case of the random orientation, and is far from the texture accumulated in the original Goss orientation.

【0017】同様に、文献(H.Shimanaka ら: 「Energy
Efficient Electrical Steels」TMS-AIME (1980年)p.1
93) に記載されるAl添加2回冷延法や、文献(塩崎守雄
ら:「材料とプロセス」第5巻(1992年)p.1923)に記載
される中間焼鈍後にスキンパス圧延を追加する方法によ
っても、十分なゴス方位への集積は得られない。しか
も、これらの手法はいずれも工程が煩雑になり、製造コ
ストの上昇をもたらすという欠点がある。
Similarly, the literature (H. Shimanaka et al .: "Energy
Efficient Electrical Steels '' TMS-AIME (1980) p.1
93) and the method of adding skin pass rolling after intermediate annealing described in the literature (Morio Shiozaki et al .: “Materials and Processes”, Vol. 5 (1992), p. 1923). Does not provide sufficient accumulation in the Goss orientation. Moreover, all of these methods have the disadvantage that the steps are complicated and the production cost is increased.

【0018】[0018]

【発明が解決しようとする課題】この発明は、熱延にお
いてCを必要とせずに、板厚全体にわたって{110}
<001>方位に集積した集合組織を形成し、この素材
を用いることで、インヒビタ成分を格別に必要とせず、
しかも、二次再結晶によって結晶粒を異常成長させる必
要もなく、正常粒を成長させることにより、結晶粒の粒
径を適正に制御し、かつ{110}<001>方位に集
積した、打ち抜き性と圧延方向の磁気特性に優れた電磁
鋼板及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention does not require C in hot rolling, and {110} over the entire sheet thickness.
By forming a texture accumulated in the <001> orientation and using this material, the inhibitor component is not particularly required,
In addition, it is not necessary to grow crystal grains abnormally by secondary recrystallization. By growing normal grains, the grain size of the crystal grains can be appropriately controlled, and the punching property can be accumulated in the {110} <001> direction. An object of the present invention is to provide an electrical steel sheet having excellent magnetic properties in the rolling direction and a method for producing the same.

【0019】[0019]

【課題を解決するための手段】上記課題、即ち、Cが0.
005 %以下で、二次再結晶を利用せずに熱間圧延によっ
て{110}<001>方位に集積した集合組織を形成
し、二次再結晶を利用せずに{110}<001>方位
粒を集積させるという課題を解決するために、発明者ら
は鋭意研究を行った。
Means for Solving the Problems The above-mentioned problem, that is, C is 0.
At 005% or less, a texture integrated in the {110} <001> orientation is formed by hot rolling without using secondary recrystallization, and {110} <001> orientation without using secondary recrystallization. In order to solve the problem of accumulating grains, the inventors conducted intensive research.

【0020】通常の二次再結晶を利用して製造した方向
性電磁鋼板は、熱間圧延段階では、板面の表層近傍のみ
においてゴス粒が存在し、板厚中心部には存在してない
ため、最終段階でゴス粒を集積させるには二次再結晶を
利用せざるを得なかった。
In the grain-oriented electrical steel sheet manufactured by using ordinary secondary recrystallization, goss grains are present only in the vicinity of the surface layer of the sheet surface in the hot rolling stage, and are not present in the central part of the sheet thickness. Therefore, secondary recrystallization had to be used to accumulate Goss grains in the final stage.

【0021】そのため、発明者らは、熱延段階におい
て、板厚全体にわたって{110}<001>方位への
集積強度を高め、特に板厚中心部においてもその強度を
十分に強くすれば、二次再結晶を利用しなくても{11
0}<001>方位粒を集積できるとの発想の下に検討
を重ねた結果、以下の知見を得た。
For this reason, in the hot rolling stage, the inventors of the present invention have found that if the integrated strength in the {110} <001> orientation is increased over the entire thickness of the sheet, and especially if the strength is sufficiently increased even in the center of the sheet thickness, $ 11 without using next recrystallization
As a result of repeated studies based on the idea that 0 ° <001> orientation grains can be accumulated, the following findings were obtained.

【0022】即ち、熱間仕上げ圧延において、圧延終了
温度と1 パスでの圧下率を制御し、通常の工程で採用さ
れているよりも低温かつ1パスで強圧下する条件下で、
板厚1.5 mm以下に熱間仕上げ圧延を行うことで、熱間圧
延後に{110}<001>方位に集積した集合組織を
形成できること、さらに、この素材を用いることで、二
次再結晶を利用せずに{110}<001>方位粒を高
度に集積させることが可能であることを見出し、この発
明を完成するに至ったのである。
That is, in the hot finish rolling, the rolling end temperature and the rolling reduction in one pass are controlled, and under the condition that the rolling is performed at a lower temperature and stronger in one pass than that employed in the normal process.
By performing hot finish rolling to a thickness of 1.5 mm or less, it is possible to form a texture integrated in the {110} <001> orientation after hot rolling. Furthermore, by using this material, secondary recrystallization is used. The present inventors have found that {110} <001> orientation grains can be highly integrated without performing the present invention, and have completed the present invention.

【0023】この発明の要旨構成は以下のとおりであ
る。 1. C:0.005 wt%以下、Si:0.1 〜4.5 wt%を含有
し、残部は実質的にFeからなる組成で、平均結晶粒径が
0.1 〜5.0mm の範囲で、圧延方向に平行な軸線に対する
{110}<001>方位の<001>軸のずれが回転
角で±15°以内である正常粒が結晶粒全体の80%以上あ
ることを特徴とする、打ち抜き性及び圧延方向の磁気特
性に優れた電磁鋼板。
The gist configuration of the present invention is as follows. 1. C: 0.005 wt% or less, Si: 0.1 to 4.5 wt%, the balance is substantially composed of Fe, and the average crystal grain size is
Within the range of 0.1 to 5.0 mm, the deviation of the <001> axis of the {110} <001> orientation with respect to the axis parallel to the rolling direction is within ± 15 ° of the rotation angle, and more than 80% of the normal grains are the whole grains. An electromagnetic steel sheet having excellent punching properties and magnetic properties in the rolling direction.

【0024】2. C:0.005 wt%以下、Si:0.1 〜4.5
wt%を含有し、残部は実質的にFeからなる鋼スラブを熱
間粗圧延後、熱間仕上げ圧延を行い、その後必要に応じ
て熱延板焼鈍を施し、酸洗の後、1回又は途中焼鈍を含
む2回以上の冷間圧延若しくは温間圧延を施して最終板
厚とした後、仕上げ焼鈍を行い、次いで絶縁皮膜を付与
して電磁鋼板を製造するにあたり、熱間仕上げ圧延を、
圧下率(1パス):30%以上及び圧延終了温度:600 〜
800 ℃の条件下で行い、熱延板板厚を1.5 mm以下にする
ことを特徴とする、打ち抜き性及び圧延方向の磁気特性
に優れた電磁鋼板の製造方法。
2. C: 0.005 wt% or less, Si: 0.1 to 4.5
The steel slab containing wt% and the balance substantially consisting of Fe is subjected to hot rough rolling, hot finish rolling, and then, if necessary, hot rolled sheet annealing. After performing cold rolling or warm rolling twice or more including intermediate annealing to the final sheet thickness, performing finish annealing, and then applying an insulating film to manufacture an electromagnetic steel sheet, hot finishing rolling,
Rolling reduction (1 pass): 30% or more and rolling end temperature: 600 ~
A method for producing a magnetic steel sheet having excellent punching properties and magnetic properties in a rolling direction, characterized in that the hot-rolled sheet thickness is set to 1.5 mm or less at 800 ° C.

【0025】[0025]

【発明の実施の形態】以下にこの発明を完成させるに至
った経緯を説明する。真空小型溶解炉にて、Si:3.12wt
%、C:0.003 wt%、Mn:0.01wt%、、Al:0.005wt%か
らなる成分の鋼塊50 kg を溶解し、サイジングのために
熱間粗圧延にて板厚5mmにした。この鋼板を1100℃にて
30分間加熱した後、ロール径700 mmφの圧延機にて、周
速800 m/min.、圧下率(1パス)84%、圧延終了温度を
750 ℃にて熱間仕上げ圧延し、板厚0.8 mmの鋼板を製造
し、この鋼板について、集合組織、磁気特性を調査した
結果、{110}〈001〉方位への集積強度がランダ
ム組織のそれの28倍と極めて高く、磁気特性もW15/50
で2.3 W/kg、B50で 1.705Tと、今までにはない優れ
た磁気特性を有する鋼板が得られた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. In a small vacuum melting furnace, Si: 3.12wt
%, C: 0.003 wt%, Mn: 0.01 wt%, and Al: 0.005 wt%. A 50 kg steel ingot was melted, and hot-rolled to a thickness of 5 mm for sizing. At 1100 ℃
After heating for 30 minutes, using a rolling mill with a roll diameter of 700 mmφ, the peripheral speed is 800 m / min., The rolling reduction (1 pass) is 84%, and the rolling end temperature is
Hot finish rolling was performed at 750 ° C to produce a 0.8 mm thick steel sheet. As a result of examining the texture and magnetic properties of this steel sheet, the integrated strength in the {110} <001> orientation was found to be that of a random structure. 28 times higher than that of W 15/50
And 1.705T in 2.3 W / kg, at B 50, it was obtained steel sheet having excellent magnetic properties not ever.

【0026】そして、この知見に基づき、さらに詳細な
研究を行った結果、Si含有鋼を、通常の工程で採用され
ているよりも低温かつ1パスで強圧下する条件下で、1.
5 mm以下の板厚に熱間仕上げ圧延することによって、熱
延板の{110}〈001〉方位への集積度が顕著に向
上すること、さらに、この素材を用いることで、二次再
結晶を利用せずに{110}<001>方位粒を高度に
集積させることが可能であることを見出し、この発明を
完成するに至ったのである。尚、この発明では、熱間圧
延段階での{110}〈001〉方位への集積強度が、
上述した熱間仕上げ圧延条件のみに依存し、その他の製
造条件にはほとんど依存しないことも判明した。
Further, based on this finding, as a result of conducting a more detailed study, it has been found that, under the condition that the Si-containing steel is subjected to a strong pressure reduction in one pass at a lower temperature than that employed in the ordinary process, the steel is 1.
By hot finishing rolling to a thickness of 5 mm or less, the degree of integration in the {110} <001> orientation of the hot-rolled sheet is remarkably improved. Furthermore, by using this material, secondary recrystallization is performed. It has been found that {110} <001> orientation grains can be highly accumulated without using, and the present invention has been completed. In the present invention, the integrated strength in the {110} <001> orientation in the hot rolling stage is:
It has also been found that it depends only on the hot finish rolling conditions described above and hardly depends on other manufacturing conditions.

【0027】以下に、この発明の鋼組成、鋼組織及び製
造条件を限定した理由について説明する。
Hereinafter, the reasons for limiting the steel composition, the steel structure, and the manufacturing conditions of the present invention will be described.

【0028】(1) 鋼組成 (a) C:0.005 wt%以下 Cは、従来の製造方法で方向性電磁鋼板を製造する場合
には、最終的にゴス方位が発達するため必須の添加元素
であるが、この発明ではCは不要な成分であり、また、
通常工程では行う二次再結晶前の脱炭工程も敢えて行わ
なくてもよいため、少ないほど好ましく、よって、0.00
5 wt%以下とした。
(1) Steel composition (a) C: 0.005 wt% or less C is an indispensable additional element when a grain-oriented electrical steel sheet is manufactured by a conventional manufacturing method because a Goss orientation eventually develops. However, in the present invention, C is an unnecessary component,
Since the decarburization step before the secondary recrystallization performed in the normal step does not need to be dared to be performed, it is preferable that the decarburization step is smaller, and therefore, 0.00
5 wt% or less.

【0029】(b) Si:0.1 〜4.5 wt% Siは比抵抗を増大させ、渦電流損を低減させる効果があ
り、この発明には必須の成分である。しかし、 0.1wt%
未満だと十分にこの効果が現れず、また、 4.5wt%を超
えると、磁束密度の低下が大きいばかりでなく、打ち抜
き性も劣化する。従って、Siの含有量は0.1 〜4.5 wtの
範囲とした。
(B) Si: 0.1-4.5 wt% Si has the effect of increasing the specific resistance and reducing the eddy current loss, and is an essential component in the present invention. However, 0.1wt%
When the amount is less than 4.5 wt%, the effect is not sufficiently exhibited. When the amount exceeds 4.5 wt%, not only the magnetic flux density is largely reduced but also the punching property is deteriorated. Therefore, the content of Si is set in the range of 0.1 to 4.5 wt.

【0030】(c) この発明では、C,Si以外の成分につ
いては特に限定はしないが、用途に応じて既知である種
々の第三元素を適宜添加することは可能である。例え
ば、Al及びMnは、Siと同様に比抵抗を増大させる効果を
有する成分であり添加することができるが、Al及びMnの
添加量は、いずれも2.0 wt%を超えるとコストの上昇を
招くので、それぞれ2.0 wt%以下の範囲内で添加するこ
とが好ましい。
(C) In the present invention, components other than C and Si are not particularly limited, but various known third elements can be appropriately added depending on the use. For example, Al and Mn are components having an effect of increasing the specific resistance similarly to Si and can be added. However, if the addition amount of Al and Mn exceeds 2.0 wt%, the cost increases. Therefore, it is preferable to add each of them within the range of 2.0 wt% or less.

【0031】(2) 鋼組織 この発明の電磁鋼板は、従来の製造方法のように二次再
結晶による異常成長を生じさせるメカニズムによって粒
成長させた組織を有するものではなく、正常粒を、粒
径、{110}<001>方位及びこの方位をもつ正常
粒の存在割合を適正に制御して成長させた組織を有する
ことを主な特徴とするものであり、これによって、従来
の方向性電磁鋼板においては困難とされていた磁気特性
と打ち抜き性との両立を可能にしたものである。
(2) Steel Structure The electrical steel sheet of the present invention does not have a structure in which grains are grown by a mechanism that causes abnormal growth by secondary recrystallization as in the conventional manufacturing method. Its main feature is that it has a structure grown by appropriately controlling the diameter, the {110} <001> orientation and the proportion of normal grains having this orientation. This makes it possible to achieve both magnetic properties and punching properties, which have been considered difficult for steel sheets.

【0032】(a) 平均結晶粒径:0.1 〜5.0mm の範囲 結晶粒の平均結晶粒径は、0.1 mm未満であると、鉄損の
内履歴損失が増加して鉄損を顕著に悪化させることにな
り、また、5mmを超えると打ち抜き性が悪化する。従っ
て、結晶粒の平均結晶粒径は、0.1 〜5.0mm の範囲とし
た。
(A) Average crystal grain size: in the range of 0.1 to 5.0 mm If the average crystal grain size of the crystal grains is less than 0.1 mm, the internal hysteresis loss of the iron loss increases and the iron loss remarkably deteriorates. That is, if it exceeds 5 mm, the punching property is deteriorated. Accordingly, the average crystal grain size of the crystal grains is in the range of 0.1 to 5.0 mm.

【0033】(b) 圧延方向に平行な軸線に対する{11
0}<001>方位の<001>軸のずれが回転角で±
15°以内である正常粒が全体の結晶粒の80%以上 {110}<001>方位及びこの方位をもつ正常粒の
存在割合に関して言えば、圧延方向に平行な軸線に対す
る{110}<001>方位の<001>軸のずれが15
°より大きいと、磁束密度が極端に劣化し、また、前記
ずれが回転角で±15°以内である正常粒の結晶粒全体に
占める存在割合が、体積百分率で80%未満である場合に
も、磁束密度が劣化する。従って、この発明の電磁鋼板
は、圧延方向に平行な軸線に対する{110}<001
>方位の<001>軸のずれが回転角で±15°以内であ
る正常粒が全体の結晶粒の80%以上のものに限定した。
(B) # 11 with respect to an axis parallel to the rolling direction
The deviation of the <001> axis in the 0 ° <001> direction is ±
In terms of the {110} <001> orientation and the proportion of normal grains having this orientation, the normal grains within 15 ° are 80% or more of the entire crystal grains. {110} <001> with respect to the axis parallel to the rolling direction. Misalignment of <001> axis in azimuth is 15
If it is larger than 0 ° C, the magnetic flux density is extremely deteriorated, and the ratio of the normal grains in which the deviation is within ± 15 ° in the rotation angle to the whole crystal grains is less than 80% by volume percentage. , The magnetic flux density deteriorates. Therefore, the magnetic steel sheet of the present invention has {110} <001 with respect to the axis parallel to the rolling direction.
The normal grains in which the deviation of the <001> axis in the orientation is within ± 15 ° in the rotation angle are limited to those in which 80% or more of the entire crystal grains are present.

【0034】(3) 製造条件 次に、この発明の製造方法について限定した理由を説明
する。 (A) 熱間仕上げ圧延条件 (a) 圧延終了温度:600 〜800 ℃ 図1は、真空小型溶解炉にて、Si:3.12wt%、C:0.00
3 wt%、Mn:0.01wt%、、Al:0.005wt%からなる成分の
鋼塊を、最終1パスの圧下率を60%、仕上げ板厚を1.0
mmの熱間仕上げ圧延を圧延終了温度を変えて行った種々
の鋼板を製造し、各鋼板の板厚中心部における{11
0}〈001〉方位への集積強度と圧延終了温度との関
係を示したものである。
(3) Manufacturing Conditions Next, the reasons for limiting the manufacturing method of the present invention will be described. (A) Hot finishing rolling conditions (a) Rolling end temperature: 600 to 800 ° C Figure 1 shows a vacuum small melting furnace with Si: 3.12 wt%, C: 0.00
A steel ingot consisting of 3 wt%, Mn: 0.01 wt%, and Al: 0.005 wt% was subjected to a final one-pass reduction of 60% and a finished plate thickness of 1.0.
mm hot finish rolling was performed at various rolling end temperatures to produce various steel sheets.
It shows the relationship between the integration strength in the 0 ° <001> direction and the rolling end temperature.

【0035】図1から、圧延終了温度は、800 ℃を超え
ると、{110}〈001〉方位の集積が弱くなり、ま
た、600 ℃未満であると、圧延荷重が極端に増し圧延困
難となる。従って、圧延終了温度は600 〜800 ℃とし
た。
From FIG. 1, it can be seen from FIG. 1 that if the rolling end temperature exceeds 800 ° C., the accumulation of the {110} <001> orientation becomes weak, and if it is lower than 600 ° C., the rolling load increases extremely and it becomes difficult to roll. . Therefore, the rolling end temperature was set at 600 to 800 ° C.

【0036】(b) 圧下率(1パス):30%以上 図2は、上記組成の鋼塊を、圧延終了温度700 ℃で最終
1パスの圧下率を10〜80%の範囲で変化させて仕上げ板
厚1.0mm の熱間圧延を行った種々の鋼板を製造し、各鋼
板の板厚中心部における{110}〈001〉方位への
集積強度と最終1パスの圧下率との関係を示したもので
ある。
(B) Rolling reduction (1 pass): 30% or more FIG. 2 shows a steel ingot having the above composition, at a rolling end temperature of 700 ° C., and a rolling reduction in the final 1 pass changed in the range of 10 to 80%. Various types of hot-rolled steel sheets with a finished sheet thickness of 1.0 mm were manufactured, and the relationship between the accumulation strength in the {110} <001> direction at the center of the sheet thickness and the rolling reduction in the final pass was shown. It is a thing.

【0037】図2から、1パスの圧下率が30%未満であ
ると、{110}〈001〉方位の集積が弱くなり、最
終製品での磁気特性及び方位集積が劣化するので、熱間
仕上げ圧延での1パスでの圧下率は30%以上とした。
From FIG. 2, if the rolling reduction in one pass is less than 30%, the accumulation in the {110} <001> orientation becomes weak, and the magnetic properties and orientation accumulation in the final product are deteriorated. The rolling reduction in one pass in rolling was 30% or more.

【0038】(c) 熱延板板厚:1.5mm 以下 図3は、上記組成の鋼塊を最終1パスでの圧下率:80
%、圧延終了温度:700℃の条件下で熱間圧延を行い、
板厚0.8 〜3.0mm の範囲の種々の鋼板を製造し、各鋼板
の板厚中心部における{110}〈001〉方位への集
積強度と仕上げ板厚との関係を示したものである。
(C) Hot-rolled sheet thickness: 1.5 mm or less FIG. 3 shows that the steel ingot having the above composition has a rolling reduction of 80 in the last single pass.
%, Rolling end temperature: hot rolling under the condition of 700 ° C,
Various steel sheets having a thickness of 0.8 to 3.0 mm are manufactured, and the relationship between the integrated strength in the {110} <001> direction at the center of the thickness of each steel sheet and the finished sheet thickness is shown.

【0039】図3から、熱延板板厚は、1.5 mmよりも厚
いと、{110}〈001〉方位の集積が弱くなること
から、熱延板板厚は1.5 mm以下とした。
From FIG. 3, if the thickness of the hot-rolled sheet is larger than 1.5 mm, the accumulation in the {110} <001> orientation becomes weak, so the thickness of the hot-rolled sheet is set to 1.5 mm or less.

【0040】(B) その他の製造条件 この発明は、熱間圧延段階での{110}〈001〉方
位への集積強度が、熱間仕上げ圧延条件のみに依存し、
その他の製造条件にはほとんど依存しないことは既に上
述した。従って、焼鈍、酸洗、冷間圧延若しくは温間圧
延、及び絶縁皮膜形成条件等については特に限定せず、
通常行われている範囲内で行うことができる。一例とし
て挙げると、熱延板を1000℃×2分で焼鈍し、酸洗のの
ち圧下率70%の冷間圧延を施し、850 ℃×3分の仕上げ
焼鈍を行ったのち絶縁皮膜を形成する。
(B) Other Manufacturing Conditions According to the present invention, the integrated strength in the {110} <001> orientation in the hot rolling stage depends only on the hot finish rolling conditions,
It has already been mentioned above that it hardly depends on other manufacturing conditions. Therefore, annealing, pickling, cold rolling or warm rolling, and the conditions for forming the insulating film are not particularly limited,
It can be performed within the range normally performed. As an example, a hot-rolled sheet is annealed at 1000 ° C. for 2 minutes, pickled, cold-rolled at a reduction of 70%, and subjected to finish annealing at 850 ° C. for 3 minutes to form an insulating film. .

【0041】[0041]

【実施例】次に、この発明の製造方法を用いて電磁鋼板
を製造し、性能を評価したので以下で説明する。 ・実施例1 真空小型溶解炉にて、Fe-2.0%Si(鋼種A)及びFe-3.3
%Si(鋼種B)組成からなる2 種類の鋼塊50kgをそれぞ
れ溶解し、その後1150℃にて加熱し熱間粗圧延で 1.4〜
8.0mm 厚の板とし、さらに、各板を1100℃にて加熱し、
圧延終了温度を550 〜850 ℃に制御し、800m/min. の圧
延速度で1パスにて板厚1.0mm に仕上げ、その後 950℃
で5分間焼鈍した。さらに、酸洗を行い、その後、冷間
圧延にて板厚0.35mmに仕上げ、さらに、温度950 ℃で2
分間焼鈍した。これら各鋼板について、EBSD(Electron
Back Scattering Diffraction)にて結晶粒の方位を測定
し、{110}<001>方位粒の存在割合を求めた結
果を、仕上げ圧延における圧延終了温度と1パス圧下率
との関係でプロットしたものを図4に示す。
EXAMPLE Next, an electrical steel sheet was manufactured using the manufacturing method of the present invention, and its performance was evaluated.・ Example 1 Fe-2.0% Si (steel type A) and Fe-3.3 in a small vacuum melting furnace
% Si (steel type B) 50kg each of two ingots composed of different compositions, then heated at 1150 ° C and hot-rolled to 1.4 ~
8.0mm thick plates, each plate was heated at 1100 ℃,
The rolling end temperature is controlled to 550 to 850 ° C and the thickness is 1.0mm in one pass at a rolling speed of 800m / min.
For 5 minutes. Further, it is pickled and then cold-rolled to a thickness of 0.35 mm.
Annealed for a minute. EBSD (Electron
Back Scattering Diffraction) was used to measure the orientation of crystal grains, and the percentage of {110} <001> oriented grains was determined. The results were plotted as a relationship between the rolling end temperature in finish rolling and the 1-pass rolling reduction. As shown in FIG.

【0042】尚、図中の丸印「○」と「●」は鋼種A
を、また三角印「△」と「▲」は鋼種Bを示し、白抜き
印「○」と「△」は、圧延方向に平行な軸線に対する
{110}<001>方位の<001>軸のずれが回転
角で±15°以内である正常粒が全体の結晶粒の80%以上
である場合、黒塗り印「●」と「▲」は、前記正常粒が
全体の結晶粒の80%未満である場合を示したものであ
る。
The circles “○” and “●” in the figure indicate steel type A.
And triangles “△” and “▲” indicate steel type B, and white circles “○” and “△” indicate the <001> axis of {110} <001> orientation with respect to an axis parallel to the rolling direction. When the normal grains whose deviation is within ± 15 ° in the rotation angle are 80% or more of the whole crystal grains, the black marks “●” and “▲” indicate that the normal grains are less than 80% of the whole crystal grains. This is the case where

【0043】図4の結果から、鋼種A及びBとも、仕上
げ圧延における圧延終了温度が600〜800 ℃で、かつ1
パスでの圧下率が30%以上である場合に、圧延方向に平
行な軸線に対する{110}<001>方位の<001
>軸のずれが回転角で±15°以内である正常粒が全体の
結晶粒の80%以上であった。
From the results shown in FIG. 4, it can be seen that both the steel types A and B have a finish rolling temperature of 600 to 800 ° C. and
When the rolling reduction in the pass is 30% or more, <001> of the {110} <001> direction with respect to the axis parallel to the rolling direction is <001.
> The normal grains whose axis deviation was within ± 15 ° in the rotation angle were 80% or more of the whole crystal grains.

【0044】・実施例2 真空小型溶解炉にて、Fe-3.2%Si の組成からなる鋼塊10
0kg を溶解し、その後1150℃にて加熱し熱間粗圧延で
1.4〜8.0mm 厚の板とした。この板を、1100℃にて加熱
し、圧延温度を 600、650 、750 、850 ℃に制御し、80
0m/min. の圧延速度で1パスにて板厚1.0mm に仕上げ、
その後、温度1000℃で2分間焼鈍した。さらに、酸洗を
行い、その後、冷間圧延にて板厚0.35mmに仕上げ、さら
に、温度950 ℃で2分間焼鈍した。これら各鋼板につい
て、EBSDにて結晶粒の方位を測定し、{110}<00
1>方位粒の存在割合を求めるとともに、磁気測定を行
い、最大磁束密度 1.7テスラ(T)、周波数50Hzに対す
る1kg当たりの鉄損値:W17 /50 及び、磁化力800 A/
mでの磁束密度;B8 を求めた。さらに、鋼板断面を光
学顕微鏡によって観察して、平均結晶粒径を求めた。こ
れらの結果を表1に示す。
Example 2 In a small vacuum melting furnace, a steel ingot 10 having a composition of Fe-3.2% Si was used.
Dissolve 0kg, then heat at 1150 ° C and hot rough rolling
The plate was 1.4 to 8.0 mm thick. The plate was heated at 1100 ° C and the rolling temperature was controlled at 600, 650, 750 and 850 ° C,
Finishing to a thickness of 1.0mm in one pass at a rolling speed of 0m / min.
Thereafter, annealing was performed at a temperature of 1000 ° C. for 2 minutes. Further, it was pickled, then finished by cold rolling to a sheet thickness of 0.35 mm, and further annealed at a temperature of 950 ° C. for 2 minutes. For each of these steel sheets, the orientation of the crystal grains was measured by EBSD, and {110} <00
1> together determine the existence ratio of oriented grains, with magnetic measurements, the maximum magnetic flux density 1.7 tesla (T), iron loss value per 1kg for Frequency 50Hz: W 17/50 and, magnetizing force 800 A /
It was determined B 8; flux density by m. Furthermore, the cross section of the steel sheet was observed with an optical microscope to determine the average crystal grain size. Table 1 shows the results.

【0045】[0045]

【表1】 [Table 1]

【0046】No. 1、5、7及び10は、熱延の圧下率が
低い例であり、また、No.11 は熱延の圧延温度が高い例
であり、いずれの場合も、圧延方向に平行な軸線に対す
る{110}<001>方位の<001>軸のずれが±
15°以内の結晶粒の割合が80%未満となり、結晶粒径も
小さく、磁気特性が劣化した例である。その他は本発明
例であり、いずれも前記割合が80%以上であり、磁気特
性が優れていた。
Nos. 1, 5, 7, and 10 are examples in which the rolling reduction of hot rolling is low, and No. 11 is an example in which the rolling temperature of hot rolling is high. The deviation of the <001> axis of the {110} <001> direction with respect to the parallel axis is ±
In this example, the ratio of crystal grains within 15 ° is less than 80%, the crystal grain size is small, and the magnetic properties are deteriorated. Others are examples of the present invention, and the ratio is 80% or more in each case, and the magnetic properties are excellent.

【0047】・実施例3 真空小型溶解炉にて、Fe-3.4% Si(鋼種1)、Fe4.8%Si
(鋼種2)組成からなる鋼塊50kgを溶解し、その後、11
50℃にて加熱し熱間圧延で5mm厚の板とした。この板
を、1100℃にて加熱し、圧延温度を750 に制御し、800
m/min.の圧延速度で1パスにて板厚1.0mm に仕上げ、温
度1000℃で2分間焼鈍した。さらに、酸洗を行い、その
後: 冷間圧延にて板厚0.35mmに仕上げ、さらに、結晶粒
の粒径を変えるために、温度、時間を変化させ、再結晶
及び粒成長焼鈍した。これら各鋼板について、EBSDにて
結晶粒の方位を測定し、{110}<001>方位粒の
存在割合を求めるとともに、磁気測定を行い、W17/50
及びB8 を求めた。さらに、鋼板断面を光学顕微鏡によ
って観察して、平均結晶粒径を求めた。また、打ち抜き
性についても評価した。これらの結果を表2に示す。
尚、表2中の打ち抜き性は、良好である場合を「○」、
良くない場合を「×」として示してある。
Example 3 In a small vacuum melting furnace, Fe-3.4% Si (steel type 1), Fe4.8% Si
(Steel type 2) Dissolve 50kg of steel ingot composed of
The plate was heated at 50 ° C. and hot-rolled into a plate having a thickness of 5 mm. This plate was heated at 1100 ° C, the rolling temperature was controlled at 750, and 800
The sheet was finished to a thickness of 1.0 mm in one pass at a rolling speed of m / min. and annealed at a temperature of 1000 ° C. for 2 minutes. Further, pickling was performed, and then: cold rolling was performed to finish the sheet to a thickness of 0.35 mm. Further, in order to change the grain size of the crystal grains, the temperature and time were changed, and recrystallization and grain growth annealing were performed. For each of these steel sheets were measured the orientation of the crystal grains in EBSD, together determine the existence ratio of the {110} <001> oriented grains, with magnetic measurements, W 17/50
And I was asked to B 8. Furthermore, the cross section of the steel sheet was observed with an optical microscope to determine the average crystal grain size. In addition, punchability was also evaluated. Table 2 shows the results.
Incidentally, the punching property in Table 2 is “O” when the punching property is good,
Poor cases are indicated by "x".

【0048】[0048]

【表2】 [Table 2]

【0049】表2の結果から、No. 1〜4は本発明の適
合例であり、鉄損値W17/50 、磁束密度B8 及び打ち抜
き性のいずれも良好である。No. 7及び8はSi含有量が
高い場合の比較例であり、特に磁束密度B8 が劣化し、
また、打ち抜き性も劣化した例である。No. 5及び6は
平均結晶粒径が5mmよりも大きい場合の比較例てあり、
特に打ち抜き性が劣化している。加えて、No. 6につい
ては、粒成長させすぎたために、磁束密度B8 がかなり
劣化していることがわかる。
From the results shown in Table 2, Nos. 1 to 4 are applicable examples of the present invention, and all of the iron loss value W 17/50 , the magnetic flux density B 8, and the punching property are good. No. 7 and 8 are comparative examples where high Si content, in particular deteriorates magnetic flux density B 8,
Further, this is an example in which the punching property is also deteriorated. Nos. 5 and 6 are comparative examples when the average crystal grain size is larger than 5 mm,
In particular, the punchability is deteriorated. In addition, with respect to No. 6, it can be seen that the magnetic flux density B 8 is considerably deteriorated due to excessive grain growth.

【0050】[0050]

【発明の効果】この発明によれば、従来の方向性電磁鋼
板の製造方法では二次再結晶を利用せずには実現不可能
とされていた(110)<110>方位粒への集積を、二次再結晶
を利用せずに行うことができ、しかも、正常粒の粒径を
適正に制御することによって、従来の方向性電磁鋼板に
おいては劣る傾向にあった打ち抜き性を改善することが
できる。また、この発明では、従来技術では必須の工程
であった脱炭焼鈍、二次再結晶焼鈍及び純化焼鈍の工程
を省略できるため、大幅なコスト低減、製造時間の短縮
及び省エネルギー化が図れる。このように、この発明で
は、打ち抜き性が良好であり、かつ圧延方向の磁気特性
に優れた電磁鋼板を安価に得ることが可能になった。
According to the present invention, accumulation in (110) <110> oriented grains, which was not feasible without using secondary recrystallization in the conventional method for manufacturing a grain-oriented electrical steel sheet, is described. It can be performed without using secondary recrystallization, and by properly controlling the grain size of normal grains, it is possible to improve the punchability, which tends to be inferior in conventional grain-oriented electrical steel sheets. it can. Further, in the present invention, the steps of decarburizing annealing, secondary recrystallization annealing, and purification annealing, which are essential steps in the prior art, can be omitted, so that significant cost reduction, shortening of manufacturing time, and energy saving can be achieved. As described above, according to the present invention, it has become possible to inexpensively obtain an electromagnetic steel sheet having good punching properties and excellent magnetic properties in the rolling direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】板厚中心位置における(110)<110>方位への集積
強度と圧延終了温度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the integrated strength in the (110) <110> orientation and the rolling end temperature at the center position of a thickness.

【図2】板厚中心位置における(110)<110>方位への集積
強度と1パスでの圧下率との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the integrated strength in the (110) <110> direction and the rolling reduction in one pass at the plate thickness center position.

【図3】板厚中心位置における(110)<110>方位への集積
強度と熱延板板厚との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the integrated strength in the (110) <110> orientation and the hot-rolled sheet thickness at the sheet thickness center position.

【図4】(110)<110>方位粒の存在割合を求めた結果を仕
上げ圧延における圧延終了温度と1パスでの圧下率との
関係でプロットした図である。
FIG. 4 is a diagram in which the result of obtaining the abundance ratio of (110) <110> orientation grains is plotted as a relationship between a rolling end temperature in finish rolling and a rolling reduction in one pass.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.005 wt%以下、Si:0.1 〜4.5 wt
%を含有し、残部は実質的にFeからなる組成で、平均結
晶粒径が0.1 〜5.0mm の範囲で、圧延方向に平行な軸線
に対する{110}<001>方位の<001>軸のず
れが回転角で±15°以内である正常粒が結晶粒全体の80
%以上あることを特徴とする、打ち抜き性及び圧延方向
の磁気特性に優れた電磁鋼板。
C: 0.005 wt% or less, Si: 0.1 to 4.5 wt%
%, And the balance is substantially composed of Fe. The average crystal grain size is in the range of 0.1 to 5.0 mm, and the deviation of the <001> axis in the {110} <001> direction with respect to the axis parallel to the rolling direction. Of normal grains within ± 15 ° of rotation angle
%, Characterized in that it has excellent punching properties and magnetic properties in the rolling direction.
【請求項2】 C:0.005 wt%以下、Si:0.1 〜4.5 wt
%を含有し、残部は実質的にFeからなる鋼スラブを熱間
粗圧延後、熱間仕上げ圧延を行い、その後必要に応じて
熱延板焼鈍を施し、酸洗の後、1回又は途中焼鈍を含む
2回以上の冷間圧延若しくは温間圧延を施して最終板厚
とした後、仕上げ焼鈍を行い、次いで絶縁皮膜を付与し
て電磁鋼板を製造するにあたり、 熱間仕上げ圧延を、圧下率(1パス):30%以上及び圧
延終了温度:600 〜800 ℃の条件下で行い、熱延板板厚
を1.5 mm以下にすることを特徴とする、打ち抜き性及び
圧延方向の磁気特性に優れた電磁鋼板の製造方法。
2. C: 0.005 wt% or less, Si: 0.1 to 4.5 wt%
%, With the balance substantially consisting of Fe, after hot rough rolling, hot finishing rolling, and then, if necessary, hot-rolled sheet annealing, and once or halfway after pickling. After performing cold rolling or warm rolling two or more times including annealing to obtain a final sheet thickness, performing finish annealing, and then applying an insulating film to manufacture an electromagnetic steel sheet, hot finish rolling is performed by reducing The rate (1 pass): 30% or more and the rolling end temperature: 600 to 800 ° C, and the hot-rolled sheet thickness is reduced to 1.5 mm or less. Excellent manufacturing method of electrical steel sheet.
JP22273197A 1997-08-19 1997-08-19 Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction Expired - Fee Related JP4320793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22273197A JP4320793B2 (en) 1997-08-19 1997-08-19 Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22273197A JP4320793B2 (en) 1997-08-19 1997-08-19 Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction

Publications (2)

Publication Number Publication Date
JPH1161358A true JPH1161358A (en) 1999-03-05
JP4320793B2 JP4320793B2 (en) 2009-08-26

Family

ID=16787023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22273197A Expired - Fee Related JP4320793B2 (en) 1997-08-19 1997-08-19 Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction

Country Status (1)

Country Link
JP (1) JP4320793B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146491A (en) * 2000-11-09 2002-05-22 Kawasaki Steel Corp Silicon steel sheet for iron core of motor having excellent high frequency magnetic property and mechanical strength property and its manufacturing method
JP2019183228A (en) * 2018-04-11 2019-10-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146491A (en) * 2000-11-09 2002-05-22 Kawasaki Steel Corp Silicon steel sheet for iron core of motor having excellent high frequency magnetic property and mechanical strength property and its manufacturing method
JP4613414B2 (en) * 2000-11-09 2011-01-19 Jfeスチール株式会社 Electrical steel sheet for motor core and method for manufacturing the same
JP2019183228A (en) * 2018-04-11 2019-10-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP4320793B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JP3492993B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH1161357A (en) Electric steel sheet excellent in magnetic property in rolling direction and manufacture thereof
JP4268277B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH09118921A (en) Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP4253854B2 (en) Manufacturing method of unidirectional silicon steel sheet with simplified manufacturing process
JPS62180015A (en) Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH1180835A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
JPH0781166B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH1150153A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JPH06271996A (en) Nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees